Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
// TR1 cmath -*- C++ -*-

// Copyright (C) 2006-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/cmath
 *  This is a TR1 C++ Library header. 
 */

#ifndef _GLIBCXX_TR1_CMATH
#define _GLIBCXX_TR1_CMATH 1

#pragma GCC system_header

#include <cmath>

#ifdef _GLIBCXX_USE_C99_MATH_TR1

#undef acosh
#undef acoshf
#undef acoshl
#undef asinh
#undef asinhf
#undef asinhl
#undef atanh
#undef atanhf
#undef atanhl
#undef cbrt
#undef cbrtf
#undef cbrtl
#undef copysign
#undef copysignf
#undef copysignl
#undef erf
#undef erff
#undef erfl
#undef erfc
#undef erfcf
#undef erfcl
#undef exp2
#undef exp2f
#undef exp2l
#undef expm1
#undef expm1f
#undef expm1l
#undef fdim
#undef fdimf
#undef fdiml
#undef fma
#undef fmaf
#undef fmal
#undef fmax
#undef fmaxf
#undef fmaxl
#undef fmin
#undef fminf
#undef fminl
#undef hypot
#undef hypotf
#undef hypotl
#undef ilogb
#undef ilogbf
#undef ilogbl
#undef lgamma
#undef lgammaf
#undef lgammal
#undef llrint
#undef llrintf
#undef llrintl
#undef llround
#undef llroundf
#undef llroundl
#undef log1p
#undef log1pf
#undef log1pl
#undef log2
#undef log2f
#undef log2l
#undef logb
#undef logbf
#undef logbl
#undef lrint
#undef lrintf
#undef lrintl
#undef lround
#undef lroundf
#undef lroundl
#undef nan
#undef nanf
#undef nanl
#undef nearbyint
#undef nearbyintf
#undef nearbyintl
#undef nextafter
#undef nextafterf
#undef nextafterl
#undef nexttoward
#undef nexttowardf
#undef nexttowardl
#undef remainder
#undef remainderf
#undef remainderl
#undef remquo
#undef remquof
#undef remquol
#undef rint
#undef rintf
#undef rintl
#undef round
#undef roundf
#undef roundl
#undef scalbln
#undef scalblnf
#undef scalblnl
#undef scalbn
#undef scalbnf
#undef scalbnl
#undef tgamma
#undef tgammaf
#undef tgammal
#undef trunc
#undef truncf
#undef truncl

#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

#if _GLIBCXX_USE_C99_MATH_TR1

  // Using declarations to bring names from libc's <math.h> into std::tr1.

  // types
  using ::double_t;
  using ::float_t;

  // functions
  using ::acosh;
  using ::acoshf;
  using ::acoshl;

  using ::asinh;
  using ::asinhf;
  using ::asinhl;

  using ::atanh;
  using ::atanhf;
  using ::atanhl;

  using ::cbrt;
  using ::cbrtf;
  using ::cbrtl;

  using ::copysign;
  using ::copysignf;
  using ::copysignl;

  using ::erf;
  using ::erff;
  using ::erfl;

  using ::erfc;
  using ::erfcf;
  using ::erfcl;

  using ::exp2;
  using ::exp2f;
  using ::exp2l;

  using ::expm1;
  using ::expm1f;
  using ::expm1l;

  using ::fdim;
  using ::fdimf;
  using ::fdiml;

  using ::fma;
  using ::fmaf;
  using ::fmal;

  using ::fmax;
  using ::fmaxf;
  using ::fmaxl;

  using ::fmin;
  using ::fminf;
  using ::fminl;

  using ::hypot;
  using ::hypotf;
  using ::hypotl;

  using ::ilogb;
  using ::ilogbf;
  using ::ilogbl;

  using ::lgamma;
  using ::lgammaf;
  using ::lgammal;

  using ::llrint;
  using ::llrintf;
  using ::llrintl;

  using ::llround;
  using ::llroundf;
  using ::llroundl;

  using ::log1p;
  using ::log1pf;
  using ::log1pl;

  using ::log2;
  using ::log2f;
  using ::log2l;

  using ::logb;
  using ::logbf;
  using ::logbl;

  using ::lrint;
  using ::lrintf;
  using ::lrintl;

  using ::lround;
  using ::lroundf;
  using ::lroundl;

  using ::nan;
  using ::nanf;
  using ::nanl;

  using ::nearbyint;
  using ::nearbyintf;
  using ::nearbyintl;

  using ::nextafter;
  using ::nextafterf;
  using ::nextafterl;

  using ::nexttoward;
  using ::nexttowardf;
  using ::nexttowardl;

  using ::remainder;
  using ::remainderf;
  using ::remainderl;

  using ::remquo;
  using ::remquof;
  using ::remquol;

  using ::rint;
  using ::rintf;
  using ::rintl;

  using ::round;
  using ::roundf;
  using ::roundl;

  using ::scalbln;
  using ::scalblnf;
  using ::scalblnl;

  using ::scalbn;
  using ::scalbnf;
  using ::scalbnl;

  using ::tgamma;
  using ::tgammaf;
  using ::tgammal;

  using ::trunc;
  using ::truncf;
  using ::truncl;

#endif

#if _GLIBCXX_USE_C99_MATH
#if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC

  /// Function template definitions [8.16.3].
  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    fpclassify(_Tp __f)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
				  FP_SUBNORMAL, FP_ZERO, __type(__f));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isfinite(_Tp __f)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isfinite(__type(__f));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isinf(_Tp __f)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isinf(__type(__f));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isnan(_Tp __f)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isnan(__type(__f));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isnormal(_Tp __f)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isnormal(__type(__f));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    signbit(_Tp __f)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_signbit(__type(__f));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isgreater(_Tp __f1, _Tp __f2)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isgreater(__type(__f1), __type(__f2));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isgreaterequal(_Tp __f1, _Tp __f2)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isgreaterequal(__type(__f1), __type(__f2));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isless(_Tp __f1, _Tp __f2)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isless(__type(__f1), __type(__f2));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    islessequal(_Tp __f1, _Tp __f2)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_islessequal(__type(__f1), __type(__f2));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    islessgreater(_Tp __f1, _Tp __f2)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_islessgreater(__type(__f1), __type(__f2));
    }

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
					   int>::__type
    isunordered(_Tp __f1, _Tp __f2)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __builtin_isunordered(__type(__f1), __type(__f2));
    }

#endif
#endif

#if _GLIBCXX_USE_C99_MATH_TR1

  /** Additional overloads [8.16.4].
   *  @{
   */

  // For functions defined in C++03 the additional overloads are already
  // declared in <cmath> so we can just re-declare them in std::tr1.

  using std::acos;
  using std::asin;
  using std::atan;
  using std::atan2;
  using std::ceil;
  using std::cos;
  using std::cosh;
  using std::exp;
  using std::floor;
  using std::fmod;
  using std::frexp;
  using std::ldexp;
  using std::log;
  using std::log10;
  using std::sin;
  using std::sinh;
  using std::sqrt;
  using std::tan;
  using std::tanh;

#if __cplusplus >= 201103L

  // Since C++11, <cmath> defines additional overloads for these functions
  // in namespace std.

  using std::acosh;
  using std::asinh;
  using std::atanh;
  using std::cbrt;
  using std::copysign;
  using std::erf;
  using std::erfc;
  using std::exp2;
  using std::expm1;
  using std::fdim;
  using std::fma;
  using std::fmax;
  using std::fmin;
  using std::hypot;
  using std::ilogb;
  using std::lgamma;
  using std::llrint;
  using std::llround;
  using std::log1p;
  using std::log2;
  using std::logb;
  using std::lrint;
  using std::lround;
  using std::nan;
  using std::nearbyint;
  using std::nextafter;
  using std::nexttoward;
  using std::remainder;
  using std::remquo;
  using std::rint;
  using std::round;
  using std::scalbln;
  using std::scalbn;
  using std::tgamma;
  using std::trunc;

#else // __cplusplus < 201103L

  // In C++03 we need to provide the additional overloads.

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  acosh(float __x)
  { return __builtin_acoshf(__x); }

  inline long double
  acosh(long double __x)
  { return __builtin_acoshl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    acosh(_Tp __x)
    { return __builtin_acosh(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  asinh(float __x)
  { return __builtin_asinhf(__x); }

  inline long double
  asinh(long double __x)
  { return __builtin_asinhl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    asinh(_Tp __x)
    { return __builtin_asinh(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  atanh(float __x)
  { return __builtin_atanhf(__x); }

  inline long double
  atanh(long double __x)
  { return __builtin_atanhl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    atanh(_Tp __x)
    { return __builtin_atanh(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  cbrt(float __x)
  { return __builtin_cbrtf(__x); }

  inline long double
  cbrt(long double __x)
  { return __builtin_cbrtl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    cbrt(_Tp __x)
    { return __builtin_cbrt(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  copysign(float __x, float __y)
  { return __builtin_copysignf(__x, __y); }

  inline long double
  copysign(long double __x, long double __y)
  { return __builtin_copysignl(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    copysign(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return copysign(__type(__x), __type(__y));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  erf(float __x)
  { return __builtin_erff(__x); }

  inline long double
  erf(long double __x)
  { return __builtin_erfl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    erf(_Tp __x)
    { return __builtin_erf(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  erfc(float __x)
  { return __builtin_erfcf(__x); }

  inline long double
  erfc(long double __x)
  { return __builtin_erfcl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    erfc(_Tp __x)
    { return __builtin_erfc(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  exp2(float __x)
  { return __builtin_exp2f(__x); }

  inline long double
  exp2(long double __x)
  { return __builtin_exp2l(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    exp2(_Tp __x)
    { return __builtin_exp2(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  expm1(float __x)
  { return __builtin_expm1f(__x); }

  inline long double
  expm1(long double __x)
  { return __builtin_expm1l(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    expm1(_Tp __x)
    { return __builtin_expm1(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  fdim(float __x, float __y)
  { return __builtin_fdimf(__x, __y); }

  inline long double
  fdim(long double __x, long double __y)
  { return __builtin_fdiml(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    fdim(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return fdim(__type(__x), __type(__y));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  fma(float __x, float __y, float __z)
  { return __builtin_fmaf(__x, __y, __z); }

  inline long double
  fma(long double __x, long double __y, long double __z)
  { return __builtin_fmal(__x, __y, __z); }
#endif

  template<typename _Tp, typename _Up, typename _Vp>
    inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
    fma(_Tp __x, _Up __y, _Vp __z)
    {
      typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
      return fma(__type(__x), __type(__y), __type(__z));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  fmax(float __x, float __y)
  { return __builtin_fmaxf(__x, __y); }

  inline long double
  fmax(long double __x, long double __y)
  { return __builtin_fmaxl(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    fmax(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return fmax(__type(__x), __type(__y));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  fmin(float __x, float __y)
  { return __builtin_fminf(__x, __y); }

  inline long double
  fmin(long double __x, long double __y)
  { return __builtin_fminl(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    fmin(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return fmin(__type(__x), __type(__y));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  hypot(float __x, float __y)
  { return __builtin_hypotf(__x, __y); }

  inline long double
  hypot(long double __x, long double __y)
  { return __builtin_hypotl(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    hypot(_Tp __y, _Up __x)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return hypot(__type(__y), __type(__x));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline int
  ilogb(float __x)
  { return __builtin_ilogbf(__x); }

  inline int
  ilogb(long double __x)
  { return __builtin_ilogbl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   int>::__type
    ilogb(_Tp __x)
    { return __builtin_ilogb(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  lgamma(float __x)
  { return __builtin_lgammaf(__x); }

  inline long double
  lgamma(long double __x)
  { return __builtin_lgammal(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    lgamma(_Tp __x)
    { return __builtin_lgamma(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline long long
  llrint(float __x)
  { return __builtin_llrintf(__x); }

  inline long long
  llrint(long double __x)
  { return __builtin_llrintl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   long long>::__type
    llrint(_Tp __x)
    { return __builtin_llrint(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline long long
  llround(float __x)
  { return __builtin_llroundf(__x); }

  inline long long
  llround(long double __x)
  { return __builtin_llroundl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   long long>::__type
    llround(_Tp __x)
    { return __builtin_llround(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  log1p(float __x)
  { return __builtin_log1pf(__x); }

  inline long double
  log1p(long double __x)
  { return __builtin_log1pl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    log1p(_Tp __x)
    { return __builtin_log1p(__x); }

  // DR 568.
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  log2(float __x)
  { return __builtin_log2f(__x); }

  inline long double
  log2(long double __x)
  { return __builtin_log2l(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    log2(_Tp __x)
    { return __builtin_log2(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  logb(float __x)
  { return __builtin_logbf(__x); }

  inline long double
  logb(long double __x)
  { return __builtin_logbl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    logb(_Tp __x)
    {
      return __builtin_logb(__x);
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline long
  lrint(float __x)
  { return __builtin_lrintf(__x); }

  inline long
  lrint(long double __x)
  { return __builtin_lrintl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   long>::__type
    lrint(_Tp __x)
    { return __builtin_lrint(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline long
  lround(float __x)
  { return __builtin_lroundf(__x); }

  inline long
  lround(long double __x)
  { return __builtin_lroundl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   long>::__type
    lround(_Tp __x)
    { return __builtin_lround(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  nearbyint(float __x)
  { return __builtin_nearbyintf(__x); }

  inline long double
  nearbyint(long double __x)
  { return __builtin_nearbyintl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    nearbyint(_Tp __x)
    { return __builtin_nearbyint(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  nextafter(float __x, float __y)
  { return __builtin_nextafterf(__x, __y); }

  inline long double
  nextafter(long double __x, long double __y)
  { return __builtin_nextafterl(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    nextafter(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return nextafter(__type(__x), __type(__y));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  nexttoward(float __x, long double __y)
  { return __builtin_nexttowardf(__x, __y); }

  inline long double
  nexttoward(long double __x, long double __y)
  { return __builtin_nexttowardl(__x, __y); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    nexttoward(_Tp __x, long double __y)
    { return __builtin_nexttoward(__x, __y); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  remainder(float __x, float __y)
  { return __builtin_remainderf(__x, __y); }

  inline long double
  remainder(long double __x, long double __y)
  { return __builtin_remainderl(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    remainder(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return remainder(__type(__x), __type(__y));
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  remquo(float __x, float __y, int* __pquo)
  { return __builtin_remquof(__x, __y, __pquo); }

  inline long double
  remquo(long double __x, long double __y, int* __pquo)
  { return __builtin_remquol(__x, __y, __pquo); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    remquo(_Tp __x, _Up __y, int* __pquo)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return remquo(__type(__x), __type(__y), __pquo);
    }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  rint(float __x)
  { return __builtin_rintf(__x); }

  inline long double
  rint(long double __x)
  { return __builtin_rintl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    rint(_Tp __x)
    { return __builtin_rint(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  round(float __x)
  { return __builtin_roundf(__x); }

  inline long double
  round(long double __x)
  { return __builtin_roundl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    round(_Tp __x)
    { return __builtin_round(__x); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  scalbln(float __x, long __ex)
  { return __builtin_scalblnf(__x, __ex); }

  inline long double
  scalbln(long double __x, long __ex)
  { return __builtin_scalblnl(__x, __ex); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    scalbln(_Tp __x, long __ex)
    { return __builtin_scalbln(__x, __ex); }
 
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  scalbn(float __x, int __ex)
  { return __builtin_scalbnf(__x, __ex); }

  inline long double
  scalbn(long double __x, int __ex)
  { return __builtin_scalbnl(__x, __ex); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    scalbn(_Tp __x, int __ex)
    { return __builtin_scalbn(__x, __ex); }

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  tgamma(float __x)
  { return __builtin_tgammaf(__x); }

  inline long double
  tgamma(long double __x)
  { return __builtin_tgammal(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    tgamma(_Tp __x)
    { return __builtin_tgamma(__x); }
 
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  trunc(float __x)
  { return __builtin_truncf(__x); }

  inline long double
  trunc(long double __x)
  { return __builtin_truncl(__x); }
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, 
					   double>::__type
    trunc(_Tp __x)
    { return __builtin_trunc(__x); }

#endif // __cplusplus < 201103L

  // @}

#endif
_GLIBCXX_END_NAMESPACE_VERSION
}
}

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // DR 550. What should the return type of pow(float,int) be?
  // NB: C++11 and TR1 != C++03.

  // We cannot do "using std::pow;" because that would bring in unwanted
  // pow(*, int) overloads in C++03, with the wrong return type. Instead we
  // define all the necessary overloads, but the std::tr1::pow(double, double)
  // overload cannot be provided here, because <tr1/math.h> would add it to
  // the global namespace where it would clash with ::pow(double,double) from
  // libc (revealed by the fix of PR c++/54537).
  // The solution is to forward std::tr1::pow(double,double) to
  // std::pow(double,double) via the function template below. See
  // the discussion about this issue here:
  // http://gcc.gnu.org/ml/gcc-patches/2012-09/msg01278.html

#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  pow(float __x, float __y)
  { return std::pow(__x, __y); }

  inline long double
  pow(long double __x, long double __y)
  { return std::pow(__x, __y); }
#endif

  template<typename _Tp, typename _Up>
    inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
    pow(_Tp __x, _Up __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(__type(__x), __type(__y));
    }

#if __cplusplus >= 201103L
  // We also deal with fabs in a special way, because "using std::fabs;"
  // could bring in C++11's std::fabs<T>(const std::complex<T>&) with a
  // different return type from std::tr1::fabs<T>(const std::complex<T>&).
  // We define the necessary overloads, except std::tr1::fabs(double) which
  // could clash with ::fabs(double) from libc.
  // The function template handles double as well as integers, forwarding
  // to std::fabs.

#ifndef __CORRECT_ISO_CPP_MATH_H_PROTO
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP
  inline float
  fabs(float __x)
  { return __builtin_fabsf(__x); }

  inline long double
  fabs(long double __x)
  { return __builtin_fabsl(__x); }
#endif
#endif

  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    fabs(_Tp __x)
    { return std::fabs(__x); }

#else  // ! C++11

  // For C++03 just use std::fabs as there is no overload for std::complex<>.
  using std::fabs;

#endif // C++11



_GLIBCXX_END_NAMESPACE_VERSION
}
}

#if _GLIBCXX_USE_STD_SPEC_FUNCS

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @defgroup tr1_math_spec_func Mathematical Special Functions
   * @ingroup numerics
   *
   * A collection of advanced mathematical special functions.
   * @{
   */

  using std::assoc_laguerref;
  using std::assoc_laguerrel;
  using std::assoc_laguerre;

  using std::assoc_legendref;
  using std::assoc_legendrel;
  using std::assoc_legendre;

  using std::betaf;
  using std::betal;
  using std::beta;

  using std::comp_ellint_1f;
  using std::comp_ellint_1l;
  using std::comp_ellint_1;

  using std::comp_ellint_2f;
  using std::comp_ellint_2l;
  using std::comp_ellint_2;

  using std::comp_ellint_3f;
  using std::comp_ellint_3l;
  using std::comp_ellint_3;

  using __gnu_cxx::conf_hypergf;
  using __gnu_cxx::conf_hypergl;
  using __gnu_cxx::conf_hyperg;

  using std::cyl_bessel_if;
  using std::cyl_bessel_il;
  using std::cyl_bessel_i;

  using std::cyl_bessel_jf;
  using std::cyl_bessel_jl;
  using std::cyl_bessel_j;

  using std::cyl_bessel_kf;
  using std::cyl_bessel_kl;
  using std::cyl_bessel_k;

  using std::cyl_neumannf;
  using std::cyl_neumannl;
  using std::cyl_neumann;

  using std::ellint_1f;
  using std::ellint_1l;
  using std::ellint_1;

  using std::ellint_2f;
  using std::ellint_2l;
  using std::ellint_2;

  using std::ellint_3f;
  using std::ellint_3l;
  using std::ellint_3;

  using std::expintf;
  using std::expintl;
  using std::expint;

  using std::hermitef;
  using std::hermitel;
  using std::hermite;

  using __gnu_cxx::hypergf;
  using __gnu_cxx::hypergl;
  using __gnu_cxx::hyperg;

  using std::laguerref;
  using std::laguerrel;
  using std::laguerre;

  using std::legendref;
  using std::legendrel;
  using std::legendre;

  using std::riemann_zetaf;
  using std::riemann_zetal;
  using std::riemann_zeta;

  using std::sph_besself;
  using std::sph_bessell;
  using std::sph_bessel;

  using std::sph_legendref;
  using std::sph_legendrel;
  using std::sph_legendre;

  using std::sph_neumannf;
  using std::sph_neumannl;
  using std::sph_neumann;

  /* @} */ // tr1_math_spec_func
_GLIBCXX_END_NAMESPACE_VERSION
}
}

#else // ! _GLIBCXX_USE_STD_SPEC_FUNCS

#include <bits/stl_algobase.h>
#include <limits>
#include <tr1/type_traits>

#include <tr1/gamma.tcc>
#include <tr1/bessel_function.tcc>
#include <tr1/beta_function.tcc>
#include <tr1/ell_integral.tcc>
#include <tr1/exp_integral.tcc>
#include <tr1/hypergeometric.tcc>
#include <tr1/legendre_function.tcc>
#include <tr1/modified_bessel_func.tcc>
#include <tr1/poly_hermite.tcc>
#include <tr1/poly_laguerre.tcc>
#include <tr1/riemann_zeta.tcc>

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @defgroup tr1_math_spec_func Mathematical Special Functions
   * @ingroup numerics
   *
   * A collection of advanced mathematical special functions.
   * @{
   */

  inline float
  assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
  { return __detail::__assoc_laguerre<float>(__n, __m, __x); }

  inline long double
  assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
  {
    return __detail::__assoc_laguerre<long double>(__n, __m, __x);
  }

  ///  5.2.1.1  Associated Laguerre polynomials.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__assoc_laguerre<__type>(__n, __m, __x);
    }

  inline float
  assoc_legendref(unsigned int __l, unsigned int __m, float __x)
  { return __detail::__assoc_legendre_p<float>(__l, __m, __x); }

  inline long double
  assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
  { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }

  ///  5.2.1.2  Associated Legendre functions.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
    }

  inline float
  betaf(float __x, float __y)
  { return __detail::__beta<float>(__x, __y); }

  inline long double
  betal(long double __x, long double __y)
  { return __detail::__beta<long double>(__x, __y); }

  ///  5.2.1.3  Beta functions.
  template<typename _Tpx, typename _Tpy>
    inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
    beta(_Tpx __x, _Tpy __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
      return __detail::__beta<__type>(__x, __y);
    }

  inline float
  comp_ellint_1f(float __k)
  { return __detail::__comp_ellint_1<float>(__k); }

  inline long double
  comp_ellint_1l(long double __k)
  { return __detail::__comp_ellint_1<long double>(__k); }

  ///  5.2.1.4  Complete elliptic integrals of the first kind.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    comp_ellint_1(_Tp __k)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__comp_ellint_1<__type>(__k);
    }

  inline float
  comp_ellint_2f(float __k)
  { return __detail::__comp_ellint_2<float>(__k); }

  inline long double
  comp_ellint_2l(long double __k)
  { return __detail::__comp_ellint_2<long double>(__k); }

  ///  5.2.1.5  Complete elliptic integrals of the second kind.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    comp_ellint_2(_Tp __k)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__comp_ellint_2<__type>(__k);
    }

  inline float
  comp_ellint_3f(float __k, float __nu)
  { return __detail::__comp_ellint_3<float>(__k, __nu); }

  inline long double
  comp_ellint_3l(long double __k, long double __nu)
  { return __detail::__comp_ellint_3<long double>(__k, __nu); }

  ///  5.2.1.6  Complete elliptic integrals of the third kind.
  template<typename _Tp, typename _Tpn>
    inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
    comp_ellint_3(_Tp __k, _Tpn __nu)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
      return __detail::__comp_ellint_3<__type>(__k, __nu);
    }

  inline float
  conf_hypergf(float __a, float __c, float __x)
  { return __detail::__conf_hyperg<float>(__a, __c, __x); }

  inline long double
  conf_hypergl(long double __a, long double __c, long double __x)
  { return __detail::__conf_hyperg<long double>(__a, __c, __x); }

  ///  5.2.1.7  Confluent hypergeometric functions.
  template<typename _Tpa, typename _Tpc, typename _Tp>
    inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
    conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
      return __detail::__conf_hyperg<__type>(__a, __c, __x);
    }

  inline float
  cyl_bessel_if(float __nu, float __x)
  { return __detail::__cyl_bessel_i<float>(__nu, __x); }

  inline long double
  cyl_bessel_il(long double __nu, long double __x)
  { return __detail::__cyl_bessel_i<long double>(__nu, __x); }

  ///  5.2.1.8  Regular modified cylindrical Bessel functions.
  template<typename _Tpnu, typename _Tp>
    inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
    cyl_bessel_i(_Tpnu __nu, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
      return __detail::__cyl_bessel_i<__type>(__nu, __x);
    }

  inline float
  cyl_bessel_jf(float __nu, float __x)
  { return __detail::__cyl_bessel_j<float>(__nu, __x); }

  inline long double
  cyl_bessel_jl(long double __nu, long double __x)
  { return __detail::__cyl_bessel_j<long double>(__nu, __x); }

  ///  5.2.1.9  Cylindrical Bessel functions (of the first kind).
  template<typename _Tpnu, typename _Tp>
    inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
    cyl_bessel_j(_Tpnu __nu, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
      return __detail::__cyl_bessel_j<__type>(__nu, __x);
    }

  inline float
  cyl_bessel_kf(float __nu, float __x)
  { return __detail::__cyl_bessel_k<float>(__nu, __x); }

  inline long double
  cyl_bessel_kl(long double __nu, long double __x)
  { return __detail::__cyl_bessel_k<long double>(__nu, __x); }

  ///  5.2.1.10  Irregular modified cylindrical Bessel functions.
  template<typename _Tpnu, typename _Tp>
    inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
    cyl_bessel_k(_Tpnu __nu, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
      return __detail::__cyl_bessel_k<__type>(__nu, __x);
    }

  inline float
  cyl_neumannf(float __nu, float __x)
  { return __detail::__cyl_neumann_n<float>(__nu, __x); }

  inline long double
  cyl_neumannl(long double __nu, long double __x)
  { return __detail::__cyl_neumann_n<long double>(__nu, __x); }

  ///  5.2.1.11  Cylindrical Neumann functions.
  template<typename _Tpnu, typename _Tp>
    inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
    cyl_neumann(_Tpnu __nu, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
      return __detail::__cyl_neumann_n<__type>(__nu, __x);
    }

  inline float
  ellint_1f(float __k, float __phi)
  { return __detail::__ellint_1<float>(__k, __phi); }

  inline long double
  ellint_1l(long double __k, long double __phi)
  { return __detail::__ellint_1<long double>(__k, __phi); }

  ///  5.2.1.12  Incomplete elliptic integrals of the first kind.
  template<typename _Tp, typename _Tpp>
    inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
    ellint_1(_Tp __k, _Tpp __phi)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
      return __detail::__ellint_1<__type>(__k, __phi);
    }

  inline float
  ellint_2f(float __k, float __phi)
  { return __detail::__ellint_2<float>(__k, __phi); }

  inline long double
  ellint_2l(long double __k, long double __phi)
  { return __detail::__ellint_2<long double>(__k, __phi); }

  ///  5.2.1.13  Incomplete elliptic integrals of the second kind.
  template<typename _Tp, typename _Tpp>
    inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
    ellint_2(_Tp __k, _Tpp __phi)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
      return __detail::__ellint_2<__type>(__k, __phi);
    }

  inline float
  ellint_3f(float __k, float __nu, float __phi)
  { return __detail::__ellint_3<float>(__k, __nu, __phi); }

  inline long double
  ellint_3l(long double __k, long double __nu, long double __phi)
  { return __detail::__ellint_3<long double>(__k, __nu, __phi); }

  ///  5.2.1.14  Incomplete elliptic integrals of the third kind.
  template<typename _Tp, typename _Tpn, typename _Tpp>
    inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
    ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
    {
      typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
      return __detail::__ellint_3<__type>(__k, __nu, __phi);
    }

  inline float
  expintf(float __x)
  { return __detail::__expint<float>(__x); }

  inline long double
  expintl(long double __x)
  { return __detail::__expint<long double>(__x); }

  ///  5.2.1.15  Exponential integrals.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    expint(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__expint<__type>(__x);
    }

  inline float
  hermitef(unsigned int __n, float __x)
  { return __detail::__poly_hermite<float>(__n, __x); }

  inline long double
  hermitel(unsigned int __n, long double __x)
  { return __detail::__poly_hermite<long double>(__n, __x); }

  ///  5.2.1.16  Hermite polynomials.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    hermite(unsigned int __n, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__poly_hermite<__type>(__n, __x);
    }

  inline float
  hypergf(float __a, float __b, float __c, float __x)
  { return __detail::__hyperg<float>(__a, __b, __c, __x); }

  inline long double
  hypergl(long double __a, long double __b, long double __c, long double __x)
  { return __detail::__hyperg<long double>(__a, __b, __c, __x); }

  ///  5.2.1.17  Hypergeometric functions.
  template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
    inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
    hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
      return __detail::__hyperg<__type>(__a, __b, __c, __x);
    }

  inline float
  laguerref(unsigned int __n, float __x)
  { return __detail::__laguerre<float>(__n, __x); }

  inline long double
  laguerrel(unsigned int __n, long double __x)
  { return __detail::__laguerre<long double>(__n, __x); }

  ///  5.2.1.18  Laguerre polynomials.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    laguerre(unsigned int __n, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__laguerre<__type>(__n, __x);
    }

  inline float
  legendref(unsigned int __n, float __x)
  { return __detail::__poly_legendre_p<float>(__n, __x); }

  inline long double
  legendrel(unsigned int __n, long double __x)
  { return __detail::__poly_legendre_p<long double>(__n, __x); }

  ///  5.2.1.19  Legendre polynomials.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    legendre(unsigned int __n, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__poly_legendre_p<__type>(__n, __x);
    }

  inline float
  riemann_zetaf(float __x)
  { return __detail::__riemann_zeta<float>(__x); }

  inline long double
  riemann_zetal(long double __x)
  { return __detail::__riemann_zeta<long double>(__x); }

  ///  5.2.1.20  Riemann zeta function.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    riemann_zeta(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__riemann_zeta<__type>(__x);
    }

  inline float
  sph_besself(unsigned int __n, float __x)
  { return __detail::__sph_bessel<float>(__n, __x); }

  inline long double
  sph_bessell(unsigned int __n, long double __x)
  { return __detail::__sph_bessel<long double>(__n, __x); }

  ///  5.2.1.21  Spherical Bessel functions.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    sph_bessel(unsigned int __n, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__sph_bessel<__type>(__n, __x);
    }

  inline float
  sph_legendref(unsigned int __l, unsigned int __m, float __theta)
  { return __detail::__sph_legendre<float>(__l, __m, __theta); }

  inline long double
  sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
  { return __detail::__sph_legendre<long double>(__l, __m, __theta); }

  ///  5.2.1.22  Spherical associated Legendre functions.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__sph_legendre<__type>(__l, __m, __theta);
    }

  inline float
  sph_neumannf(unsigned int __n, float __x)
  { return __detail::__sph_neumann<float>(__n, __x); }

  inline long double
  sph_neumannl(unsigned int __n, long double __x)
  { return __detail::__sph_neumann<long double>(__n, __x); }

  ///  5.2.1.23  Spherical Neumann functions.
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    sph_neumann(unsigned int __n, _Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __detail::__sph_neumann<__type>(__n, __x);
    }

  /* @} */ // tr1_math_spec_func
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_USE_STD_SPEC_FUNCS

#endif // _GLIBCXX_TR1_CMATH