Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// Special functions -*- C++ -*-

// Copyright (C) 2006-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/bessel_function.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland.
//
// References:
//   (1) Handbook of Mathematical Functions,
//       ed. Milton Abramowitz and Irene A. Stegun,
//       Dover Publications,
//       Section 9, pp. 355-434, Section 10 pp. 435-478
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
//       2nd ed, pp. 240-245

#ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
#define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1

#include "special_function_util.h"

namespace std _GLIBCXX_VISIBILITY(default)
{
#if _GLIBCXX_USE_STD_SPEC_FUNCS
# define _GLIBCXX_MATH_NS ::std
#elif defined(_GLIBCXX_TR1_CMATH)
namespace tr1
{
# define _GLIBCXX_MATH_NS ::std::tr1
#else
# error do not include this header directly, use <cmath> or <tr1/cmath>
#endif
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief Compute the gamma functions required by the Temme series
     *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
     *   @f[
     *     \Gamma_1 = \frac{1}{2\mu}
     *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
     *   @f]
     *   and
     *   @f[
     *     \Gamma_2 = \frac{1}{2}
     *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
     *   @f]
     *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
     *   is the nearest integer to @f$ \nu @f$.
     *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
     *   are returned as well.
     * 
     *   The accuracy requirements on this are exquisite.
     *
     *   @param __mu     The input parameter of the gamma functions.
     *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
     *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
     *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
     *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
     */
    template <typename _Tp>
    void
    __gamma_temme(_Tp __mu,
                  _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
    {
#if _GLIBCXX_USE_C99_MATH_TR1
      __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu);
      __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu);
#else
      __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
      __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
#endif

      if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
        __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
      else
        __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);

      __gam2 = (__gammi + __gampl) / (_Tp(2));

      return;
    }


    /**
     *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
     *           @f$ N_\nu(x) @f$ functions and their first derivatives
     *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
     *           These four functions are computed together for numerical
     *           stability.
     *
     *   @param  __nu  The order of the Bessel functions.
     *   @param  __x   The argument of the Bessel functions.
     *   @param  __Jnu  The output Bessel function of the first kind.
     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
     *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
     *   @param  __Npnu  The output derivative of the Neumann function.
     */
    template <typename _Tp>
    void
    __bessel_jn(_Tp __nu, _Tp __x,
                _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
    {
      if (__x == _Tp(0))
        {
          if (__nu == _Tp(0))
            {
              __Jnu = _Tp(1);
              __Jpnu = _Tp(0);
            }
          else if (__nu == _Tp(1))
            {
              __Jnu = _Tp(0);
              __Jpnu = _Tp(0.5L);
            }
          else
            {
              __Jnu = _Tp(0);
              __Jpnu = _Tp(0);
            }
          __Nnu = -std::numeric_limits<_Tp>::infinity();
          __Npnu = std::numeric_limits<_Tp>::infinity();
          return;
        }

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      //  When the multiplier is N i.e.
      //  fp_min = N * min()
      //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
      //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
      const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
      const int __max_iter = 15000;
      const _Tp __x_min = _Tp(2);

      const int __nl = (__x < __x_min
                    ? static_cast<int>(__nu + _Tp(0.5L))
                    : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));

      const _Tp __mu = __nu - __nl;
      const _Tp __mu2 = __mu * __mu;
      const _Tp __xi = _Tp(1) / __x;
      const _Tp __xi2 = _Tp(2) * __xi;
      _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
      int __isign = 1;
      _Tp __h = __nu * __xi;
      if (__h < __fp_min)
        __h = __fp_min;
      _Tp __b = __xi2 * __nu;
      _Tp __d = _Tp(0);
      _Tp __c = __h;
      int __i;
      for (__i = 1; __i <= __max_iter; ++__i)
        {
          __b += __xi2;
          __d = __b - __d;
          if (std::abs(__d) < __fp_min)
            __d = __fp_min;
          __c = __b - _Tp(1) / __c;
          if (std::abs(__c) < __fp_min)
            __c = __fp_min;
          __d = _Tp(1) / __d;
          const _Tp __del = __c * __d;
          __h *= __del;
          if (__d < _Tp(0))
            __isign = -__isign;
          if (std::abs(__del - _Tp(1)) < __eps)
            break;
        }
      if (__i > __max_iter)
        std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
                                       "try asymptotic expansion."));
      _Tp __Jnul = __isign * __fp_min;
      _Tp __Jpnul = __h * __Jnul;
      _Tp __Jnul1 = __Jnul;
      _Tp __Jpnu1 = __Jpnul;
      _Tp __fact = __nu * __xi;
      for ( int __l = __nl; __l >= 1; --__l )
        {
          const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
          __fact -= __xi;
          __Jpnul = __fact * __Jnutemp - __Jnul;
          __Jnul = __Jnutemp;
        }
      if (__Jnul == _Tp(0))
        __Jnul = __eps;
      _Tp __f= __Jpnul / __Jnul;
      _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
      if (__x < __x_min)
        {
          const _Tp __x2 = __x / _Tp(2);
          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
          _Tp __fact = (std::abs(__pimu) < __eps
                      ? _Tp(1) : __pimu / std::sin(__pimu));
          _Tp __d = -std::log(__x2);
          _Tp __e = __mu * __d;
          _Tp __fact2 = (std::abs(__e) < __eps
                       ? _Tp(1) : std::sinh(__e) / __e);
          _Tp __gam1, __gam2, __gampl, __gammi;
          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
          _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
                   * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
          __e = std::exp(__e);
          _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
          _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
          const _Tp __pimu2 = __pimu / _Tp(2);
          _Tp __fact3 = (std::abs(__pimu2) < __eps
                       ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
          _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
          _Tp __c = _Tp(1);
          __d = -__x2 * __x2;
          _Tp __sum = __ff + __r * __q;
          _Tp __sum1 = __p;
          for (__i = 1; __i <= __max_iter; ++__i)
            {
              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
              __c *= __d / _Tp(__i);
              __p /= _Tp(__i) - __mu;
              __q /= _Tp(__i) + __mu;
              const _Tp __del = __c * (__ff + __r * __q);
              __sum += __del; 
              const _Tp __del1 = __c * __p - __i * __del;
              __sum1 += __del1;
              if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
                break;
            }
          if ( __i > __max_iter )
            std::__throw_runtime_error(__N("Bessel y series failed to converge "
                                           "in __bessel_jn."));
          __Nmu = -__sum;
          __Nnu1 = -__sum1 * __xi2;
          __Npmu = __mu * __xi * __Nmu - __Nnu1;
          __Jmu = __w / (__Npmu - __f * __Nmu);
        }
      else
        {
          _Tp __a = _Tp(0.25L) - __mu2;
          _Tp __q = _Tp(1);
          _Tp __p = -__xi / _Tp(2);
          _Tp __br = _Tp(2) * __x;
          _Tp __bi = _Tp(2);
          _Tp __fact = __a * __xi / (__p * __p + __q * __q);
          _Tp __cr = __br + __q * __fact;
          _Tp __ci = __bi + __p * __fact;
          _Tp __den = __br * __br + __bi * __bi;
          _Tp __dr = __br / __den;
          _Tp __di = -__bi / __den;
          _Tp __dlr = __cr * __dr - __ci * __di;
          _Tp __dli = __cr * __di + __ci * __dr;
          _Tp __temp = __p * __dlr - __q * __dli;
          __q = __p * __dli + __q * __dlr;
          __p = __temp;
          int __i;
          for (__i = 2; __i <= __max_iter; ++__i)
            {
              __a += _Tp(2 * (__i - 1));
              __bi += _Tp(2);
              __dr = __a * __dr + __br;
              __di = __a * __di + __bi;
              if (std::abs(__dr) + std::abs(__di) < __fp_min)
                __dr = __fp_min;
              __fact = __a / (__cr * __cr + __ci * __ci);
              __cr = __br + __cr * __fact;
              __ci = __bi - __ci * __fact;
              if (std::abs(__cr) + std::abs(__ci) < __fp_min)
                __cr = __fp_min;
              __den = __dr * __dr + __di * __di;
              __dr /= __den;
              __di /= -__den;
              __dlr = __cr * __dr - __ci * __di;
              __dli = __cr * __di + __ci * __dr;
              __temp = __p * __dlr - __q * __dli;
              __q = __p * __dli + __q * __dlr;
              __p = __temp;
              if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
                break;
          }
          if (__i > __max_iter)
            std::__throw_runtime_error(__N("Lentz's method failed "
                                           "in __bessel_jn."));
          const _Tp __gam = (__p - __f) / __q;
          __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
#if _GLIBCXX_USE_C99_MATH_TR1
          __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul);
#else
          if (__Jmu * __Jnul < _Tp(0))
            __Jmu = -__Jmu;
#endif
          __Nmu = __gam * __Jmu;
          __Npmu = (__p + __q / __gam) * __Nmu;
          __Nnu1 = __mu * __xi * __Nmu - __Npmu;
      }
      __fact = __Jmu / __Jnul;
      __Jnu = __fact * __Jnul1;
      __Jpnu = __fact * __Jpnu1;
      for (__i = 1; __i <= __nl; ++__i)
        {
          const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
          __Nmu = __Nnu1;
          __Nnu1 = __Nnutemp;
        }
      __Nnu = __Nmu;
      __Npnu = __nu * __xi * __Nmu - __Nnu1;

      return;
    }


    /**
     *   @brief This routine computes the asymptotic cylindrical Bessel
     *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
     *          \f$ N_{\nu} \f$.
     *
     *   References:
     *    (1) Handbook of Mathematical Functions,
     *        ed. Milton Abramowitz and Irene A. Stegun,
     *        Dover Publications,
     *        Section 9 p. 364, Equations 9.2.5-9.2.10
     *
     *   @param  __nu  The order of the Bessel functions.
     *   @param  __x   The argument of the Bessel functions.
     *   @param  __Jnu  The output Bessel function of the first kind.
     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
     */
    template <typename _Tp>
    void
    __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
    {
      const _Tp __mu   = _Tp(4) * __nu * __nu;
      const _Tp __mum1 = __mu - _Tp(1);
      const _Tp __mum9 = __mu - _Tp(9);
      const _Tp __mum25 = __mu - _Tp(25);
      const _Tp __mum49 = __mu - _Tp(49);
      const _Tp __xx = _Tp(64) * __x * __x;
      const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
                    * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
      const _Tp __Q = __mum1 / (_Tp(8) * __x)
                    * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));

      const _Tp __chi = __x - (__nu + _Tp(0.5L))
                            * __numeric_constants<_Tp>::__pi_2();
      const _Tp __c = std::cos(__chi);
      const _Tp __s = std::sin(__chi);

      const _Tp __coef = std::sqrt(_Tp(2)
                             / (__numeric_constants<_Tp>::__pi() * __x));
      __Jnu = __coef * (__c * __P - __s * __Q);
      __Nnu = __coef * (__s * __P + __c * __Q);

      return;
    }


    /**
     *   @brief This routine returns the cylindrical Bessel functions
     *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
     *          by series expansion.
     *
     *   The modified cylindrical Bessel function is:
     *   @f[
     *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
     *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
     *   @f]
     *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
     *   \f$ Z = I \f$ or \f$ J \f$ respectively.
     * 
     *   See Abramowitz & Stegun, 9.1.10
     *       Abramowitz & Stegun, 9.6.7
     *    (1) Handbook of Mathematical Functions,
     *        ed. Milton Abramowitz and Irene A. Stegun,
     *        Dover Publications,
     *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
     *
     *   @param  __nu  The order of the Bessel function.
     *   @param  __x   The argument of the Bessel function.
     *   @param  __sgn  The sign of the alternate terms
     *                  -1 for the Bessel function of the first kind.
     *                  +1 for the modified Bessel function of the first kind.
     *   @return  The output Bessel function.
     */
    template <typename _Tp>
    _Tp
    __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
                           unsigned int __max_iter)
    {
      if (__x == _Tp(0))
	return __nu == _Tp(0) ? _Tp(1) : _Tp(0);

      const _Tp __x2 = __x / _Tp(2);
      _Tp __fact = __nu * std::log(__x2);
#if _GLIBCXX_USE_C99_MATH_TR1
      __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1));
#else
      __fact -= __log_gamma(__nu + _Tp(1));
#endif
      __fact = std::exp(__fact);
      const _Tp __xx4 = __sgn * __x2 * __x2;
      _Tp __Jn = _Tp(1);
      _Tp __term = _Tp(1);

      for (unsigned int __i = 1; __i < __max_iter; ++__i)
        {
          __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
          __Jn += __term;
          if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
            break;
        }

      return __fact * __Jn;
    }


    /**
     *   @brief  Return the Bessel function of order \f$ \nu \f$:
     *           \f$ J_{\nu}(x) \f$.
     *
     *   The cylindrical Bessel function is:
     *   @f[
     *    J_{\nu}(x) = \sum_{k=0}^{\infty}
     *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
     *   @f]
     *
     *   @param  __nu  The order of the Bessel function.
     *   @param  __x   The argument of the Bessel function.
     *   @return  The output Bessel function.
     */
    template<typename _Tp>
    _Tp
    __cyl_bessel_j(_Tp __nu, _Tp __x)
    {
      if (__nu < _Tp(0) || __x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __cyl_bessel_j."));
      else if (__isnan(__nu) || __isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
        return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
      else if (__x > _Tp(1000))
        {
          _Tp __J_nu, __N_nu;
          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
          return __J_nu;
        }
      else
        {
          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
          return __J_nu;
        }
    }


    /**
     *   @brief  Return the Neumann function of order \f$ \nu \f$:
     *           \f$ N_{\nu}(x) \f$.
     *
     *   The Neumann function is defined by:
     *   @f[
     *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
     *                        {\sin \nu\pi}
     *   @f]
     *   where for integral \f$ \nu = n \f$ a limit is taken:
     *   \f$ lim_{\nu \to n} \f$.
     *
     *   @param  __nu  The order of the Neumann function.
     *   @param  __x   The argument of the Neumann function.
     *   @return  The output Neumann function.
     */
    template<typename _Tp>
    _Tp
    __cyl_neumann_n(_Tp __nu, _Tp __x)
    {
      if (__nu < _Tp(0) || __x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __cyl_neumann_n."));
      else if (__isnan(__nu) || __isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x > _Tp(1000))
        {
          _Tp __J_nu, __N_nu;
          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
          return __N_nu;
        }
      else
        {
          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
          return __N_nu;
        }
    }


    /**
     *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
     *           and Neumann @f$ n_n(x) @f$ functions and their first
     *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
     *           respectively.
     *
     *   @param  __n  The order of the spherical Bessel function.
     *   @param  __x  The argument of the spherical Bessel function.
     *   @param  __j_n  The output spherical Bessel function.
     *   @param  __n_n  The output spherical Neumann function.
     *   @param  __jp_n The output derivative of the spherical Bessel function.
     *   @param  __np_n The output derivative of the spherical Neumann function.
     */
    template <typename _Tp>
    void
    __sph_bessel_jn(unsigned int __n, _Tp __x,
                    _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
    {
      const _Tp __nu = _Tp(__n) + _Tp(0.5L);

      _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
      __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);

      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
                         / std::sqrt(__x);

      __j_n = __factor * __J_nu;
      __n_n = __factor * __N_nu;
      __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
      __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);

      return;
    }


    /**
     *   @brief  Return the spherical Bessel function
     *           @f$ j_n(x) @f$ of order n.
     *
     *   The spherical Bessel function is defined by:
     *   @f[
     *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
     *   @f]
     *
     *   @param  __n  The order of the spherical Bessel function.
     *   @param  __x  The argument of the spherical Bessel function.
     *   @return  The output spherical Bessel function.
     */
    template <typename _Tp>
    _Tp
    __sph_bessel(unsigned int __n, _Tp __x)
    {
      if (__x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __sph_bessel."));
      else if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x == _Tp(0))
        {
          if (__n == 0)
            return _Tp(1);
          else
            return _Tp(0);
        }
      else
        {
          _Tp __j_n, __n_n, __jp_n, __np_n;
          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
          return __j_n;
        }
    }


    /**
     *   @brief  Return the spherical Neumann function
     *           @f$ n_n(x) @f$.
     *
     *   The spherical Neumann function is defined by:
     *   @f[
     *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
     *   @f]
     *
     *   @param  __n  The order of the spherical Neumann function.
     *   @param  __x  The argument of the spherical Neumann function.
     *   @return  The output spherical Neumann function.
     */
    template <typename _Tp>
    _Tp
    __sph_neumann(unsigned int __n, _Tp __x)
    {
      if (__x < _Tp(0))
        std::__throw_domain_error(__N("Bad argument "
                                      "in __sph_neumann."));
      else if (__isnan(__x))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__x == _Tp(0))
        return -std::numeric_limits<_Tp>::infinity();
      else
        {
          _Tp __j_n, __n_n, __jp_n, __np_n;
          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
          return __n_n;
        }
    }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace __detail
#undef _GLIBCXX_MATH_NS
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
} // namespace tr1
#endif
}

#endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC