Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// Special functions -*- C++ -*-

// Copyright (C) 2006-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/riemann_zeta.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{tr1/cmath}
 */

//
// ISO C++ 14882 TR1: 5.2  Special functions
//

// Written by Edward Smith-Rowland based on:
//   (1) Handbook of Mathematical Functions,
//       Ed. by Milton Abramowitz and Irene A. Stegun,
//       Dover Publications, New-York, Section 5, pp. 807-808.
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
//   (3) Gamma, Exploring Euler's Constant, Julian Havil,
//       Princeton, 2003.

#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1

#include "special_function_util.h"

namespace std _GLIBCXX_VISIBILITY(default)
{
#if _GLIBCXX_USE_STD_SPEC_FUNCS
# define _GLIBCXX_MATH_NS ::std
#elif defined(_GLIBCXX_TR1_CMATH)
namespace tr1
{
# define _GLIBCXX_MATH_NS ::std::tr1
#else
# error do not include this header directly, use <cmath> or <tr1/cmath>
#endif
  // [5.2] Special functions

  // Implementation-space details.
  namespace __detail
  {
  _GLIBCXX_BEGIN_NAMESPACE_VERSION

    /**
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
     *           by summation for s > 1.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_sum(_Tp __s)
    {
      //  A user shouldn't get to this.
      if (__s < _Tp(1))
        std::__throw_domain_error(__N("Bad argument in zeta sum."));

      const unsigned int max_iter = 10000;
      _Tp __zeta = _Tp(0);
      for (unsigned int __k = 1; __k < max_iter; ++__k)
        {
          _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
          if (__term < std::numeric_limits<_Tp>::epsilon())
            {
              break;
            }
          __zeta += __term;
        }

      return __zeta;
    }


    /**
     *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
     *           by an alternate series for s > 0.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_alt(_Tp __s)
    {
      _Tp __sgn = _Tp(1);
      _Tp __zeta = _Tp(0);
      for (unsigned int __i = 1; __i < 10000000; ++__i)
        {
          _Tp __term = __sgn / std::pow(__i, __s);
          if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
            break;
          __zeta += __term;
          __sgn *= _Tp(-1);
        }
      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);

      return __zeta;
    }


    /**
     *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
     *           Convergence is great until largish negative numbers.
     *           Then the convergence of the > 0 sum gets better.
     *
     *   The series is:
     *    \f[
     *      \zeta(s) = \frac{1}{1-2^{1-s}}
     *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
     *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
     *    \f]
     *   Havil 2003, p. 206.
     *
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_glob(_Tp __s)
    {
      _Tp __zeta = _Tp(0);

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      //  Max e exponent before overflow.
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
                               * std::log(_Tp(10)) - _Tp(1);

      //  This series works until the binomial coefficient blows up
      //  so use reflection.
      if (__s < _Tp(0))
        {
#if _GLIBCXX_USE_C99_MATH_TR1
          if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0))
            return _Tp(0);
          else
#endif
            {
              _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
              __zeta *= std::pow(_Tp(2)
                     * __numeric_constants<_Tp>::__pi(), __s)
                     * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
                     * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
#else
                     * std::exp(__log_gamma(_Tp(1) - __s))
#endif
                     / __numeric_constants<_Tp>::__pi();
              return __zeta;
            }
        }

      _Tp __num = _Tp(0.5L);
      const unsigned int __maxit = 10000;
      for (unsigned int __i = 0; __i < __maxit; ++__i)
        {
          bool __punt = false;
          _Tp __sgn = _Tp(1);
          _Tp __term = _Tp(0);
          for (unsigned int __j = 0; __j <= __i; ++__j)
            {
#if _GLIBCXX_USE_C99_MATH_TR1
              _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
                              - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
                              - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
#else
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
                              - __log_gamma(_Tp(1 + __j))
                              - __log_gamma(_Tp(1 + __i - __j));
#endif
              if (__bincoeff > __max_bincoeff)
                {
                  //  This only gets hit for x << 0.
                  __punt = true;
                  break;
                }
              __bincoeff = std::exp(__bincoeff);
              __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
              __sgn *= _Tp(-1);
            }
          if (__punt)
            break;
          __term *= __num;
          __zeta += __term;
          if (std::abs(__term/__zeta) < __eps)
            break;
          __num *= _Tp(0.5L);
        }

      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);

      return __zeta;
    }


    /**
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
     *           using the product over prime factors.
     *    \f[
     *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
     *    \f]
     *    where @f$ {p_i} @f$ are the prime numbers.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta_product(_Tp __s)
    {
      static const _Tp __prime[] = {
        _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
        _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
        _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
        _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
      };
      static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);

      _Tp __zeta = _Tp(1);
      for (unsigned int __i = 0; __i < __num_primes; ++__i)
        {
          const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
          __zeta *= __fact;
          if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
            break;
        }

      __zeta = _Tp(1) / __zeta;

      return __zeta;
    }


    /**
     *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
     * 
     *   The Riemann zeta function is defined by:
     *    \f[
     *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
     *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
     *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
     *    \f]
     *   For s < 1 use the reflection formula:
     *    \f[
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
     *    \f]
     */
    template<typename _Tp>
    _Tp
    __riemann_zeta(_Tp __s)
    {
      if (__isnan(__s))
        return std::numeric_limits<_Tp>::quiet_NaN();
      else if (__s == _Tp(1))
        return std::numeric_limits<_Tp>::infinity();
      else if (__s < -_Tp(19))
        {
          _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
          __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
                 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
                 * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
#else
                 * std::exp(__log_gamma(_Tp(1) - __s))
#endif
                 / __numeric_constants<_Tp>::__pi();
          return __zeta;
        }
      else if (__s < _Tp(20))
        {
          //  Global double sum or McLaurin?
          bool __glob = true;
          if (__glob)
            return __riemann_zeta_glob(__s);
          else
            {
              if (__s > _Tp(1))
                return __riemann_zeta_sum(__s);
              else
                {
                  _Tp __zeta = std::pow(_Tp(2)
                                * __numeric_constants<_Tp>::__pi(), __s)
                         * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
                             * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s)
#else
                             * std::exp(__log_gamma(_Tp(1) - __s))
#endif
                             * __riemann_zeta_sum(_Tp(1) - __s);
                  return __zeta;
                }
            }
        }
      else
        return __riemann_zeta_product(__s);
    }


    /**
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
     *           for all s != 1 and x > -1.
     * 
     *   The Hurwitz zeta function is defined by:
     *   @f[
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
     *   @f]
     *   The Riemann zeta function is a special case:
     *   @f[
     *     \zeta(s) = \zeta(1,s)
     *   @f]
     * 
     *   This functions uses the double sum that converges for s != 1
     *   and x > -1:
     *   @f[
     *     \zeta(x,s) = \frac{1}{s-1}
     *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
     *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
     *   @f]
     */
    template<typename _Tp>
    _Tp
    __hurwitz_zeta_glob(_Tp __a, _Tp __s)
    {
      _Tp __zeta = _Tp(0);

      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
      //  Max e exponent before overflow.
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
                               * std::log(_Tp(10)) - _Tp(1);

      const unsigned int __maxit = 10000;
      for (unsigned int __i = 0; __i < __maxit; ++__i)
        {
          bool __punt = false;
          _Tp __sgn = _Tp(1);
          _Tp __term = _Tp(0);
          for (unsigned int __j = 0; __j <= __i; ++__j)
            {
#if _GLIBCXX_USE_C99_MATH_TR1
              _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
                              - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
                              - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
#else
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
                              - __log_gamma(_Tp(1 + __j))
                              - __log_gamma(_Tp(1 + __i - __j));
#endif
              if (__bincoeff > __max_bincoeff)
                {
                  //  This only gets hit for x << 0.
                  __punt = true;
                  break;
                }
              __bincoeff = std::exp(__bincoeff);
              __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
              __sgn *= _Tp(-1);
            }
          if (__punt)
            break;
          __term /= _Tp(__i + 1);
          if (std::abs(__term / __zeta) < __eps)
            break;
          __zeta += __term;
        }

      __zeta /= __s - _Tp(1);

      return __zeta;
    }


    /**
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
     *           for all s != 1 and x > -1.
     * 
     *   The Hurwitz zeta function is defined by:
     *   @f[
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
     *   @f]
     *   The Riemann zeta function is a special case:
     *   @f[
     *     \zeta(s) = \zeta(1,s)
     *   @f]
     */
    template<typename _Tp>
    inline _Tp
    __hurwitz_zeta(_Tp __a, _Tp __s)
    { return __hurwitz_zeta_glob(__a, __s); }

  _GLIBCXX_END_NAMESPACE_VERSION
  } // namespace __detail
#undef _GLIBCXX_MATH_NS
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
} // namespace tr1
#endif
}

#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC