Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
Copyright 2011 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Author: lode.vandevenne@gmail.com (Lode Vandevenne)
Author: jyrki.alakuijala@gmail.com (Jyrki Alakuijala)
*/

#include "squeeze.h"

#include <assert.h>
#include <math.h>
#include <stdio.h>

#include "blocksplitter.h"
#include "deflate.h"
#include "tree.h"
#include "util.h"

typedef struct SymbolStats {
  /* The literal and length symbols. */
  size_t litlens[288];
  /* The 32 unique dist symbols, not the 32768 possible dists. */
  size_t dists[32];

  double ll_symbols[288];  /* Length of each lit/len symbol in bits. */
  double d_symbols[32];  /* Length of each dist symbol in bits. */
} SymbolStats;

/* Sets everything to 0. */
static void InitStats(SymbolStats* stats) {
  memset(stats->litlens, 0, 288 * sizeof(stats->litlens[0]));
  memset(stats->dists, 0, 32 * sizeof(stats->dists[0]));

  memset(stats->ll_symbols, 0, 288 * sizeof(stats->ll_symbols[0]));
  memset(stats->d_symbols, 0, 32 * sizeof(stats->d_symbols[0]));
}

static void CopyStats(SymbolStats* source, SymbolStats* dest) {
  memcpy(dest->litlens, source->litlens, 288 * sizeof(dest->litlens[0]));
  memcpy(dest->dists, source->dists, 32 * sizeof(dest->dists[0]));

  memcpy(dest->ll_symbols, source->ll_symbols,
         288 * sizeof(dest->ll_symbols[0]));
  memcpy(dest->d_symbols, source->d_symbols, 32 * sizeof(dest->d_symbols[0]));
}

/* Adds the bit lengths. */
static void AddWeighedStatFreqs(const SymbolStats* stats1, double w1,
                                const SymbolStats* stats2, double w2,
                                SymbolStats* result) {
  size_t i;
  for (i = 0; i < 288; i++) {
    result->litlens[i] =
        (size_t) (stats1->litlens[i] * w1 + stats2->litlens[i] * w2);
  }
  for (i = 0; i < 32; i++) {
    result->dists[i] =
        (size_t) (stats1->dists[i] * w1 + stats2->dists[i] * w2);
  }
  result->litlens[256] = 1;  /* End symbol. */
}

typedef struct RanState {
  unsigned int m_w, m_z;
} RanState;

static void InitRanState(RanState* state) {
  state->m_w = 1;
  state->m_z = 2;
}

/* Get random number: "Multiply-With-Carry" generator of G. Marsaglia */
static unsigned int Ran(RanState* state) {
  state->m_z = 36969 * (state->m_z & 65535) + (state->m_z >> 16);
  state->m_w = 18000 * (state->m_w & 65535) + (state->m_w >> 16);
  return (state->m_z << 16) + state->m_w;  /* 32-bit result. */
}

static void RandomizeFreqs(RanState* state, size_t* freqs, int n) {
  int i;
  for (i = 0; i < n; i++) {
    if ((Ran(state) >> 4) % 3 == 0) freqs[i] = freqs[Ran(state) % n];
  }
}

static void RandomizeStatFreqs(RanState* state, SymbolStats* stats) {
  RandomizeFreqs(state, stats->litlens, 288);
  RandomizeFreqs(state, stats->dists, 32);
  stats->litlens[256] = 1;  /* End symbol. */
}

static void ClearStatFreqs(SymbolStats* stats) {
  size_t i;
  for (i = 0; i < 288; i++) stats->litlens[i] = 0;
  for (i = 0; i < 32; i++) stats->dists[i] = 0;
}

/*
Function that calculates a cost based on a model for the given LZ77 symbol.
litlen: means literal symbol if dist is 0, length otherwise.
*/
typedef double CostModelFun(unsigned litlen, unsigned dist, void* context);

/*
Cost model which should exactly match fixed tree.
type: CostModelFun
*/
static double GetCostFixed(unsigned litlen, unsigned dist, void* unused) {
  (void)unused;
  if (dist == 0) {
    if (litlen <= 143) return 8;
    else return 9;
  } else {
    int dbits = ZopfliGetDistExtraBits(dist);
    int lbits = ZopfliGetLengthExtraBits(litlen);
    int lsym = ZopfliGetLengthSymbol(litlen);
    double cost = 0;
    if (lsym <= 279) cost += 7;
    else cost += 8;
    cost += 5;  /* Every dist symbol has length 5. */
    return cost + dbits + lbits;
  }
}

/*
Cost model based on symbol statistics.
type: CostModelFun
*/
static double GetCostStat(unsigned litlen, unsigned dist, void* context) {
  SymbolStats* stats = (SymbolStats*)context;
  if (dist == 0) {
    return stats->ll_symbols[litlen];
  } else {
    int lsym = ZopfliGetLengthSymbol(litlen);
    int lbits = ZopfliGetLengthExtraBits(litlen);
    int dsym = ZopfliGetDistSymbol(dist);
    int dbits = ZopfliGetDistExtraBits(dist);
    return stats->ll_symbols[lsym] + lbits + stats->d_symbols[dsym] + dbits;
  }
}

/*
Finds the minimum possible cost this cost model can return for valid length and
distance symbols.
*/
static double GetCostModelMinCost(CostModelFun* costmodel, void* costcontext) {
  double mincost;
  int bestlength = 0; /* length that has lowest cost in the cost model */
  int bestdist = 0; /* distance that has lowest cost in the cost model */
  int i;
  /*
  Table of distances that have a different distance symbol in the deflate
  specification. Each value is the first distance that has a new symbol. Only
  different symbols affect the cost model so only these need to be checked.
  See RFC 1951 section 3.2.5. Compressed blocks (length and distance codes).
  */
  static const int dsymbols[30] = {
    1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513,
    769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
  };

  mincost = ZOPFLI_LARGE_FLOAT;
  for (i = 3; i < 259; i++) {
    double c = costmodel(i, 1, costcontext);
    if (c < mincost) {
      bestlength = i;
      mincost = c;
    }
  }

  mincost = ZOPFLI_LARGE_FLOAT;
  for (i = 0; i < 30; i++) {
    double c = costmodel(3, dsymbols[i], costcontext);
    if (c < mincost) {
      bestdist = dsymbols[i];
      mincost = c;
    }
  }

  return costmodel(bestlength, bestdist, costcontext);
}

/*
Performs the forward pass for "squeeze". Gets the most optimal length to reach
every byte from a previous byte, using cost calculations.
s: the ZopfliBlockState
in: the input data array
instart: where to start
inend: where to stop (not inclusive)
costmodel: function to calculate the cost of some lit/len/dist pair.
costcontext: abstract context for the costmodel function
length_array: output array of size (inend - instart) which will receive the best
    length to reach this byte from a previous byte.
returns the cost that was, according to the costmodel, needed to get to the end.
*/
static double GetBestLengths(ZopfliBlockState *s,
                             const unsigned char* in,
                             size_t instart, size_t inend,
                             CostModelFun* costmodel, void* costcontext,
                             unsigned short* length_array) {
  /* Best cost to get here so far. */
  size_t blocksize = inend - instart;
  float* costs;
  size_t i = 0, k;
  unsigned short leng;
  unsigned short dist;
  unsigned short sublen[259];
  size_t windowstart = instart > ZOPFLI_WINDOW_SIZE
      ? instart - ZOPFLI_WINDOW_SIZE : 0;
  ZopfliHash hash;
  ZopfliHash* h = &hash;
  double result;
  double mincost = GetCostModelMinCost(costmodel, costcontext);

  if (instart == inend) return 0;

  costs = (float*)malloc(sizeof(float) * (blocksize + 1));
  if (!costs) exit(-1); /* Allocation failed. */

  ZopfliInitHash(ZOPFLI_WINDOW_SIZE, h);
  ZopfliWarmupHash(in, windowstart, inend, h);
  for (i = windowstart; i < instart; i++) {
    ZopfliUpdateHash(in, i, inend, h);
  }

  for (i = 1; i < blocksize + 1; i++) costs[i] = ZOPFLI_LARGE_FLOAT;
  costs[0] = 0;  /* Because it's the start. */
  length_array[0] = 0;

  for (i = instart; i < inend; i++) {
    size_t j = i - instart;  /* Index in the costs array and length_array. */
    ZopfliUpdateHash(in, i, inend, h);

#ifdef ZOPFLI_SHORTCUT_LONG_REPETITIONS
    /* If we're in a long repetition of the same character and have more than
    ZOPFLI_MAX_MATCH characters before and after our position. */
    if (h->same[i & ZOPFLI_WINDOW_MASK] > ZOPFLI_MAX_MATCH * 2
        && i > instart + ZOPFLI_MAX_MATCH + 1
        && i + ZOPFLI_MAX_MATCH * 2 + 1 < inend
        && h->same[(i - ZOPFLI_MAX_MATCH) & ZOPFLI_WINDOW_MASK]
            > ZOPFLI_MAX_MATCH) {
      double symbolcost = costmodel(ZOPFLI_MAX_MATCH, 1, costcontext);
      /* Set the length to reach each one to ZOPFLI_MAX_MATCH, and the cost to
      the cost corresponding to that length. Doing this, we skip
      ZOPFLI_MAX_MATCH values to avoid calling ZopfliFindLongestMatch. */
      for (k = 0; k < ZOPFLI_MAX_MATCH; k++) {
        costs[j + ZOPFLI_MAX_MATCH] = costs[j] + symbolcost;
        length_array[j + ZOPFLI_MAX_MATCH] = ZOPFLI_MAX_MATCH;
        i++;
        j++;
        ZopfliUpdateHash(in, i, inend, h);
      }
    }
#endif

    ZopfliFindLongestMatch(s, h, in, i, inend, ZOPFLI_MAX_MATCH, sublen,
                           &dist, &leng);

    /* Literal. */
    if (i + 1 <= inend) {
      double newCost = costs[j] + costmodel(in[i], 0, costcontext);
      assert(newCost >= 0);
      if (newCost < costs[j + 1]) {
        costs[j + 1] = newCost;
        length_array[j + 1] = 1;
      }
    }
    /* Lengths. */
    for (k = 3; k <= leng && i + k <= inend; k++) {
      double newCost;

      /* Calling the cost model is expensive, avoid this if we are already at
      the minimum possible cost that it can return. */
     if (costs[j + k] - costs[j] <= mincost) continue;

      newCost = costs[j] + costmodel(k, sublen[k], costcontext);
      assert(newCost >= 0);
      if (newCost < costs[j + k]) {
        assert(k <= ZOPFLI_MAX_MATCH);
        costs[j + k] = newCost;
        length_array[j + k] = k;
      }
    }
  }

  assert(costs[blocksize] >= 0);
  result = costs[blocksize];

  ZopfliCleanHash(h);
  free(costs);

  return result;
}

/*
Calculates the optimal path of lz77 lengths to use, from the calculated
length_array. The length_array must contain the optimal length to reach that
byte. The path will be filled with the lengths to use, so its data size will be
the amount of lz77 symbols.
*/
static void TraceBackwards(size_t size, const unsigned short* length_array,
                           unsigned short** path, size_t* pathsize) {
  size_t index = size;
  if (size == 0) return;
  for (;;) {
    ZOPFLI_APPEND_DATA(length_array[index], path, pathsize);
    assert(length_array[index] <= index);
    assert(length_array[index] <= ZOPFLI_MAX_MATCH);
    assert(length_array[index] != 0);
    index -= length_array[index];
    if (index == 0) break;
  }

  /* Mirror result. */
  for (index = 0; index < *pathsize / 2; index++) {
    unsigned short temp = (*path)[index];
    (*path)[index] = (*path)[*pathsize - index - 1];
    (*path)[*pathsize - index - 1] = temp;
  }
}

static void FollowPath(ZopfliBlockState* s,
                       const unsigned char* in, size_t instart, size_t inend,
                       unsigned short* path, size_t pathsize,
                       ZopfliLZ77Store* store) {
  size_t i, j, pos = 0;
  size_t windowstart = instart > ZOPFLI_WINDOW_SIZE
      ? instart - ZOPFLI_WINDOW_SIZE : 0;

  size_t total_length_test = 0;

  ZopfliHash hash;
  ZopfliHash* h = &hash;

  if (instart == inend) return;

  ZopfliInitHash(ZOPFLI_WINDOW_SIZE, h);
  ZopfliWarmupHash(in, windowstart, inend, h);
  for (i = windowstart; i < instart; i++) {
    ZopfliUpdateHash(in, i, inend, h);
  }

  pos = instart;
  for (i = 0; i < pathsize; i++) {
    unsigned short length = path[i];
    unsigned short dummy_length;
    unsigned short dist;
    assert(pos < inend);

    ZopfliUpdateHash(in, pos, inend, h);

    /* Add to output. */
    if (length >= ZOPFLI_MIN_MATCH) {
      /* Get the distance by recalculating longest match. The found length
      should match the length from the path. */
      ZopfliFindLongestMatch(s, h, in, pos, inend, length, 0,
                             &dist, &dummy_length);
      assert(!(dummy_length != length && length > 2 && dummy_length > 2));
      ZopfliVerifyLenDist(in, inend, pos, dist, length);
      ZopfliStoreLitLenDist(length, dist, store);
      total_length_test += length;
    } else {
      length = 1;
      ZopfliStoreLitLenDist(in[pos], 0, store);
      total_length_test++;
    }


    assert(pos + length <= inend);
    for (j = 1; j < length; j++) {
      ZopfliUpdateHash(in, pos + j, inend, h);
    }

    pos += length;
  }

  ZopfliCleanHash(h);
}

/* Calculates the entropy of the statistics */
static void CalculateStatistics(SymbolStats* stats) {
  ZopfliCalculateEntropy(stats->litlens, 288, stats->ll_symbols);
  ZopfliCalculateEntropy(stats->dists, 32, stats->d_symbols);
}

/* Appends the symbol statistics from the store. */
static void GetStatistics(const ZopfliLZ77Store* store, SymbolStats* stats) {
  size_t i;
  for (i = 0; i < store->size; i++) {
    if (store->dists[i] == 0) {
      stats->litlens[store->litlens[i]]++;
    } else {
      stats->litlens[ZopfliGetLengthSymbol(store->litlens[i])]++;
      stats->dists[ZopfliGetDistSymbol(store->dists[i])]++;
    }
  }
  stats->litlens[256] = 1;  /* End symbol. */

  CalculateStatistics(stats);
}

/*
Does a single run for ZopfliLZ77Optimal. For good compression, repeated runs
with updated statistics should be performed.

s: the block state
in: the input data array
instart: where to start
inend: where to stop (not inclusive)
path: pointer to dynamically allocated memory to store the path
pathsize: pointer to the size of the dynamic path array
length_array: array if size (inend - instart) used to store lengths
costmodel: function to use as the cost model for this squeeze run
costcontext: abstract context for the costmodel function
store: place to output the LZ77 data
returns the cost that was, according to the costmodel, needed to get to the end.
    This is not the actual cost.
*/
static double LZ77OptimalRun(ZopfliBlockState* s,
    const unsigned char* in, size_t instart, size_t inend,
    unsigned short** path, size_t* pathsize,
    unsigned short* length_array, CostModelFun* costmodel,
    void* costcontext, ZopfliLZ77Store* store) {
  double cost = GetBestLengths(
      s, in, instart, inend, costmodel, costcontext, length_array);
  free(*path);
  *path = 0;
  *pathsize = 0;
  TraceBackwards(inend - instart, length_array, path, pathsize);
  FollowPath(s, in, instart, inend, *path, *pathsize, store);
  assert(cost < ZOPFLI_LARGE_FLOAT);
  return cost;
}

void ZopfliLZ77Optimal(ZopfliBlockState *s,
                       const unsigned char* in, size_t instart, size_t inend,
                       ZopfliLZ77Store* store) {
  /* Dist to get to here with smallest cost. */
  size_t blocksize = inend - instart;
  unsigned short* length_array =
      (unsigned short*)malloc(sizeof(unsigned short) * (blocksize + 1));
  unsigned short* path = 0;
  size_t pathsize = 0;
  ZopfliLZ77Store currentstore;
  SymbolStats stats, beststats, laststats;
  int i;
  double cost;
  double bestcost = ZOPFLI_LARGE_FLOAT;
  double lastcost = 0;
  /* Try randomizing the costs a bit once the size stabilizes. */
  RanState ran_state;
  int lastrandomstep = -1;

  if (!length_array) exit(-1); /* Allocation failed. */

  InitRanState(&ran_state);
  InitStats(&stats);
  ZopfliInitLZ77Store(&currentstore);

  /* Do regular deflate, then loop multiple shortest path runs, each time using
  the statistics of the previous run. */

  /* Initial run. */
  ZopfliLZ77Greedy(s, in, instart, inend, &currentstore);
  GetStatistics(&currentstore, &stats);

  /* Repeat statistics with each time the cost model from the previous stat
  run. */
  for (i = 0; i < s->options->numiterations; i++) {
    ZopfliCleanLZ77Store(&currentstore);
    ZopfliInitLZ77Store(&currentstore);
    LZ77OptimalRun(s, in, instart, inend, &path, &pathsize,
                   length_array, GetCostStat, (void*)&stats,
                   &currentstore);
    cost = ZopfliCalculateBlockSize(currentstore.litlens, currentstore.dists,
                                    0, currentstore.size, 2);
    if (cost < bestcost) {
      /* Copy to the output store. */
      ZopfliCopyLZ77Store(&currentstore, store);
      CopyStats(&stats, &beststats);
      bestcost = cost;
    }
    CopyStats(&stats, &laststats);
    ClearStatFreqs(&stats);
    GetStatistics(&currentstore, &stats);
    if (lastrandomstep != -1) {
      /* This makes it converge slower but better. Do it only once the
      randomness kicks in so that if the user does few iterations, it gives a
      better result sooner. */
      AddWeighedStatFreqs(&stats, 1.0, &laststats, 0.5, &stats);
      CalculateStatistics(&stats);
    }
    if (i > 5 && cost == lastcost) {
      CopyStats(&beststats, &stats);
      RandomizeStatFreqs(&ran_state, &stats);
      CalculateStatistics(&stats);
      lastrandomstep = i;
    }
    lastcost = cost;
  }

  free(length_array);
  free(path);
  ZopfliCleanLZ77Store(&currentstore);
}

void ZopfliLZ77OptimalFixed(ZopfliBlockState *s,
                            const unsigned char* in,
                            size_t instart, size_t inend,
                            ZopfliLZ77Store* store)
{
  /* Dist to get to here with smallest cost. */
  size_t blocksize = inend - instart;
  unsigned short* length_array =
      (unsigned short*)malloc(sizeof(unsigned short) * (blocksize + 1));
  unsigned short* path = 0;
  size_t pathsize = 0;

  if (!length_array) exit(-1); /* Allocation failed. */

  s->blockstart = instart;
  s->blockend = inend;

  /* Shortest path for fixed tree This one should give the shortest possible
  result for fixed tree, no repeated runs are needed since the tree is known. */
  LZ77OptimalRun(s, in, instart, inend, &path, &pathsize,
                 length_array, GetCostFixed, 0, store);

  free(length_array);
  free(path);
}