Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
/* Find a variable's value in memory, for GDB, the GNU debugger.

   Copyright (C) 1986-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "symfile.h"		/* for overlay functions */
#include "regcache.h"
#include "user-regs.h"
#include "block.h"
#include "objfiles.h"
#include "language.h"
#include "dwarf2loc.h"
#include "common/selftest.h"

/* Basic byte-swapping routines.  All 'extract' functions return a
   host-format integer from a target-format integer at ADDR which is
   LEN bytes long.  */

#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
  /* 8 bit characters are a pretty safe assumption these days, so we
     assume it throughout all these swapping routines.  If we had to deal with
     9 bit characters, we would need to make len be in bits and would have
     to re-write these routines...  */
you lose
#endif

template<typename T, typename>
T
extract_integer (const gdb_byte *addr, int len, enum bfd_endian byte_order)
{
  typename std::make_unsigned<T>::type retval = 0;
  const unsigned char *p;
  const unsigned char *startaddr = addr;
  const unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (T))
    error (_("\
That operation is not available on integers of more than %d bytes."),
	   (int) sizeof (T));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  if (byte_order == BFD_ENDIAN_BIG)
    {
      p = startaddr;
      if (std::is_signed<T>::value)
	{
	  /* Do the sign extension once at the start.  */
	  retval = ((LONGEST) * p ^ 0x80) - 0x80;
	  ++p;
	}
      for (; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      p = endaddr - 1;
      if (std::is_signed<T>::value)
	{
	  /* Do the sign extension once at the start.  */
	  retval = ((LONGEST) * p ^ 0x80) - 0x80;
	  --p;
	}
      for (; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

/* Explicit instantiations.  */
template LONGEST extract_integer<LONGEST> (const gdb_byte *addr, int len,
					   enum bfd_endian byte_order);
template ULONGEST extract_integer<ULONGEST> (const gdb_byte *addr, int len,
					     enum bfd_endian byte_order);

/* Sometimes a long long unsigned integer can be extracted as a
   LONGEST value.  This is done so that we can print these values
   better.  If this integer can be converted to a LONGEST, this
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */

int
extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
			       enum bfd_endian byte_order, LONGEST *pval)
{
  const gdb_byte *p;
  const gdb_byte *first_addr;
  int len;

  len = orig_len;
  if (byte_order == BFD_ENDIAN_BIG)
    {
      for (p = addr;
	   len > (int) sizeof (LONGEST) && p < addr + orig_len;
	   p++)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
      first_addr = p;
    }
  else
    {
      first_addr = addr;
      for (p = addr + orig_len - 1;
	   len > (int) sizeof (LONGEST) && p >= addr;
	   p--)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
    }

  if (len <= (int) sizeof (LONGEST))
    {
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
						  sizeof (LONGEST),
						  byte_order);
      return 1;
    }

  return 0;
}


/* Treat the bytes at BUF as a pointer of type TYPE, and return the
   address it represents.  */
CORE_ADDR
extract_typed_address (const gdb_byte *buf, struct type *type)
{
  if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
    internal_error (__FILE__, __LINE__,
		    _("extract_typed_address: "
		    "type is not a pointer or reference"));

  return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
}

/* All 'store' functions accept a host-format integer and store a
   target-format integer at ADDR which is LEN bytes long.  */
template<typename T, typename>
void
store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order,
	       T val)
{
  gdb_byte *p;
  gdb_byte *startaddr = addr;
  gdb_byte *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (byte_order == BFD_ENDIAN_BIG)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

/* Explicit instantiations.  */
template void store_integer (gdb_byte *addr, int len,
			     enum bfd_endian byte_order,
			     LONGEST val);

template void store_integer (gdb_byte *addr, int len,
			     enum bfd_endian byte_order,
			     ULONGEST val);

/* Store the address ADDR as a pointer of type TYPE at BUF, in target
   form.  */
void
store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
{
  if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
    internal_error (__FILE__, __LINE__,
		    _("store_typed_address: "
		    "type is not a pointer or reference"));

  gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
}

/* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE
   bytes.  If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most
   significant bytes.  If SOURCE_SIZE is less than DEST_SIZE then either sign
   or zero extended according to IS_SIGNED.  Values are stored in memory with
   endianess BYTE_ORDER.  */

void
copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source,
		      int source_size, bool is_signed,
		      enum bfd_endian byte_order)
{
  signed int size_diff = dest_size - source_size;

  /* Copy across everything from SOURCE that can fit into DEST.  */

  if (byte_order == BFD_ENDIAN_BIG && size_diff > 0)
    memcpy (dest + size_diff, source, source_size);
  else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0)
    memcpy (dest, source - size_diff, dest_size);
  else
    memcpy (dest, source, std::min (source_size, dest_size));

  /* Fill the remaining space in DEST by either zero extending or sign
     extending.  */

  if (size_diff > 0)
    {
      gdb_byte extension = 0;
      if (is_signed
	  && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80)
	      || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80)))
	extension = 0xff;

      /* Extend into MSBs of SOURCE.  */
      if (byte_order == BFD_ENDIAN_BIG)
	memset (dest, extension, size_diff);
      else
	memset (dest + source_size, extension, size_diff);
    }
}

/* Return a `value' with the contents of (virtual or cooked) register
   REGNUM as found in the specified FRAME.  The register's type is
   determined by register_type().  */

struct value *
value_of_register (int regnum, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct value *reg_val;

  /* User registers lie completely outside of the range of normal
     registers.  Catch them early so that the target never sees them.  */
  if (regnum >= gdbarch_num_cooked_regs (gdbarch))
    return value_of_user_reg (regnum, frame);

  reg_val = value_of_register_lazy (frame, regnum);
  value_fetch_lazy (reg_val);
  return reg_val;
}

/* Return a `value' with the contents of (virtual or cooked) register
   REGNUM as found in the specified FRAME.  The register's type is
   determined by register_type().  The value is not fetched.  */

struct value *
value_of_register_lazy (struct frame_info *frame, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct value *reg_val;
  struct frame_info *next_frame;

  gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));

  gdb_assert (frame != NULL);

  next_frame = get_next_frame_sentinel_okay (frame);

  /* We should have a valid next frame.  */
  gdb_assert (frame_id_p (get_frame_id (next_frame)));

  reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
  VALUE_LVAL (reg_val) = lval_register;
  VALUE_REGNUM (reg_val) = regnum;
  VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);

  return reg_val;
}

/* Given a pointer of type TYPE in target form in BUF, return the
   address it represents.  */
CORE_ADDR
unsigned_pointer_to_address (struct gdbarch *gdbarch,
			     struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
}

CORE_ADDR
signed_pointer_to_address (struct gdbarch *gdbarch,
			   struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
}

/* Given an address, store it as a pointer of type TYPE in target
   format in BUF.  */
void
unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
			     gdb_byte *buf, CORE_ADDR addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
}

void
address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
			   gdb_byte *buf, CORE_ADDR addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
}

/* See value.h.  */

enum symbol_needs_kind
symbol_read_needs (struct symbol *sym)
{
  if (SYMBOL_COMPUTED_OPS (sym) != NULL)
    return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);

  switch (SYMBOL_CLASS (sym))
    {
      /* All cases listed explicitly so that gcc -Wall will detect it if
         we failed to consider one.  */
    case LOC_COMPUTED:
      gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));

    case LOC_REGISTER:
    case LOC_ARG:
    case LOC_REF_ARG:
    case LOC_REGPARM_ADDR:
    case LOC_LOCAL:
      return SYMBOL_NEEDS_FRAME;

    case LOC_UNDEF:
    case LOC_CONST:
    case LOC_STATIC:
    case LOC_TYPEDEF:

    case LOC_LABEL:
      /* Getting the address of a label can be done independently of the block,
         even if some *uses* of that address wouldn't work so well without
         the right frame.  */

    case LOC_BLOCK:
    case LOC_CONST_BYTES:
    case LOC_UNRESOLVED:
    case LOC_OPTIMIZED_OUT:
      return SYMBOL_NEEDS_NONE;
    }
  return SYMBOL_NEEDS_FRAME;
}

/* See value.h.  */

int
symbol_read_needs_frame (struct symbol *sym)
{
  return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
}

/* Private data to be used with minsym_lookup_iterator_cb.  */

struct minsym_lookup_data
{
  /* The name of the minimal symbol we are searching for.  */
  const char *name;

  /* The field where the callback should store the minimal symbol
     if found.  It should be initialized to NULL before the search
     is started.  */
  struct bound_minimal_symbol result;
};

/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
   It searches by name for a minimal symbol within the given OBJFILE.
   The arguments are passed via CB_DATA, which in reality is a pointer
   to struct minsym_lookup_data.  */

static int
minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
{
  struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;

  gdb_assert (data->result.minsym == NULL);

  data->result = lookup_minimal_symbol (data->name, NULL, objfile);

  /* The iterator should stop iff a match was found.  */
  return (data->result.minsym != NULL);
}

/* Given static link expression and the frame it lives in, look for the frame
   the static links points to and return it.  Return NULL if we could not find
   such a frame.   */

static struct frame_info *
follow_static_link (struct frame_info *frame,
		    const struct dynamic_prop *static_link)
{
  CORE_ADDR upper_frame_base;

  if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
    return NULL;

  /* Now climb up the stack frame until we reach the frame we are interested
     in.  */
  for (; frame != NULL; frame = get_prev_frame (frame))
    {
      struct symbol *framefunc = get_frame_function (frame);

      /* Stacks can be quite deep: give the user a chance to stop this.  */
      QUIT;

      /* If we don't know how to compute FRAME's base address, don't give up:
	 maybe the frame we are looking for is upper in the stace frame.  */
      if (framefunc != NULL
	  && SYMBOL_BLOCK_OPS (framefunc) != NULL
	  && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
	  && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
	      == upper_frame_base))
	break;
    }

  return frame;
}

/* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
   rules, look for the frame that is actually hosting VAR and return it.  If,
   for some reason, we found no such frame, return NULL.

   This kind of computation is necessary to correctly handle lexically nested
   functions.

   Note that in some cases, we know what scope VAR comes from but we cannot
   reach the specific frame that hosts the instance of VAR we are looking for.
   For backward compatibility purposes (with old compilers), we then look for
   the first frame that can host it.  */

static struct frame_info *
get_hosting_frame (struct symbol *var, const struct block *var_block,
		   struct frame_info *frame)
{
  const struct block *frame_block = NULL;

  if (!symbol_read_needs_frame (var))
    return NULL;

  /* Some symbols for local variables have no block: this happens when they are
     not produced by a debug information reader, for instance when GDB creates
     synthetic symbols.  Without block information, we must assume they are
     local to FRAME. In this case, there is nothing to do.  */
  else if (var_block == NULL)
    return frame;

  /* We currently assume that all symbols with a location list need a frame.
     This is true in practice because selecting the location description
     requires to compute the CFA, hence requires a frame.  However we have
     tests that embed global/static symbols with null location lists.
     We want to get <optimized out> instead of <frame required> when evaluating
     them so return a frame instead of raising an error.  */
  else if (var_block == block_global_block (var_block)
	   || var_block == block_static_block (var_block))
    return frame;

  /* We have to handle the "my_func::my_local_var" notation.  This requires us
     to look for upper frames when we find no block for the current frame: here
     and below, handle when frame_block == NULL.  */
  if (frame != NULL)
    frame_block = get_frame_block (frame, NULL);

  /* Climb up the call stack until reaching the frame we are looking for.  */
  while (frame != NULL && frame_block != var_block)
    {
      /* Stacks can be quite deep: give the user a chance to stop this.  */
      QUIT;

      if (frame_block == NULL)
	{
	  frame = get_prev_frame (frame);
	  if (frame == NULL)
	    break;
	  frame_block = get_frame_block (frame, NULL);
	}

      /* If we failed to find the proper frame, fallback to the heuristic
	 method below.  */
      else if (frame_block == block_global_block (frame_block))
	{
	  frame = NULL;
	  break;
	}

      /* Assuming we have a block for this frame: if we are at the function
	 level, the immediate upper lexical block is in an outer function:
	 follow the static link.  */
      else if (BLOCK_FUNCTION (frame_block))
	{
	  const struct dynamic_prop *static_link
	    = block_static_link (frame_block);
	  int could_climb_up = 0;

	  if (static_link != NULL)
	    {
	      frame = follow_static_link (frame, static_link);
	      if (frame != NULL)
		{
		  frame_block = get_frame_block (frame, NULL);
		  could_climb_up = frame_block != NULL;
		}
	    }
	  if (!could_climb_up)
	    {
	      frame = NULL;
	      break;
	    }
	}

      else
	/* We must be in some function nested lexical block.  Just get the
	   outer block: both must share the same frame.  */
	frame_block = BLOCK_SUPERBLOCK (frame_block);
    }

  /* Old compilers may not provide a static link, or they may provide an
     invalid one.  For such cases, fallback on the old way to evaluate
     non-local references: just climb up the call stack and pick the first
     frame that contains the variable we are looking for.  */
  if (frame == NULL)
    {
      frame = block_innermost_frame (var_block);
      if (frame == NULL)
	{
	  if (BLOCK_FUNCTION (var_block)
	      && !block_inlined_p (var_block)
	      && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)))
	    error (_("No frame is currently executing in block %s."),
		   SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)));
	  else
	    error (_("No frame is currently executing in specified"
		     " block"));
	}
    }

  return frame;
}

/* A default implementation for the "la_read_var_value" hook in
   the language vector which should work in most situations.  */

struct value *
default_read_var_value (struct symbol *var, const struct block *var_block,
			struct frame_info *frame)
{
  struct value *v;
  struct type *type = SYMBOL_TYPE (var);
  CORE_ADDR addr;
  enum symbol_needs_kind sym_need;

  /* Call check_typedef on our type to make sure that, if TYPE is
     a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
     instead of zero.  However, we do not replace the typedef type by the
     target type, because we want to keep the typedef in order to be able to
     set the returned value type description correctly.  */
  check_typedef (type);

  sym_need = symbol_read_needs (var);
  if (sym_need == SYMBOL_NEEDS_FRAME)
    gdb_assert (frame != NULL);
  else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers)
    error (_("Cannot read `%s' without registers"), SYMBOL_PRINT_NAME (var));

  if (frame != NULL)
    frame = get_hosting_frame (var, var_block, frame);

  if (SYMBOL_COMPUTED_OPS (var) != NULL)
    return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);

  switch (SYMBOL_CLASS (var))
    {
    case LOC_CONST:
      if (is_dynamic_type (type))
	{
	  /* Value is a constant byte-sequence and needs no memory access.  */
	  type = resolve_dynamic_type (type, NULL, /* Unused address.  */ 0);
	}
      /* Put the constant back in target format. */
      v = allocate_value (type);
      store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
			    gdbarch_byte_order (get_type_arch (type)),
			    (LONGEST) SYMBOL_VALUE (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_LABEL:
      /* Put the constant back in target format.  */
      v = allocate_value (type);
      if (overlay_debugging)
	{
	  addr
	    = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					SYMBOL_OBJ_SECTION (symbol_objfile (var),
							    var));

	  store_typed_address (value_contents_raw (v), type, addr);
	}
      else
	store_typed_address (value_contents_raw (v), type,
			      SYMBOL_VALUE_ADDRESS (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_CONST_BYTES:
      if (is_dynamic_type (type))
	{
	  /* Value is a constant byte-sequence and needs no memory access.  */
	  type = resolve_dynamic_type (type, NULL, /* Unused address.  */ 0);
	}
      v = allocate_value (type);
      memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
	      TYPE_LENGTH (type));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_STATIC:
      if (overlay_debugging)
	addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					 SYMBOL_OBJ_SECTION (symbol_objfile (var),
							     var));
      else
	addr = SYMBOL_VALUE_ADDRESS (var);
      break;

    case LOC_ARG:
      addr = get_frame_args_address (frame);
      if (!addr)
	error (_("Unknown argument list address for `%s'."),
	       SYMBOL_PRINT_NAME (var));
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_REF_ARG:
      {
	struct value *ref;
	CORE_ADDR argref;

	argref = get_frame_args_address (frame);
	if (!argref)
	  error (_("Unknown argument list address for `%s'."),
		 SYMBOL_PRINT_NAME (var));
	argref += SYMBOL_VALUE (var);
	ref = value_at (lookup_pointer_type (type), argref);
	addr = value_as_address (ref);
	break;
      }

    case LOC_LOCAL:
      addr = get_frame_locals_address (frame);
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_TYPEDEF:
      error (_("Cannot look up value of a typedef `%s'."),
	     SYMBOL_PRINT_NAME (var));
      break;

    case LOC_BLOCK:
      if (overlay_debugging)
	addr = symbol_overlayed_address
	  (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)),
	   SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
      else
	addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var));
      break;

    case LOC_REGISTER:
    case LOC_REGPARM_ADDR:
      {
	int regno = SYMBOL_REGISTER_OPS (var)
		      ->register_number (var, get_frame_arch (frame));
	struct value *regval;

	if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
	  {
	    regval = value_from_register (lookup_pointer_type (type),
					  regno,
					  frame);

	    if (regval == NULL)
	      error (_("Value of register variable not available for `%s'."),
	             SYMBOL_PRINT_NAME (var));

	    addr = value_as_address (regval);
	  }
	else
	  {
	    regval = value_from_register (type, regno, frame);

	    if (regval == NULL)
	      error (_("Value of register variable not available for `%s'."),
	             SYMBOL_PRINT_NAME (var));
	    return regval;
	  }
      }
      break;

    case LOC_COMPUTED:
      gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));

    case LOC_UNRESOLVED:
      {
	struct minsym_lookup_data lookup_data;
	struct minimal_symbol *msym;
	struct obj_section *obj_section;

	memset (&lookup_data, 0, sizeof (lookup_data));
	lookup_data.name = SYMBOL_LINKAGE_NAME (var);

	gdbarch_iterate_over_objfiles_in_search_order
	  (symbol_arch (var),
	   minsym_lookup_iterator_cb, &lookup_data,
	   symbol_objfile (var));
	msym = lookup_data.result.minsym;

	/* If we can't find the minsym there's a problem in the symbol info.
	   The symbol exists in the debug info, but it's missing in the minsym
	   table.  */
	if (msym == NULL)
	  {
	    const char *flavour_name
	      = objfile_flavour_name (symbol_objfile (var));

	    /* We can't get here unless we've opened the file, so flavour_name
	       can't be NULL.  */
	    gdb_assert (flavour_name != NULL);
	    error (_("Missing %s symbol \"%s\"."),
		   flavour_name, SYMBOL_LINKAGE_NAME (var));
	  }
	obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
	/* Relocate address, unless there is no section or the variable is
	   a TLS variable. */
	if (obj_section == NULL
	    || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
	   addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
	else
	   addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
	if (overlay_debugging)
	  addr = symbol_overlayed_address (addr, obj_section);
	/* Determine address of TLS variable. */
	if (obj_section
	    && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
	  addr = target_translate_tls_address (obj_section->objfile, addr);
      }
      break;

    case LOC_OPTIMIZED_OUT:
      if (is_dynamic_type (type))
	type = resolve_dynamic_type (type, NULL, /* Unused address.  */ 0);
      return allocate_optimized_out_value (type);

    default:
      error (_("Cannot look up value of a botched symbol `%s'."),
	     SYMBOL_PRINT_NAME (var));
      break;
    }

  v = value_at_lazy (type, addr);
  return v;
}

/* Calls VAR's language la_read_var_value hook with the given arguments.  */

struct value *
read_var_value (struct symbol *var, const struct block *var_block,
		struct frame_info *frame)
{
  const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));

  gdb_assert (lang != NULL);
  gdb_assert (lang->la_read_var_value != NULL);

  return lang->la_read_var_value (var, var_block, frame);
}

/* Install default attributes for register values.  */

struct value *
default_value_from_register (struct gdbarch *gdbarch, struct type *type,
                             int regnum, struct frame_id frame_id)
{
  int len = TYPE_LENGTH (type);
  struct value *value = allocate_value (type);
  struct frame_info *frame;

  VALUE_LVAL (value) = lval_register;
  frame = frame_find_by_id (frame_id);

  if (frame == NULL)
    frame_id = null_frame_id;
  else
    frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));

  VALUE_NEXT_FRAME_ID (value) = frame_id;
  VALUE_REGNUM (value) = regnum;

  /* Any structure stored in more than one register will always be
     an integral number of registers.  Otherwise, you need to do
     some fiddling with the last register copied here for little
     endian machines.  */
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
      && len < register_size (gdbarch, regnum))
    /* Big-endian, and we want less than full size.  */
    set_value_offset (value, register_size (gdbarch, regnum) - len);
  else
    set_value_offset (value, 0);

  return value;
}

/* VALUE must be an lval_register value.  If regnum is the value's
   associated register number, and len the length of the values type,
   read one or more registers in FRAME, starting with register REGNUM,
   until we've read LEN bytes.

   If any of the registers we try to read are optimized out, then mark the
   complete resulting value as optimized out.  */

void
read_frame_register_value (struct value *value, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  LONGEST offset = 0;
  LONGEST reg_offset = value_offset (value);
  int regnum = VALUE_REGNUM (value);
  int len = type_length_units (check_typedef (value_type (value)));

  gdb_assert (VALUE_LVAL (value) == lval_register);

  /* Skip registers wholly inside of REG_OFFSET.  */
  while (reg_offset >= register_size (gdbarch, regnum))
    {
      reg_offset -= register_size (gdbarch, regnum);
      regnum++;
    }

  /* Copy the data.  */
  while (len > 0)
    {
      struct value *regval = get_frame_register_value (frame, regnum);
      int reg_len = type_length_units (value_type (regval)) - reg_offset;

      /* If the register length is larger than the number of bytes
         remaining to copy, then only copy the appropriate bytes.  */
      if (reg_len > len)
	reg_len = len;

      value_contents_copy (value, offset, regval, reg_offset, reg_len);

      offset += reg_len;
      len -= reg_len;
      reg_offset = 0;
      regnum++;
    }
}

/* Return a value of type TYPE, stored in register REGNUM, in frame FRAME.  */

struct value *
value_from_register (struct type *type, int regnum, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct type *type1 = check_typedef (type);
  struct value *v;

  if (gdbarch_convert_register_p (gdbarch, regnum, type1))
    {
      int optim, unavail, ok;

      /* The ISA/ABI need to something weird when obtaining the
         specified value from this register.  It might need to
         re-order non-adjacent, starting with REGNUM (see MIPS and
         i386).  It might need to convert the [float] register into
         the corresponding [integer] type (see Alpha).  The assumption
         is that gdbarch_register_to_value populates the entire value
         including the location.  */
      v = allocate_value (type);
      VALUE_LVAL (v) = lval_register;
      VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
      VALUE_REGNUM (v) = regnum;
      ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
				      value_contents_raw (v), &optim,
				      &unavail);

      if (!ok)
	{
	  if (optim)
	    mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
	  if (unavail)
	    mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
	}
    }
  else
    {
      /* Construct the value.  */
      v = gdbarch_value_from_register (gdbarch, type,
				       regnum, get_frame_id (frame));

      /* Get the data.  */
      read_frame_register_value (v, frame);
    }

  return v;
}

/* Return contents of register REGNUM in frame FRAME as address.
   Will abort if register value is not available.  */

CORE_ADDR
address_from_register (int regnum, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
  struct value *value;
  CORE_ADDR result;
  int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch);

  if (regnum < 0 || regnum >= regnum_max_excl)
    error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
	   regnum_max_excl);

  /* This routine may be called during early unwinding, at a time
     where the ID of FRAME is not yet known.  Calling value_from_register
     would therefore abort in get_frame_id.  However, since we only need
     a temporary value that is never used as lvalue, we actually do not
     really need to set its VALUE_NEXT_FRAME_ID.  Therefore, we re-implement
     the core of value_from_register, but use the null_frame_id.  */

  /* Some targets require a special conversion routine even for plain
     pointer types.  Avoid constructing a value object in those cases.  */
  if (gdbarch_convert_register_p (gdbarch, regnum, type))
    {
      gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
      int optim, unavail, ok;

      ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
				      buf, &optim, &unavail);
      if (!ok)
	{
	  /* This function is used while computing a location expression.
	     Complain about the value being optimized out, rather than
	     letting value_as_address complain about some random register
	     the expression depends on not being saved.  */
	  error_value_optimized_out ();
	}

      return unpack_long (type, buf);
    }

  value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
  read_frame_register_value (value, frame);

  if (value_optimized_out (value))
    {
      /* This function is used while computing a location expression.
	 Complain about the value being optimized out, rather than
	 letting value_as_address complain about some random register
	 the expression depends on not being saved.  */
      error_value_optimized_out ();
    }

  result = value_as_address (value);
  release_value (value);

  return result;
}

#if GDB_SELF_TEST
namespace selftests {
namespace findvar_tests {

/* Function to test copy_integer_to_size.  Store SOURCE_VAL with size
   SOURCE_SIZE to a buffer, making sure no sign extending happens at this
   stage.  Copy buffer to a new buffer using copy_integer_to_size.  Extract
   copied value and compare to DEST_VALU.  Copy again with a signed
   copy_integer_to_size and compare to DEST_VALS.  Do everything for both
   LITTLE and BIG target endians.  Use unsigned values throughout to make
   sure there are no implicit sign extensions.  */

static void
do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size,
	      ULONGEST src_val, int src_size)
{
  for (int i = 0; i < 2 ; i++)
    {
      gdb_byte srcbuf[sizeof (ULONGEST)] = {};
      gdb_byte destbuf[sizeof (ULONGEST)] = {};
      enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;

      /* Fill the src buffer (and later the dest buffer) with non-zero junk,
	 to ensure zero extensions aren't hidden.  */
      memset (srcbuf, 0xaa, sizeof (srcbuf));

      /* Store (and later extract) using unsigned to ensure there are no sign
	 extensions.  */
      store_unsigned_integer (srcbuf, src_size, byte_order, src_val);

      /* Test unsigned.  */
      memset (destbuf, 0xaa, sizeof (destbuf));
      copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false,
			    byte_order);
      SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size,
							 byte_order));

      /* Test signed.  */
      memset (destbuf, 0xaa, sizeof (destbuf));
      copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true,
			    byte_order);
      SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size,
							 byte_order));
    }
}

static void
copy_integer_to_size_test ()
{
  /* Destination is bigger than the source, which has the signed bit unset.  */
  do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4);
  do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3);

  /* Destination is bigger than the source, which has the signed bit set.  */
  do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4);
  do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3);

  /* Destination is smaller than the source.  */
  do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3);
  do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3);

  /* Destination and source are the same size.  */
  do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678,
		8);
  do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6);
  do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef,
		8);
  do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6);

  /* Destination is bigger than the source.  Source is bigger than 32bits.  */
  do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6);
  do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6);
  do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6);
  do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6);
}

} // namespace findvar_test
} // namespace selftests

#endif

void
_initialize_findvar (void)
{
#if GDB_SELF_TEST
  selftests::register_test
    ("copy_integer_to_size",
     selftests::findvar_tests::copy_integer_to_size_test);
#endif
}