Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/* Copyright (C) 2010-2017 Free Software Foundation, Inc.
   Contributed by Bernd Schmidt <bernds@codesourcery.com>.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

	;; ABI considerations for the divide functions
	;; The following registers are call-used:
	;; __c6xabi_divi A0,A1,A2,A4,A6,B0,B1,B2,B4,B5
	;; __c6xabi_divu A0,A1,A2,A4,A6,B0,B1,B2,B4
	;; __c6xabi_remi A1,A2,A4,A5,A6,B0,B1,B2,B4
	;; __c6xabi_remu A1,A4,A5,A7,B0,B1,B2,B4
	;;
	;; In our implementation, divu and remu are leaf functions,
	;; while both divi and remi call into divu.
	;; A0 is not clobbered by any of the functions.
	;; divu does not clobber B2 either, which is taken advantage of
	;; in remi.
	;; divi uses B5 to hold the original return address during
	;; the call to divu.
	;; remi uses B2 and A5 to hold the input values during the
	;; call to divu.  It stores B3 in on the stack.

#ifdef L_divsi3
.text
.align 2
.global __c6xabi_divi
.hidden __c6xabi_divi
.type __c6xabi_divi, STT_FUNC

__c6xabi_divi:
	call .s2	__c6xabi_divu
||	mv .d2		B3, B5
||	cmpgt .l1	0, A4, A1
||	cmpgt .l2	0, B4, B1

	[A1] neg .l1	A4, A4
||	[B1] neg .l2	B4, B4
||	xor .s1x	A1, B1, A1

#ifdef _TMS320C6400
	[A1] addkpc .s2	1f, B3, 4
#else
	[A1] mvkl .s2	1f, B3
	[A1] mvkh .s2	1f, B3
	nop		2
#endif
1:
	neg .l1		A4, A4
||	mv .l2		B3,B5
||	ret .s2		B5
	nop		5
#endif

#if defined L_modsi3 || defined L_divmodsi4
.align 2
#ifdef L_modsi3
#define MOD_OUTPUT_REG A4
.global __c6xabi_remi
.hidden __c6xabi_remi
.type __c6xabi_remi, STT_FUNC
#else
#define MOD_OUTPUT_REG A5
.global __c6xabi_divremi
.hidden __c6xabi_divremi
.type __c6xabi_divremi, STT_FUNC
__c6xabi_divremi:
#endif

__c6xabi_remi:
	stw .d2t2	B3, *B15--[2]
||	cmpgt .l1	0, A4, A1
||	cmpgt .l2	0, B4, B2
||	mv .s1		A4, A5
||	call .s2	__c6xabi_divu

	[A1] neg .l1	A4, A4
||	[B2] neg .l2	B4, B4
||	xor .s2x	B2, A1, B0
||	mv .d2		B4, B2

#ifdef _TMS320C6400
	[B0] addkpc .s2	1f, B3, 1
	[!B0] addkpc .s2 2f, B3, 1
	nop		2
#else
	[B0] mvkl .s2	1f,B3
	[!B0] mvkl .s2	2f,B3

	[B0] mvkh .s2	1f,B3
	[!B0] mvkh .s2	2f,B3
#endif
1:
	neg .l1		A4, A4
2:
	ldw .d2t2	*++B15[2], B3

#ifdef _TMS320C6400_PLUS
	mpy32 .m1x	A4, B2, A6
	nop		3
	ret .s2		B3
	sub .l1		A5, A6, MOD_OUTPUT_REG
	nop		4
#else
	mpyu .m1x	A4, B2, A1
	nop		1
	mpylhu .m1x	A4, B2, A6
||	mpylhu .m2x	B2, A4, B2
	nop		1
	add .l1x	A6, B2, A6
||	ret .s2		B3
	shl .s1		A6, 16, A6
	add .d1		A6, A1, A6
	sub .l1		A5, A6, MOD_OUTPUT_REG
	nop		2
#endif

#endif

#if defined L_udivsi3 || defined L_udivmodsi4
.align 2
#ifdef L_udivsi3
.global __c6xabi_divu
.hidden __c6xabi_divu
.type __c6xabi_divu, STT_FUNC
__c6xabi_divu:
#else
.global __c6xabi_divremu
.hidden __c6xabi_divremu
.type __c6xabi_divremu, STT_FUNC
__c6xabi_divremu:
#endif
	;; We use a series of up to 31 subc instructions.  First, we find
	;; out how many leading zero bits there are in the divisor.  This
	;; gives us both a shift count for aligning (shifting) the divisor
	;; to the, and the number of times we have to execute subc.

	;; At the end, we have both the remainder and most of the quotient
	;; in A4.  The top bit of the quotient is computed first and is
	;; placed in A2.

	;; Return immediately if the dividend is zero.  Setting B4 to 1
	;; is a trick to allow us to leave the following insns in the jump
	;; delay slot without affecting the result.
	mv	.s2x	A4, B1

#ifndef _TMS320C6400
[!b1]	mvk	.s2	1, B4
#endif
[b1]	lmbd	.l2	1, B4, B1
||[!b1] b	.s2	B3	; RETURN A
#ifdef _TMS320C6400
||[!b1] mvk	.d2	1, B4
#endif
#ifdef L_udivmodsi4
||[!b1] zero	.s1	A5
#endif
	mv	.l1x	B1, A6
||	shl	.s2	B4, B1, B4

	;; The loop performs a maximum of 28 steps, so we do the
	;; first 3 here.
	cmpltu	.l1x	A4, B4, A2
[!A2]	sub	.l1x	A4, B4, A4
||	shru	.s2	B4, 1, B4
||	xor	.s1	1, A2, A2

	shl	.s1	A2, 31, A2
|| [b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1

	;; RETURN A may happen here (note: must happen before the next branch)
0:
	cmpgt	.l2	B1, 7, B0
|| [b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
|| [b0] b	.s1	0b
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
	;; loop backwards branch happens here

	ret	.s2	B3
||	mvk	.s1	32, A1
	sub	.l1	A1, A6, A6
#ifdef L_udivmodsi4
||	extu	.s1	A4, A6, A5
#endif
	shl	.s1	A4, A6, A4
	shru	.s1	A4, 1, A4
||	sub	.l1	A6, 1, A6
	or	.l1	A2, A4, A4
	shru	.s1	A4, A6, A4
	nop

#endif

#ifdef L_umodsi3
.align 2
.global __c6xabi_remu
.hidden __c6xabi_remu
.type __c6xabi_remu, STT_FUNC
__c6xabi_remu:
	;; The ABI seems designed to prevent these functions calling each other,
	;; so we duplicate most of the divsi3 code here.
	mv	.s2x	A4, B1
#ifndef _TMS320C6400
[!b1]	mvk	.s2	1, B4
#endif
	lmbd	.l2	1, B4, B1
||[!b1] b	.s2	B3	; RETURN A
#ifdef _TMS320C6400
||[!b1] mvk	.d2	1, B4
#endif

	mv	.l1x	B1, A7
||	shl	.s2	B4, B1, B4

	cmpltu	.l1x	A4, B4, A1
[!a1]	sub	.l1x	A4, B4, A4
	shru	.s2	B4, 1, B4

0:
	cmpgt	.l2	B1, 7, B0
|| [b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
	;; RETURN A may happen here (note: must happen before the next branch)
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
|| [b0] b	.s1	0b
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
	;; loop backwards branch happens here

	ret	.s2	B3
[b1]	subc	.l1x	A4,B4,A4
|| [b1]	add	.s2	-1, B1, B1
[b1]	subc	.l1x	A4,B4,A4

	extu	.s1	A4, A7, A4
	nop	2
#endif

#if defined L_strasgi_64plus && defined _TMS320C6400_PLUS

.align 2
.global __c6xabi_strasgi_64plus
.hidden __c6xabi_strasgi_64plus
.type __c6xabi_strasgi_64plus, STT_FUNC
__c6xabi_strasgi_64plus:
	shru	.s2x	a6, 2, b31
||	mv	.s1	a4, a30
||	mv	.d2	b4, b30

	add	.s2	-4, b31, b31

	sploopd		1
||	mvc	.s2	b31, ilc
	ldw	.d2t2	*b30++, b31
	nop	4
	mv	.s1x	b31,a31
	spkernel	6, 0
||	stw	.d1t1	a31, *a30++

	ret	.s2	b3
	nop 5
#endif

#ifdef L_strasgi
.global __c6xabi_strasgi
.type __c6xabi_strasgi, STT_FUNC
__c6xabi_strasgi:
	;; This is essentially memcpy, with alignment known to be at least
	;; 4, and the size a multiple of 4 greater than or equal to 28.
	ldw	.d2t1	*B4++, A0
||	mvk	.s2	16, B1
	ldw	.d2t1	*B4++, A1
||	mvk	.s2	20, B2
||	sub	.d1	A6, 24, A6
	ldw	.d2t1	*B4++, A5
	ldw	.d2t1	*B4++, A7
||	mv	.l2x	A6, B7
	ldw	.d2t1	*B4++, A8
	ldw	.d2t1	*B4++, A9
||	mv	.s2x	A0, B5
||	cmpltu	.l2	B2, B7, B0

0:
	stw	.d1t2	B5, *A4++
||[b0]	ldw	.d2t1	*B4++, A0
||	mv	.s2x	A1, B5
||	mv	.l2	B7, B6

[b0]	sub	.d2	B6, 24, B7
||[b0]	b	.s2	0b
||	cmpltu	.l2	B1, B6, B0

[b0]	ldw	.d2t1	*B4++, A1
||	stw	.d1t2	B5, *A4++
||	mv	.s2x	A5, B5
||	cmpltu	.l2	12, B6, B0

[b0]	ldw	.d2t1	*B4++, A5
||	stw	.d1t2	B5, *A4++
||	mv	.s2x	A7, B5
||	cmpltu	.l2	8, B6, B0

[b0]	ldw	.d2t1	*B4++, A7
||	stw	.d1t2	B5, *A4++
||	mv	.s2x	A8, B5
||	cmpltu	.l2	4, B6, B0

[b0]	ldw	.d2t1	*B4++, A8
||	stw	.d1t2	B5, *A4++
||	mv	.s2x	A9, B5
||	cmpltu	.l2	0, B6, B0

[b0]	ldw	.d2t1	*B4++, A9
||	stw	.d1t2	B5, *A4++
||	mv	.s2x	A0, B5
||	cmpltu	.l2	B2, B7, B0

	;; loop back branch happens here

	cmpltu	.l2	B1, B6, B0
||	ret	.s2	b3

[b0]	stw	.d1t1	A1, *A4++
||	cmpltu	.l2	12, B6, B0
[b0]	stw	.d1t1	A5, *A4++
||	cmpltu	.l2	8, B6, B0
[b0]	stw	.d1t1	A7, *A4++
||	cmpltu	.l2	4, B6, B0
[b0]	stw	.d1t1	A8, *A4++
||	cmpltu	.l2	0, B6, B0
[b0]	stw	.d1t1	A9, *A4++

	;; return happens here

#endif

#ifdef _TMS320C6400_PLUS
#ifdef L_push_rts
.align 2
.global __c6xabi_push_rts
.hidden __c6xabi_push_rts
.type __c6xabi_push_rts, STT_FUNC
__c6xabi_push_rts:
	stw .d2t2	B14, *B15--[2]
	stdw .d2t1	A15:A14, *B15--
||	b .s2x		A3
	stdw .d2t2	B13:B12, *B15--
	stdw .d2t1	A13:A12, *B15--
	stdw .d2t2	B11:B10, *B15--
	stdw .d2t1	A11:A10, *B15--
	stdw .d2t2	B3:B2, *B15--
#endif

#ifdef L_pop_rts
.align 2
.global __c6xabi_pop_rts
.hidden __c6xabi_pop_rts
.type __c6xabi_pop_rts, STT_FUNC
__c6xabi_pop_rts:
	lddw .d2t2	*++B15, B3:B2
	lddw .d2t1	*++B15, A11:A10
	lddw .d2t2	*++B15, B11:B10
	lddw .d2t1	*++B15, A13:A12
	lddw .d2t2	*++B15, B13:B12
	lddw .d2t1	*++B15, A15:A14
||	b .s2		B3
	ldw .d2t2	*++B15[2], B14
	nop		4
#endif

#ifdef L_call_stub
.align 2
.global __c6xabi_call_stub
.type __c6xabi_call_stub, STT_FUNC
__c6xabi_call_stub:
	stw .d2t1	A2, *B15--[2]
	stdw .d2t1	A7:A6, *B15--
||	call .s2	B31
	stdw .d2t1	A1:A0, *B15--
	stdw .d2t2	B7:B6, *B15--
	stdw .d2t2	B5:B4, *B15--
	stdw .d2t2	B1:B0, *B15--
	stdw .d2t2	B3:B2, *B15--
||	addkpc .s2	1f, B3, 0
1:
	lddw .d2t2	*++B15, B3:B2
	lddw .d2t2	*++B15, B1:B0
	lddw .d2t2	*++B15, B5:B4
	lddw .d2t2	*++B15, B7:B6
	lddw .d2t1	*++B15, A1:A0
	lddw .d2t1	*++B15, A7:A6
||	b .s2		B3
	ldw .d2t1	*++B15[2], A2
	nop		4
#endif

#endif