Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
.\" $NetBSD: microseq.9,v 1.6 2017/07/03 21:28:48 wiz Exp $
.\"
.\" Copyright (c) 1998, 1999, Nicolas Souchu
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" $FreeBSD: src/share/man/man9/microseq.9,v 1.9.2.5 2001/12/17 11:30:18 ru Exp $
.\"
.Dd December 29, 2003
.Dt MICROSEQ 9
.Os
.Sh NAME
.Nm microseq
.Nd ppbus microseqencer developer's guide
.Sh SYNOPSIS
.In sys/types.h
.In dev/ppbus/ppbus_conf.h
.In dev/ppbus/ppbus_msq.h
.Sh DESCRIPTION
See
.Xr ppbus 4
for
.Nm ppbus
description and general info about the microsequencer.
.Pp
The purpose of this document is to encourage developers to use the
microsequencer mechanism in order to have:
.Bl -enum -offset indent
.It
a uniform programming model
.It
efficient code
.El
.Pp
Before using microsequences, you are encouraged to look at the
.Xr atppc 4
microsequencer implementation and an example of how using it in
.Xr vpo 4 .
.Ss PPBUS register model
.Ss Background
The parallel port model chosen for
.Xr ppbus 4
is the PC parallel port model.
Thus, any register described later has the same semantic than its
counterpart in a PC parallel port.
For more info about ISA/ECP programming, get the
Microsoft standard referenced
.Dq Tn "Extended Capabilities Port Protocol and ISA interface Standard" .
Registers described later are standard parallel port registers.
.Pp
Mask macros are defined in the standard
.Xr ppbus 4
include files for each valid bit of parallel port registers.
.Ss Data register
In compatible or nibble mode, writing to this register will drive
data to the parallel port data lines.
In any other mode, drivers may be tri-stated by setting the direction
bit (PCD) in the control register.
Reads to this register return the value on the data lines.
.Ss Device status register
This read-only register reflects the inputs on the parallel port
interface.
.Pp
.Bl -column "Bit" "Name" "Description" -compact
.It Em Bit Ta Em Name Ta Em Description
.It 7 Ta nBUSY Ta "inverted version of parallel port Busy signal"
.It 6 Ta nACK Ta "version of parallel port nAck signal"
.It 5 Ta PERROR Ta "version of parallel port PERROR signal"
.It 4 Ta SELECT Ta "version of parallel port Select signal"
.It 3 Ta nFAULT Ta "version of parallel port nFault signal"
.El
.Pp
Others are reserved and return undefined result when read.
.Ss Device control register
This register directly controls several output signals as well as
enabling some functions.
.Pp
.Bl -column "Bit" "Name    " "Description" -compact
.It Em Bit Ta Em Name Ta Em Description
.It 5 Ta PCD Ta "direction bit in extended modes"
.It 4 Ta IRQENABLE Ta "1 enables an interrupt on the rising edge of nAck"
.It 3 Ta SELECTIN Ta "inverted and driven as parallel port nSelectin signal"
.It 2 Ta nINIT Ta "driven as parallel port nInit signal"
.It 1 Ta AUTOFEED Ta "inverted and driven as parallel port nAutoFd signal"
.It 0 Ta STROBE Ta "inverted and driven as parallel port nStrobe signal"
.El
.Sh MICROINSTRUCTIONS
.Ss Description
.Em Microinstructions
are either parallel port accesses, program iterations, submicrosequence
or C calls.
The parallel port must be considered as the logical model described in
.Xr ppbus 4 .
.Pp
Available microinstructions are:
.Bd -literal
#define MS_OP_GET       0	/* get <ptr>, <len>			*/
#define MS_OP_PUT       1	/* put <ptr>, <len>			*/
#define MS_OP_RFETCH	2	/* rfetch <reg>, <mask>, <ptr>		*/
#define MS_OP_RSET	3	/* rset <reg>, <mask>, <mask>		*/
#define MS_OP_RASSERT	4	/* rassert <reg>, <mask>		*/
#define MS_OP_DELAY     5	/* delay <val>				*/
#define MS_OP_SET       6	/* set <val>				*/
#define MS_OP_DBRA      7	/* dbra <offset>			*/
#define MS_OP_BRSET     8	/* brset <mask>, <offset>		*/
#define MS_OP_BRCLEAR   9	/* brclear <mask>, <offset>		*/
#define MS_OP_RET       10	/* ret <retcode>			*/
#define MS_OP_C_CALL	11	/* c_call <function>, <parameter>	*/
#define MS_OP_PTR	12	/* ptr <pointer>			*/
#define MS_OP_ADELAY	13	/* adelay <val>				*/
#define MS_OP_BRSTAT	14	/* brstat <mask>, <mask>, <offset>	*/
#define MS_OP_SUBRET	15	/* subret <code>			*/
#define MS_OP_CALL	16	/* call <microsequence>			*/
#define MS_OP_RASSERT_P	17	/* rassert_p <iter>, <reg>		*/
#define MS_OP_RFETCH_P	18	/* rfetch_p <iter>, <reg>, <mask>	*/
#define MS_OP_TRIG	19	/* trigger <reg>, <len>, <array>	*/
.Ed
.Ss Execution context
The
.Em execution context
of microinstructions is:
.Bl -bullet -offset indent
.It
the
.Em program counter
which points to the next microinstruction to execute either in the
main microsequence or in a subcall
.It
the current value of
.Em ptr
which points to the next char to send/receive
.It
the current value of the internal
.Em branch register
.El
.Pp
This data is modified by some of the microinstructions, not all.
.Ss MS_OP_GET and MS_OP_PUT
are microinstructions used to do either predefined standard
.Tn IEEE1284-1994
transfers or programmed non-standard I/O.
.Ss MS_OP_RFETCH - Register FETCH
is used to retrieve the current value of a parallel port register,
apply a mask and save it in a buffer.
.Pp
Parameters:
.Bl -enum -offset indent
.It
register
.It
character mask
.It
pointer to the buffer
.El
.Pp
Predefined macro: MS_RFETCH(reg,mask,ptr)
.Ss MS_OP_RSET - Register SET
is used to assert/clear some bits of a particular parallel port
register, two masks are applied.
.Pp
Parameters:
.Bl -enum -offset indent
.It
register
.It
mask of bits to assert
.It
mask of bits to clear
.El
.Pp
Predefined macro: MS_RSET(reg,assert,clear)
.Ss MS_OP_RASSERT - Register ASSERT
is used to assert all bits of a particular parallel port register.
.Pp
Parameters:
.Bl -enum -offset indent
.It
register
.It
byte to assert
.El
.Pp
Predefined macro: MS_RASSERT(reg,byte)
.Ss MS_OP_DELAY - microsecond DELAY
is used to delay the execution of the microsequence.
.Pp
Parameter:
.Bl -enum -offset indent
.It
delay in microseconds
.El
.Pp
Predefined macro: MS_DELAY(delay)
.Ss MS_OP_SET - SET internal branch register
is used to set the value of the internal branch register.
.Pp
Parameter:
.Bl -enum -offset indent
.It
integer value
.El
.Pp
Predefined macro: MS_SET(accum)
.Ss MS_OP_DBRA - \&Do BRAnch
is used to branch if internal branch register decremented by one result value
is positive.
.Pp
Parameter:
.Bl -enum -offset indent
.It
integer offset in the current executed (sub)microsequence.
Offset is added to
the index of the next microinstruction to execute.
.El
.Pp
Predefined macro: MS_DBRA(offset)
.Ss MS_OP_BRSET - BRanch on SET
is used to branch if some of the status register bits of the parallel port
are set.
.Pp
Parameter:
.Bl -enum -offset indent
.It
bits of the status register
.It
integer offset in the current executed (sub)microsequence.
Offset is added to
the index of the next microinstruction to execute.
.El
.Pp
Predefined macro: MS_BRSET(mask,offset)
.Ss MS_OP_BRCLEAR - BRanch on CLEAR
is used to branch if some of the status register bits of the parallel port
are cleared.
.Pp
Parameter:
.Bl -enum -offset indent
.It
bits of the status register
.It
integer offset in the current executed (sub)microsequence.
Offset is added to the index of the next microinstruction to execute.
.El
.Pp
Predefined macro: MS_BRCLEAR(mask,offset)
.Ss MS_OP_RET - RETurn
is used to return from a microsequence.
This instruction is mandatory.
This is the only way for the microsequencer to detect the end of
the microsequence.
The return code is returned in the integer pointed by the (int *)
parameter of the ppb_MS_microseq().
.Pp
Parameter:
.Bl -enum -offset indent
.It
integer return code
.El
.Pp
Predefined macro: MS_RET(code)
.Ss MS_OP_C_CALL - C function CALL
is used to call C functions from microsequence execution.
This may be useful when a non-standard I/O is performed to retrieve
a data character from the parallel port.
.Pp
Parameter:
.Bl -enum -offset indent
.It
the C function to call
.It
the parameter to pass to the function call
.El
.Pp
The C function shall be declared as a
.Ft int(*)(void *p, char *ptr) .
The ptr parameter is the current position in the buffer currently
scanned.
.Pp
Predefined macro: MS_C_CALL(func,param)
.Ss MS_OP_PTR - initialize internal PTR
is used to initialize the internal pointer to the currently scanned
buffer.
This pointer is passed to any C call (see above).
.Pp
Parameter:
.Bl -enum -offset indent
.It
pointer to the buffer that shall be accessed by
.Fn xxx_P
microsequence calls.
Note that this pointer is automatically incremented during
.Fn xxx_P
calls.
.El
.Pp
Predefined macro: MS_PTR(ptr)
.Ss MS_OP_ADELAY - do an Asynchronous DELAY
is used to make a
.Xr cv_timedwait 9
during microsequence execution.
.Pp
Parameter:
.Bl -enum -offset indent
.It
delay in ms
.El
.Pp
Predefined macro: MS_ADELAY(delay)
.Ss MS_OP_BRSTAT - BRanch on STATe
is used to branch on status register state condition.
.Pp
Parameter:
.Bl -enum -offset indent
.It
mask of asserted bits.
Bits that shall be asserted in the status register
are set in the mask
.It
mask of cleared bits.
Bits that shall be cleared in the status register
are set in the mask
.It
integer offset in the current executed (sub)microsequence.
Offset is added
to the index of the next microinstruction to execute.
.El
.Pp
Predefined macro: MS_BRSTAT(asserted_bits,clear_bits,offset)
.Ss MS_OP_SUBRET - SUBmicrosequence RETurn
is used to return from the submicrosequence call.
This action is mandatory before a RET call.
Some microinstructions (PUT, GET) may not be callable
within a submicrosequence.
.Pp
No parameter.
.Pp
Predefined macro: MS_SUBRET()
.Ss MS_OP_CALL - submicrosequence CALL
is used to call a submicrosequence.
A submicrosequence is a microsequence with a SUBRET call.
Parameter:
.Bl -enum -offset indent
.It
the submicrosequence to execute
.El
.Pp
Predefined macro: MS_CALL(microseq)
.Ss MS_OP_RASSERT_P - Register ASSERT from internal PTR
is used to assert a register with data currently pointed by the
internal PTR pointer.
Parameter:
.Bl -enum -offset indent
.It
amount of data to write to the register
.It
register
.El
.Pp
Predefined macro: MS_RASSERT_P(iter,reg)
.Ss MS_OP_RFETCH_P - Register FETCH to internal PTR
is used to fetch data from a register.
Data is stored in the buffer currently pointed by the internal PTR
pointer.
Parameter:
.Bl -enum -offset indent
.It
amount of data to read from the register
.It
register
.It
mask applied to fetched data
.El
.Pp
Predefined macro: MS_RFETCH_P(iter,reg,mask)
.Ss MS_OP_TRIG - TRIG register
is used to trigger the parallel port.
This microinstruction is intended to provide a very efficient
control of the parallel port.
Triggering a register is writing data, wait a while, write data,
wait a while...
This allows to write magic sequences to the port.
Parameter:
.Bl -enum -offset indent
.It
amount of data to read from the register
.It
register
.It
size of the array
.It
array of unsigned chars.
Each couple of u_chars define the data to write to the register
and the delay in us to wait.
The delay is limited to 255 us to simplify and reduce the size of
the array.
.El
.Pp
Predefined macro: MS_TRIG(reg,len,array)
.Sh MICROSEQUENCES
.Ss C structures
.Bd -literal
union ppb_insarg {
     int     i;
     char    c;
     void    *p;
     int     (* f)(void *, char *);
};

struct ppb_microseq {
     int                     opcode;         /* microins. opcode */
     union ppb_insarg        arg[PPB_MS_MAXARGS];    /* arguments */
};
.Ed
.Ss Using microsequences
To instantiate a microsequence, just declare an array of ppb_microseq
structures and initialize it as needed.
You may either use predefined macros
or code directly your microinstructions according to the ppb_microseq
definition.
For example,
.Bd -literal
     struct ppb_microseq select_microseq[] = {

	     /* parameter list
	      */
	     #define SELECT_TARGET    MS_PARAM(0, 1, MS_TYP_INT)
	     #define SELECT_INITIATOR MS_PARAM(3, 1, MS_TYP_INT)

	     /* send the select command to the drive */
	     MS_DASS(MS_UNKNOWN),
	     MS_CASS(H_nAUTO | H_nSELIN |  H_INIT | H_STROBE),
	     MS_CASS( H_AUTO | H_nSELIN |  H_INIT | H_STROBE),
	     MS_DASS(MS_UNKNOWN),
	     MS_CASS( H_AUTO | H_nSELIN | H_nINIT | H_STROBE),

	     /* now, wait until the drive is ready */
	     MS_SET(VP0_SELTMO),
/* loop: */     MS_BRSET(H_ACK, 2 /* ready */),
	     MS_DBRA(-2 /* loop */),
/* error: */    MS_RET(1),
/* ready: */    MS_RET(0)
     };
.Ed
.Pp
Here, some parameters are undefined and must be filled before
executing the microsequence.
In order to initialize each microsequence, one
should use the
.Fn ppb_MS_init_msq
function like this:
.Bd -literal -offset indent
ppb_MS_init_msq(select_microseq, 2,
		SELECT_TARGET, 1 << target,
		SELECT_INITIATOR, 1 << initiator);
.Ed
.Pp
and then execute the microsequence.
.Ss The microsequencer
The microsequencer is executed either at ppbus or adapter level
(see
.Xr ppbus 4
for info about ppbus system layers).
Most of the microsequencer is executed at
.Xr atppc 4
level to avoid
.Xr ppbus 4
to adapter function call overhead.
But some actions like deciding whereas the transfer is
.Tn IEEE1284-1994
compliant are executed at
.Xr ppbus 4
layer.
.Sh SEE ALSO
.Xr atppc 4 ,
.Xr ppbus 4 ,
.Xr vpo 4
.Sh HISTORY
The
.Nm
manual page first appeared in
.Fx 3.0 .
.Sh AUTHORS
This
manual page is based on the
.Fx
.Nm microseq
manual page and was update for the
.Nx
port by
.An Gary Thorpe .
.Sh BUGS
Only one level of submicrosequences is allowed.
.Pp
When triggering the port, maximum delay allowed is 255 us.