Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*	$NetBSD: at91bus.c,v 1.25 2019/07/16 14:41:43 skrll Exp $	*/

/*
 * Copyright (c) 2007 Embedtronics Oy
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: at91bus.c,v 1.25 2019/07/16 14:41:43 skrll Exp $");

#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"
#include "locators.h"

/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE	8
#define ABT_STACK_SIZE	8
#define UND_STACK_SIZE	8

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/termios.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>

#include <arm/locore.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <arm/at91/at91var.h>
#include <arm/at91/at91busvar.h>
#include <arm/at91/at91dbgureg.h>

#include <machine/bootconfig.h>

/* console stuff: */
#ifndef	CONSPEED
#define	CONSPEED B115200
#endif

#ifndef	CONMODE
#define	CONMODE	((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif

int cnspeed = CONSPEED;
int cnmode = CONMODE;


/* kernel mapping: */
#define	KERNEL_BASE_PHYS	0x20200000
#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
#define	KERNEL_VM_SIZE		0x0C000000



/* boot configuration: */
vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_freeend_low;
vaddr_t physical_end;
u_int free_pages;

paddr_t msgbufphys;

//static struct arm32_dma_range dma_ranges[4];

#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif

#define KERNEL_PT_SYS		0	/* L2 table for mapping vectors page */

#define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
#define	KERNEL_PT_KERNEL_NUM	4
					/* L2 tables for mapping kernel VM */ 
#define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)

#define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

/* prototypes: */
void		consinit(void);
static int	at91bus_match(device_t, cfdata_t, void *);
static void	at91bus_attach(device_t, device_t, void *);
static int	at91bus_search(device_t, cfdata_t,
			       const int *, void *);
static int	at91bus_print(void *, const char *);
static int	at91bus_submatch(device_t, cfdata_t,
				 const int *, void *);


CFATTACH_DECL_NEW(at91bus, sizeof(struct at91bus_softc),
	at91bus_match, at91bus_attach, NULL, NULL);

struct at91bus_clocks at91bus_clocks = {0};
struct at91bus_softc *at91bus_sc = NULL;

#include "opt_at91types.h"

#ifdef	AT91RM9200
#include <arm/at91/at91rm9200busvar.h>
#endif

#ifdef	AT91SAM9260
#include <arm/at91/at91sam9260busvar.h>
#endif

#ifdef	AT91SAM9261
#include <arm/at91/at91sam9261busvar.h>
#endif

static const struct {
	uint32_t	cidr;
	const char *	name;
	const struct at91bus_machdep *machdep;
} at91_types[] = {
	{
		DBGU_CIDR_AT91RM9200,
		"AT91RM9200"
#ifdef	AT91RM9200
		, &at91rm9200bus
#endif
	},
	{
		DBGU_CIDR_AT91SAM9260,
		"AT91SAM9260"
#ifdef	AT91SAM9260
		, &at91sam9260bus
#endif
	},
	{
		DBGU_CIDR_AT91SAM9260,
		"AT91SAM9261"
#ifdef	AT91SAM9261
		, &at91sam9261bus
#endif
	},
	{
		DBGU_CIDR_AT91SAM9263,
		"AT91SAM9263"
	},
	{
		0,
		0,
		0
	}
};

uint32_t at91_chip_id;
static int at91_chip_ndx = -1;
struct at91bus_machdep at91bus_machdep = { 0 };
at91bus_tag_t at91bus_tag = 0;

static int
match_cid(void)
{
	uint32_t		cidr;
	int			i;

	/* get chip id */
	cidr = DBGUREG(DBGU_CIDR);
	at91_chip_id = cidr;

	/* do we know it? */
	for (i = 0; at91_types[i].name; i++) {
		if (cidr == at91_types[i].cidr)
			return i;
	}

	return -1;
}

int
at91bus_init(void)
{
	int i = at91_chip_ndx = match_cid();

	if (i < 0)
		panic("%s: unknown chip", __FUNCTION__);

	if (!at91_types[i].machdep)
		panic("%s: %s is not supported", __FUNCTION__, at91_types[i].name);

	memcpy(&at91bus_machdep, at91_types[i].machdep, sizeof(at91bus_machdep));
	at91bus_tag = &at91bus_machdep;

	return 0;
}

vaddr_t
at91bus_setup(BootConfig *mem)
{
	int loop;
	int loop1;
	u_int l1pagetable;

	consinit();

#ifdef	VERBOSE_INIT_ARM
	printf("\nNetBSD/AT91 booting ...\n");
#endif

	// setup the CPU / MMU / TLB functions:
	if (set_cpufuncs())
		panic("%s: cpu not recognized", __FUNCTION__);

#ifdef	VERBOSE_INIT_ARM
	printf("%s: configuring system...\n", __FUNCTION__);
#endif

	/*
	 * Setup the variables that define the availability of
	 * physical memory.
	 */
	physical_start = mem->dram[0].address;
	physical_end = mem->dram[0].address + mem->dram[0].pages * PAGE_SIZE;

	physical_freestart = mem->dram[0].address + 0x9000ULL;
	physical_freeend = KERNEL_BASE_PHYS;
	physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef	VERBOSE_INIT_ARM
	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
	       physical_start, physical_end - 1);
#endif

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef	VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
	       physical_freestart, free_pages, free_pages);
#endif
	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	physical_freeend -= ((np) * PAGE_SIZE);		\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	(var) = physical_freeend;			\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	/*
	 * Allocate a page for the system vectors page
	 */
	valloc_pages(systempage, 1);
	systempage.pv_va = 0x00000000;

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
	    irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
	    abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
	    undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
	    kernelstack.pv_va); 
#endif

	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * Ok we have allocated physical pages for the primary kernel
	 * page tables.  Save physical_freeend for when we give whats left 
	 * of memory below 2Mbyte to UVM.
	 */

	physical_freeend_low = physical_freeend;

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]);
	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

	/* Now we fill in the L2 pagetable for the kernel static code/data */
	{
		extern char etext[], _end[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		u_int logical;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;

		logical = KERNEL_BASE_PHYS - mem->dram[0].address;	/* offset of kernel in RAM */
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}

#ifdef VERBOSE_INIT_ARM
	printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
		       VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	/* Map the statically mapped devices. */
	pmap_devmap_bootstrap(l1pagetable, at91_devmap());

	/*
	 * Update the physical_freestart/physical_freeend/free_pages
	 * variables.
	 */
	{
		extern char _end[];

		physical_freestart = physical_start +
		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
		     KERNEL_BASE);
		physical_freeend = physical_end;
		free_pages =
		    (physical_freeend - physical_freestart) / PAGE_SIZE;
	}

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/* Switch tables */
#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
	       physical_freestart, free_pages, free_pages);
	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
	printf("done!\n");
#endif

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

	/* @@@@ check this out: @@@ */
	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_md_init();
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);
	uvm_page_physload(atop(physical_start), atop(physical_freeend_low),
	    atop(physical_start), atop(physical_freeend_low),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

	/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
	printf("irq ");
#endif
	at91_intr_init();

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef BOOTHOWTO
	boothowto = BOOTHOWTO;
#endif
	boothowto = AB_VERBOSE | AB_DEBUG; // @@@@

#ifdef DDB
	db_machine_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif
#if 0
	printf("test data abort...\n");
	*((volatile uint32_t*)(0x1234567F)) = 0xdeadbeef;
#endif

#ifdef VERBOSE_INIT_ARM
  	printf("%s: returning new stack pointer 0x%lX\n", __FUNCTION__, (kernelstack.pv_va + USPACE_SVC_STACK_TOP));
#endif

	/* We return the new stack pointer address */
	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}

static int
at91bus_match(device_t parent, cfdata_t match, void *aux)
{
	// we could detect the device here...
	if (strcmp(match->cf_name, "at91bus") == 0)
		return 1;
	return 0;
}

static device_t
at91bus_found(device_t self, bus_addr_t addr, int pid)
{
	int locs[AT91BUSCF_NLOCS];
	struct at91bus_attach_args sa;
	struct at91bus_softc *sc;

	memset(&locs, 0, sizeof(locs));
	memset(&sa, 0, sizeof(sa));

	locs[AT91BUSCF_ADDR] = addr;
	locs[AT91BUSCF_PID]  = pid;

	sc = device_private(self);
	sa.sa_iot = sc->sc_iot;
	sa.sa_dmat = sc->sc_dmat;
	sa.sa_addr = addr;
	sa.sa_size = 1;
	sa.sa_pid = pid;

	return config_found_sm_loc(self, "at91bus", locs, &sa,
				   at91bus_print, at91bus_submatch);
}

static void
at91bus_attach(device_t parent, device_t self, void *aux)
{
	struct at91bus_softc	*sc;

	if (at91_chip_ndx < 0)
		panic("%s: at91bus_init() has not been called!", __FUNCTION__);

	sc = device_private(self);

        /* initialize bus space and bus dma things... */
	sc->sc_iot = &at91_bs_tag;
        sc->sc_dmat = at91_bus_dma_init(&at91_bd_tag);

	if (at91bus_sc == NULL)
		at91bus_sc = sc;

	printf(": %s, sclk %u.%03u kHz, mclk %u.%03u MHz, pclk %u.%03u MHz, mstclk %u.%03u, plla %u.%03u, pllb %u.%03u MHz\n",
	       at91_types[at91_chip_ndx].name,
	       AT91_SCLK / 1000U, AT91_SCLK % 1000U,
	       AT91_MCLK / 1000000U, (AT91_MCLK / 1000U) % 1000U,
	       AT91_PCLK / 1000000U, (AT91_PCLK / 1000U) % 1000U,
	       AT91_MSTCLK / 1000000U, (AT91_MSTCLK / 1000U) % 1000U,
	       AT91_PLLACLK / 1000000U, (AT91_PLLACLK / 1000U) % 1000U,
	       AT91_PLLBCLK / 1000000U, (AT91_PLLBCLK / 1000U) % 1000U);

	/*
	 *  Attach devices 
	 */
	at91_search_peripherals(self, at91bus_found);

	
	struct at91bus_attach_args sa;
	memset(&sa, 0, sizeof(sa));
	sa.sa_iot = sc->sc_iot;
	sa.sa_dmat = sc->sc_dmat;
	config_search_ia(at91bus_search, self, "at91bus", &sa);
}

int
at91bus_submatch(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
	struct at91bus_attach_args *sa = aux;

	if (cf->cf_loc[AT91BUSCF_ADDR] == ldesc[AT91BUSCF_ADDR]
	    && cf->cf_loc[AT91BUSCF_PID] == ldesc[AT91BUSCF_PID]) {
		sa->sa_addr = cf->cf_loc[AT91BUSCF_ADDR];
		sa->sa_size = cf->cf_loc[AT91BUSCF_SIZE];
		sa->sa_pid  = cf->cf_loc[AT91BUSCF_PID];
		return (config_match(parent, cf, aux));
	} else
		return (0);
}

int
at91bus_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
	struct at91bus_attach_args *sa = aux;

	sa->sa_addr = cf->cf_loc[AT91BUSCF_ADDR];
	sa->sa_size = cf->cf_loc[AT91BUSCF_SIZE];
	sa->sa_pid  = cf->cf_loc[AT91BUSCF_PID];

	if (config_match(parent, cf, aux) > 0)
		config_attach(parent, cf, aux, at91bus_print);

	return (0);
}

static int
at91bus_print(void *aux, const char *name)
{
        struct at91bus_attach_args *sa = (struct at91bus_attach_args*)aux;

	if (name)
		aprint_normal("%s at %s", sa->sa_pid >= 0 ? at91_peripheral_name(sa->sa_pid) : "device", name);

	if (sa->sa_size)
		aprint_normal(" at addr 0x%lx", sa->sa_addr);
	if (sa->sa_size > 1)
		aprint_normal("-0x%lx", sa->sa_addr + sa->sa_size - 1);
	if (sa->sa_pid >= 0)
		aprint_normal(" pid %d", sa->sa_pid);

	return (UNCONF);
}

void	consinit(void)
{
	static int consinit_called;

	if (consinit_called != 0)
		return;

	consinit_called = 1;

	if (at91_chip_ndx < 0)
		panic("%s: at91_init() has not been called!", __FUNCTION__);

	// call machine specific bus initialization code
	(*at91bus_tag->init)(&at91bus_clocks);

	// attach console
	(*at91bus_tag->attach_cn)(&at91_bs_tag, cnspeed, cnmode);
}