Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
// Special functions -*- C++ -*-

// Copyright (C) 2006-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/ell_integral.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland based on:
//   (1)  B. C. Carlson Numer. Math. 33, 1 (1979)
//   (2)  B. C. Carlson, Special Functions of Applied Mathematics (1977)
//   (3)  The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (4)  Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
//        W. T. Vetterling, B. P. Flannery, Cambridge University Press
//        (1992), pp. 261-269

#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1

namespace std _GLIBCXX_VISIBILITY(default)
{
#if _GLIBCXX_USE_STD_SPEC_FUNCS
#elif defined(_GLIBCXX_TR1_CMATH)
namespace tr1
{
#else
# error do not include this header directly, use <cmath> or <tr1/cmath>
#endif
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
     *          of the first kind.
     * 
     *   The Carlson elliptic function of the first kind is defined by:
     *   @f[
     *       R_F(x,y,z) = \frac{1}{2} \int_0^\infty
     *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
     *   @f]
     *
     *   @param  __x  The first of three symmetric arguments.
     *   @param  __y  The second of three symmetric arguments.
     *   @param  __z  The third of three symmetric arguments.
     *   @return  The Carlson elliptic function of the first kind.
     */
    template<typename _Tp>
    _Tp
    __ellint_rf(_Tp __x, _Tp __y, _Tp __z)
    {
      const _Tp __min = std::numeric_limits<_Tp>::min();
      const _Tp __max = std::numeric_limits<_Tp>::max();
      const _Tp __lolim = _Tp(5) * __min;
      const _Tp __uplim = __max / _Tp(5);

      if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
        std::__throw_domain_error(__N("Argument less than zero "
                                      "in __ellint_rf."));
      else if (__x + __y < __lolim || __x + __z < __lolim
            || __y + __z < __lolim)
        std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
      else
        {
          const _Tp __c0 = _Tp(1) / _Tp(4);
          const _Tp __c1 = _Tp(1) / _Tp(24);
          const _Tp __c2 = _Tp(1) / _Tp(10);
          const _Tp __c3 = _Tp(3) / _Tp(44);
          const _Tp __c4 = _Tp(1) / _Tp(14);

          _Tp __xn = __x;
          _Tp __yn = __y;
          _Tp __zn = __z;

          const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
          const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
          _Tp __mu;
          _Tp __xndev, __yndev, __zndev;

          const unsigned int __max_iter = 100;
          for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
            {
              __mu = (__xn + __yn + __zn) / _Tp(3);
              __xndev = 2 - (__mu + __xn) / __mu;
              __yndev = 2 - (__mu + __yn) / __mu;
              __zndev = 2 - (__mu + __zn) / __mu;
              _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
              __epsilon = std::max(__epsilon, std::abs(__zndev));
              if (__epsilon < __errtol)
                break;
              const _Tp __xnroot = std::sqrt(__xn);
              const _Tp __ynroot = std::sqrt(__yn);
              const _Tp __znroot = std::sqrt(__zn);
              const _Tp __lambda = __xnroot * (__ynroot + __znroot)
                                 + __ynroot * __znroot;
              __xn = __c0 * (__xn + __lambda);
              __yn = __c0 * (__yn + __lambda);
              __zn = __c0 * (__zn + __lambda);
            }

          const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
          const _Tp __e3 = __xndev * __yndev * __zndev;
          const _Tp __s  = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
                   + __c4 * __e3;

          return __s / std::sqrt(__mu);
        }
    }


    /**
     *   @brief Return the complete elliptic integral of the first kind
     *          @f$ K(k) @f$ by series expansion.
     * 
     *   The complete elliptic integral of the first kind is defined as
     *   @f[
     *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
     *                              {\sqrt{1 - k^2sin^2\theta}}
     *   @f]
     * 
     *   This routine is not bad as long as |k| is somewhat smaller than 1
     *   but is not is good as the Carlson elliptic integral formulation.
     * 
     *   @param  __k  The argument of the complete elliptic function.
     *   @return  The complete elliptic function of the first kind.
     */
    template<typename _Tp>
    _Tp
    __comp_ellint_1_series(_Tp __k)
    {

      const _Tp __kk = __k * __k;

      _Tp __term = __kk / _Tp(4);
      _Tp __sum = _Tp(1) + __term;

      const unsigned int __max_iter = 1000;
      for (unsigned int __i = 2; __i < __max_iter; ++__i)
        {
          __term *= (2 * __i - 1) * __kk / (2 * __i);
          if (__term < std::numeric_limits<_Tp>::epsilon())
            break;
          __sum += __term;
        }

      return __numeric_constants<_Tp>::__pi_2() * __sum;
    }


    /**
     *   @brief  Return the complete elliptic integral of the first kind
     *           @f$ K(k) @f$ using the Carlson formulation.
     * 
     *   The complete elliptic integral of the first kind is defined as
     *   @f[
     *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
     *                                           {\sqrt{1 - k^2 sin^2\theta}}
     *   @f]
     *   where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
     *   first kind.
     * 
     *   @param  __k  The argument of the complete elliptic function.
     *   @return  The complete elliptic function of the first kind.
     */
    template<typename _Tp>
    _Tp
    __comp_ellint_1(_Tp __k)
    {

      if (__isnan(__k))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (std::abs(__k) >= _Tp(1))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else
        return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
    }


    /**
     *   @brief  Return the incomplete elliptic integral of the first kind
     *           @f$ F(k,\phi) @f$ using the Carlson formulation.
     * 
     *   The incomplete elliptic integral of the first kind is defined as
     *   @f[
     *     F(k,\phi) = \int_0^{\phi}\frac{d\theta}
     *                                   {\sqrt{1 - k^2 sin^2\theta}}
     *   @f]
     * 
     *   @param  __k  The argument of the elliptic function.
     *   @param  __phi  The integral limit argument of the elliptic function.
     *   @return  The elliptic function of the first kind.
     */
    template<typename _Tp>
    _Tp
    __ellint_1(_Tp __k, _Tp __phi)
    {

      if (__isnan(__k) || __isnan(__phi))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (std::abs(__k) > _Tp(1))
        std::__throw_domain_error(__N("Bad argument in __ellint_1."));
      else
        {
          //  Reduce phi to -pi/2 < phi < +pi/2.
          const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
                                   + _Tp(0.5L));
          const _Tp __phi_red = __phi
                              - __n * __numeric_constants<_Tp>::__pi();

          const _Tp __s = std::sin(__phi_red);
          const _Tp __c = std::cos(__phi_red);

          const _Tp __F = __s
                        * __ellint_rf(__c * __c,
                                _Tp(1) - __k * __k * __s * __s, _Tp(1));

          if (__n == 0)
            return __F;
          else
            return __F + _Tp(2) * __n * __comp_ellint_1(__k);
        }
    }


    /**
     *   @brief Return the complete elliptic integral of the second kind
     *          @f$ E(k) @f$ by series expansion.
     * 
     *   The complete elliptic integral of the second kind is defined as
     *   @f[
     *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
     *   @f]
     * 
     *   This routine is not bad as long as |k| is somewhat smaller than 1
     *   but is not is good as the Carlson elliptic integral formulation.
     * 
     *   @param  __k  The argument of the complete elliptic function.
     *   @return  The complete elliptic function of the second kind.
     */
    template<typename _Tp>
    _Tp
    __comp_ellint_2_series(_Tp __k)
    {

      const _Tp __kk = __k * __k;

      _Tp __term = __kk;
      _Tp __sum = __term;

      const unsigned int __max_iter = 1000;
      for (unsigned int __i = 2; __i < __max_iter; ++__i)
        {
          const _Tp __i2m = 2 * __i - 1;
          const _Tp __i2 = 2 * __i;
          __term *= __i2m * __i2m * __kk / (__i2 * __i2);
          if (__term < std::numeric_limits<_Tp>::epsilon())
            break;
          __sum += __term / __i2m;
        }

      return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
    }


    /**
     *   @brief  Return the Carlson elliptic function of the second kind
     *           @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
     *           @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
     *           of the third kind.
     * 
     *   The Carlson elliptic function of the second kind is defined by:
     *   @f[
     *       R_D(x,y,z) = \frac{3}{2} \int_0^\infty
     *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
     *   @f]
     *
     *   Based on Carlson's algorithms:
     *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
     *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
     *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
     *      by Press, Teukolsky, Vetterling, Flannery (1992)
     *
     *   @param  __x  The first of two symmetric arguments.
     *   @param  __y  The second of two symmetric arguments.
     *   @param  __z  The third argument.
     *   @return  The Carlson elliptic function of the second kind.
     */
    template<typename _Tp>
    _Tp
    __ellint_rd(_Tp __x, _Tp __y, _Tp __z)
    {
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
      const _Tp __min = std::numeric_limits<_Tp>::min();
      const _Tp __max = std::numeric_limits<_Tp>::max();
      const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
      const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));

      if (__x < _Tp(0) || __y < _Tp(0))
        std::__throw_domain_error(__N("Argument less than zero "
                                      "in __ellint_rd."));
      else if (__x + __y < __lolim || __z < __lolim)
        std::__throw_domain_error(__N("Argument too small "
                                      "in __ellint_rd."));
      else
        {
          const _Tp __c0 = _Tp(1) / _Tp(4);
          const _Tp __c1 = _Tp(3) / _Tp(14);
          const _Tp __c2 = _Tp(1) / _Tp(6);
          const _Tp __c3 = _Tp(9) / _Tp(22);
          const _Tp __c4 = _Tp(3) / _Tp(26);

          _Tp __xn = __x;
          _Tp __yn = __y;
          _Tp __zn = __z;
          _Tp __sigma = _Tp(0);
          _Tp __power4 = _Tp(1);

          _Tp __mu;
          _Tp __xndev, __yndev, __zndev;

          const unsigned int __max_iter = 100;
          for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
            {
              __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
              __xndev = (__mu - __xn) / __mu;
              __yndev = (__mu - __yn) / __mu;
              __zndev = (__mu - __zn) / __mu;
              _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
              __epsilon = std::max(__epsilon, std::abs(__zndev));
              if (__epsilon < __errtol)
                break;
              _Tp __xnroot = std::sqrt(__xn);
              _Tp __ynroot = std::sqrt(__yn);
              _Tp __znroot = std::sqrt(__zn);
              _Tp __lambda = __xnroot * (__ynroot + __znroot)
                           + __ynroot * __znroot;
              __sigma += __power4 / (__znroot * (__zn + __lambda));
              __power4 *= __c0;
              __xn = __c0 * (__xn + __lambda);
              __yn = __c0 * (__yn + __lambda);
              __zn = __c0 * (__zn + __lambda);
            }

	  // Note: __ea is an SPU badname.
          _Tp __eaa = __xndev * __yndev;
          _Tp __eb = __zndev * __zndev;
          _Tp __ec = __eaa - __eb;
          _Tp __ed = __eaa - _Tp(6) * __eb;
          _Tp __ef = __ed + __ec + __ec;
          _Tp __s1 = __ed * (-__c1 + __c3 * __ed
                                   / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
                                   / _Tp(2));
          _Tp __s2 = __zndev
                   * (__c2 * __ef
                    + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));

          return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
                                        / (__mu * std::sqrt(__mu));
        }
    }


    /**
     *   @brief  Return the complete elliptic integral of the second kind
     *           @f$ E(k) @f$ using the Carlson formulation.
     * 
     *   The complete elliptic integral of the second kind is defined as
     *   @f[
     *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
     *   @f]
     * 
     *   @param  __k  The argument of the complete elliptic function.
     *   @return  The complete elliptic function of the second kind.
     */
    template<typename _Tp>
    _Tp
    __comp_ellint_2(_Tp __k)
    {

      if (__isnan(__k))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (std::abs(__k) == 1)
        return _Tp(1);
      else if (std::abs(__k) > _Tp(1))
        std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
      else
        {
          const _Tp __kk = __k * __k;

          return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
               - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
        }
    }


    /**
     *   @brief  Return the incomplete elliptic integral of the second kind
     *           @f$ E(k,\phi) @f$ using the Carlson formulation.
     * 
     *   The incomplete elliptic integral of the second kind is defined as
     *   @f[
     *     E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
     *   @f]
     * 
     *   @param  __k  The argument of the elliptic function.
     *   @param  __phi  The integral limit argument of the elliptic function.
     *   @return  The elliptic function of the second kind.
     */
    template<typename _Tp>
    _Tp
    __ellint_2(_Tp __k, _Tp __phi)
    {

      if (__isnan(__k) || __isnan(__phi))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (std::abs(__k) > _Tp(1))
        std::__throw_domain_error(__N("Bad argument in __ellint_2."));
      else
        {
          //  Reduce phi to -pi/2 < phi < +pi/2.
          const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
                                   + _Tp(0.5L));
          const _Tp __phi_red = __phi
                              - __n * __numeric_constants<_Tp>::__pi();

          const _Tp __kk = __k * __k;
          const _Tp __s = std::sin(__phi_red);
          const _Tp __ss = __s * __s;
          const _Tp __sss = __ss * __s;
          const _Tp __c = std::cos(__phi_red);
          const _Tp __cc = __c * __c;

          const _Tp __E = __s
                        * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
                        - __kk * __sss
                        * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
                        / _Tp(3);

          if (__n == 0)
            return __E;
          else
            return __E + _Tp(2) * __n * __comp_ellint_2(__k);
        }
    }


    /**
     *   @brief  Return the Carlson elliptic function
     *           @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
     *           is the Carlson elliptic function of the first kind.
     * 
     *   The Carlson elliptic function is defined by:
     *   @f[
     *       R_C(x,y) = \frac{1}{2} \int_0^\infty
     *                 \frac{dt}{(t + x)^{1/2}(t + y)}
     *   @f]
     *
     *   Based on Carlson's algorithms:
     *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
     *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
     *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
     *      by Press, Teukolsky, Vetterling, Flannery (1992)
     *
     *   @param  __x  The first argument.
     *   @param  __y  The second argument.
     *   @return  The Carlson elliptic function.
     */
    template<typename _Tp>
    _Tp
    __ellint_rc(_Tp __x, _Tp __y)
    {
      const _Tp __min = std::numeric_limits<_Tp>::min();
      const _Tp __max = std::numeric_limits<_Tp>::max();
      const _Tp __lolim = _Tp(5) * __min;
      const _Tp __uplim = __max / _Tp(5);

      if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
        std::__throw_domain_error(__N("Argument less than zero "
                                      "in __ellint_rc."));
      else
        {
          const _Tp __c0 = _Tp(1) / _Tp(4);
          const _Tp __c1 = _Tp(1) / _Tp(7);
          const _Tp __c2 = _Tp(9) / _Tp(22);
          const _Tp __c3 = _Tp(3) / _Tp(10);
          const _Tp __c4 = _Tp(3) / _Tp(8);

          _Tp __xn = __x;
          _Tp __yn = __y;

          const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
          const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
          _Tp __mu;
          _Tp __sn;

          const unsigned int __max_iter = 100;
          for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
            {
              __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
              __sn = (__yn + __mu) / __mu - _Tp(2);
              if (std::abs(__sn) < __errtol)
                break;
              const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
                             + __yn;
              __xn = __c0 * (__xn + __lambda);
              __yn = __c0 * (__yn + __lambda);
            }

          _Tp __s = __sn * __sn
                  * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));

          return (_Tp(1) + __s) / std::sqrt(__mu);
        }
    }


    /**
     *   @brief  Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
     *           of the third kind.
     * 
     *   The Carlson elliptic function of the third kind is defined by:
     *   @f[
     *       R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
     *       \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
     *   @f]
     *
     *   Based on Carlson's algorithms:
     *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
     *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
     *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
     *      by Press, Teukolsky, Vetterling, Flannery (1992)
     *
     *   @param  __x  The first of three symmetric arguments.
     *   @param  __y  The second of three symmetric arguments.
     *   @param  __z  The third of three symmetric arguments.
     *   @param  __p  The fourth argument.
     *   @return  The Carlson elliptic function of the fourth kind.
     */
    template<typename _Tp>
    _Tp
    __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)
    {
      const _Tp __min = std::numeric_limits<_Tp>::min();
      const _Tp __max = std::numeric_limits<_Tp>::max();
      const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
      const _Tp __uplim = _Tp(0.3L)
                        * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));

      if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
        std::__throw_domain_error(__N("Argument less than zero "
                                      "in __ellint_rj."));
      else if (__x + __y < __lolim || __x + __z < __lolim
            || __y + __z < __lolim || __p < __lolim)
        std::__throw_domain_error(__N("Argument too small "
                                      "in __ellint_rj"));
      else
        {
          const _Tp __c0 = _Tp(1) / _Tp(4);
          const _Tp __c1 = _Tp(3) / _Tp(14);
          const _Tp __c2 = _Tp(1) / _Tp(3);
          const _Tp __c3 = _Tp(3) / _Tp(22);
          const _Tp __c4 = _Tp(3) / _Tp(26);

          _Tp __xn = __x;
          _Tp __yn = __y;
          _Tp __zn = __z;
          _Tp __pn = __p;
          _Tp __sigma = _Tp(0);
          _Tp __power4 = _Tp(1);

          const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
          const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));

          _Tp __lambda, __mu;
          _Tp __xndev, __yndev, __zndev, __pndev;

          const unsigned int __max_iter = 100;
          for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
            {
              __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
              __xndev = (__mu - __xn) / __mu;
              __yndev = (__mu - __yn) / __mu;
              __zndev = (__mu - __zn) / __mu;
              __pndev = (__mu - __pn) / __mu;
              _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
              __epsilon = std::max(__epsilon, std::abs(__zndev));
              __epsilon = std::max(__epsilon, std::abs(__pndev));
              if (__epsilon < __errtol)
                break;
              const _Tp __xnroot = std::sqrt(__xn);
              const _Tp __ynroot = std::sqrt(__yn);
              const _Tp __znroot = std::sqrt(__zn);
              const _Tp __lambda = __xnroot * (__ynroot + __znroot)
                                 + __ynroot * __znroot;
              const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
                                + __xnroot * __ynroot * __znroot;
              const _Tp __alpha2 = __alpha1 * __alpha1;
              const _Tp __beta = __pn * (__pn + __lambda)
                                      * (__pn + __lambda);
              __sigma += __power4 * __ellint_rc(__alpha2, __beta);
              __power4 *= __c0;
              __xn = __c0 * (__xn + __lambda);
              __yn = __c0 * (__yn + __lambda);
              __zn = __c0 * (__zn + __lambda);
              __pn = __c0 * (__pn + __lambda);
            }

	  // Note: __ea is an SPU badname.
          _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
          _Tp __eb = __xndev * __yndev * __zndev;
          _Tp __ec = __pndev * __pndev;
          _Tp __e2 = __eaa - _Tp(3) * __ec;
          _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
          _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
                            - _Tp(3) * __c4 * __e3 / _Tp(2));
          _Tp __s2 = __eb * (__c2 / _Tp(2)
                   + __pndev * (-__c3 - __c3 + __pndev * __c4));
          _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
                   - __c2 * __pndev * __ec;

          return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
                                             / (__mu * std::sqrt(__mu));
        }
    }


    /**
     *   @brief Return the complete elliptic integral of the third kind
     *          @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
     *          Carlson formulation.
     * 
     *   The complete elliptic integral of the third kind is defined as
     *   @f[
     *     \Pi(k,\nu) = \int_0^{\pi/2}
     *                   \frac{d\theta}
     *                 {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
     *   @f]
     * 
     *   @param  __k  The argument of the elliptic function.
     *   @param  __nu  The second argument of the elliptic function.
     *   @return  The complete elliptic function of the third kind.
     */
    template<typename _Tp>
    _Tp
    __comp_ellint_3(_Tp __k, _Tp __nu)
    {

      if (__isnan(__k) || __isnan(__nu))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__nu == _Tp(1))
        return std::numeric_limits<_Tp>::infinity();
      else if (std::abs(__k) > _Tp(1))
        std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
      else
        {
          const _Tp __kk = __k * __k;

          return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
               + __nu
               * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu)
               / _Tp(3);
        }
    }


    /**
     *   @brief Return the incomplete elliptic integral of the third kind
     *          @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
     * 
     *   The incomplete elliptic integral of the third kind is defined as
     *   @f[
     *     \Pi(k,\nu,\phi) = \int_0^{\phi}
     *                       \frac{d\theta}
     *                            {(1 - \nu \sin^2\theta)
     *                             \sqrt{1 - k^2 \sin^2\theta}}
     *   @f]
     * 
     *   @param  __k  The argument of the elliptic function.
     *   @param  __nu  The second argument of the elliptic function.
     *   @param  __phi  The integral limit argument of the elliptic function.
     *   @return  The elliptic function of the third kind.
     */
    template<typename _Tp>
    _Tp
    __ellint_3(_Tp __k, _Tp __nu, _Tp __phi)
    {

      if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (std::abs(__k) > _Tp(1))
        std::__throw_domain_error(__N("Bad argument in __ellint_3."));
      else
        {
          //  Reduce phi to -pi/2 < phi < +pi/2.
          const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
                                   + _Tp(0.5L));
          const _Tp __phi_red = __phi
                              - __n * __numeric_constants<_Tp>::__pi();

          const _Tp __kk = __k * __k;
          const _Tp __s = std::sin(__phi_red);
          const _Tp __ss = __s * __s;
          const _Tp __sss = __ss * __s;
          const _Tp __c = std::cos(__phi_red);
          const _Tp __cc = __c * __c;

          const _Tp __Pi = __s
                         * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
                         + __nu * __sss
                         * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
                                       _Tp(1) - __nu * __ss) / _Tp(3);

          if (__n == 0)
            return __Pi;
          else
            return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
        }
    }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace __detail
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
} // namespace tr1
#endif
}

#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC