/* $NetBSD: at91bus.c,v 1.25 2019/07/16 14:41:43 skrll Exp $ */
/*
* Copyright (c) 2007 Embedtronics Oy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: at91bus.c,v 1.25 2019/07/16 14:41:43 skrll Exp $");
#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"
#include "locators.h"
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 8
#define ABT_STACK_SIZE 8
#define UND_STACK_SIZE 8
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/termios.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <arm/locore.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/at91/at91var.h>
#include <arm/at91/at91busvar.h>
#include <arm/at91/at91dbgureg.h>
#include <machine/bootconfig.h>
/* console stuff: */
#ifndef CONSPEED
#define CONSPEED B115200
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int cnspeed = CONSPEED;
int cnmode = CONMODE;
/* kernel mapping: */
#define KERNEL_BASE_PHYS 0x20200000
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
#define KERNEL_VM_SIZE 0x0C000000
/* boot configuration: */
vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_freeend_low;
vaddr_t physical_end;
u_int free_pages;
paddr_t msgbufphys;
//static struct arm32_dma_range dma_ranges[4];
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */
#define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 4
/* L2 tables for mapping kernel VM */
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
/* prototypes: */
void consinit(void);
static int at91bus_match(device_t, cfdata_t, void *);
static void at91bus_attach(device_t, device_t, void *);
static int at91bus_search(device_t, cfdata_t,
const int *, void *);
static int at91bus_print(void *, const char *);
static int at91bus_submatch(device_t, cfdata_t,
const int *, void *);
CFATTACH_DECL_NEW(at91bus, sizeof(struct at91bus_softc),
at91bus_match, at91bus_attach, NULL, NULL);
struct at91bus_clocks at91bus_clocks = {0};
struct at91bus_softc *at91bus_sc = NULL;
#include "opt_at91types.h"
#ifdef AT91RM9200
#include <arm/at91/at91rm9200busvar.h>
#endif
#ifdef AT91SAM9260
#include <arm/at91/at91sam9260busvar.h>
#endif
#ifdef AT91SAM9261
#include <arm/at91/at91sam9261busvar.h>
#endif
static const struct {
uint32_t cidr;
const char * name;
const struct at91bus_machdep *machdep;
} at91_types[] = {
{
DBGU_CIDR_AT91RM9200,
"AT91RM9200"
#ifdef AT91RM9200
, &at91rm9200bus
#endif
},
{
DBGU_CIDR_AT91SAM9260,
"AT91SAM9260"
#ifdef AT91SAM9260
, &at91sam9260bus
#endif
},
{
DBGU_CIDR_AT91SAM9260,
"AT91SAM9261"
#ifdef AT91SAM9261
, &at91sam9261bus
#endif
},
{
DBGU_CIDR_AT91SAM9263,
"AT91SAM9263"
},
{
0,
0,
0
}
};
uint32_t at91_chip_id;
static int at91_chip_ndx = -1;
struct at91bus_machdep at91bus_machdep = { 0 };
at91bus_tag_t at91bus_tag = 0;
static int
match_cid(void)
{
uint32_t cidr;
int i;
/* get chip id */
cidr = DBGUREG(DBGU_CIDR);
at91_chip_id = cidr;
/* do we know it? */
for (i = 0; at91_types[i].name; i++) {
if (cidr == at91_types[i].cidr)
return i;
}
return -1;
}
int
at91bus_init(void)
{
int i = at91_chip_ndx = match_cid();
if (i < 0)
panic("%s: unknown chip", __FUNCTION__);
if (!at91_types[i].machdep)
panic("%s: %s is not supported", __FUNCTION__, at91_types[i].name);
memcpy(&at91bus_machdep, at91_types[i].machdep, sizeof(at91bus_machdep));
at91bus_tag = &at91bus_machdep;
return 0;
}
vaddr_t
at91bus_setup(BootConfig *mem)
{
int loop;
int loop1;
u_int l1pagetable;
consinit();
#ifdef VERBOSE_INIT_ARM
printf("\nNetBSD/AT91 booting ...\n");
#endif
// setup the CPU / MMU / TLB functions:
if (set_cpufuncs())
panic("%s: cpu not recognized", __FUNCTION__);
#ifdef VERBOSE_INIT_ARM
printf("%s: configuring system...\n", __FUNCTION__);
#endif
/*
* Setup the variables that define the availability of
* physical memory.
*/
physical_start = mem->dram[0].address;
physical_end = mem->dram[0].address + mem->dram[0].pages * PAGE_SIZE;
physical_freestart = mem->dram[0].address + 0x9000ULL;
physical_freeend = KERNEL_BASE_PHYS;
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system vectors page
*/
valloc_pages(systempage, 1);
systempage.pv_va = 0x00000000;
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables. Save physical_freeend for when we give whats left
* of memory below 2Mbyte to UVM.
*/
physical_freeend_low = physical_freeend;
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = KERNEL_BASE_PHYS - mem->dram[0].address; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the statically mapped devices. */
pmap_devmap_bootstrap(l1pagetable, at91_devmap());
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
extern char _end[];
physical_freestart = physical_start +
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
}
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
cpu_setttb(kernel_l1pt.pv_pa, true);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("done!\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
/* @@@@ check this out: @@@ */
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_md_init();
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
uvm_page_physload(atop(physical_start), atop(physical_freeend_low),
atop(physical_start), atop(physical_freeend_low),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
printf("irq ");
#endif
at91_intr_init();
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef BOOTHOWTO
boothowto = BOOTHOWTO;
#endif
boothowto = AB_VERBOSE | AB_DEBUG; // @@@@
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif
#if 0
printf("test data abort...\n");
*((volatile uint32_t*)(0x1234567F)) = 0xdeadbeef;
#endif
#ifdef VERBOSE_INIT_ARM
printf("%s: returning new stack pointer 0x%lX\n", __FUNCTION__, (kernelstack.pv_va + USPACE_SVC_STACK_TOP));
#endif
/* We return the new stack pointer address */
return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}
static int
at91bus_match(device_t parent, cfdata_t match, void *aux)
{
// we could detect the device here...
if (strcmp(match->cf_name, "at91bus") == 0)
return 1;
return 0;
}
static device_t
at91bus_found(device_t self, bus_addr_t addr, int pid)
{
int locs[AT91BUSCF_NLOCS];
struct at91bus_attach_args sa;
struct at91bus_softc *sc;
memset(&locs, 0, sizeof(locs));
memset(&sa, 0, sizeof(sa));
locs[AT91BUSCF_ADDR] = addr;
locs[AT91BUSCF_PID] = pid;
sc = device_private(self);
sa.sa_iot = sc->sc_iot;
sa.sa_dmat = sc->sc_dmat;
sa.sa_addr = addr;
sa.sa_size = 1;
sa.sa_pid = pid;
return config_found_sm_loc(self, "at91bus", locs, &sa,
at91bus_print, at91bus_submatch);
}
static void
at91bus_attach(device_t parent, device_t self, void *aux)
{
struct at91bus_softc *sc;
if (at91_chip_ndx < 0)
panic("%s: at91bus_init() has not been called!", __FUNCTION__);
sc = device_private(self);
/* initialize bus space and bus dma things... */
sc->sc_iot = &at91_bs_tag;
sc->sc_dmat = at91_bus_dma_init(&at91_bd_tag);
if (at91bus_sc == NULL)
at91bus_sc = sc;
printf(": %s, sclk %u.%03u kHz, mclk %u.%03u MHz, pclk %u.%03u MHz, mstclk %u.%03u, plla %u.%03u, pllb %u.%03u MHz\n",
at91_types[at91_chip_ndx].name,
AT91_SCLK / 1000U, AT91_SCLK % 1000U,
AT91_MCLK / 1000000U, (AT91_MCLK / 1000U) % 1000U,
AT91_PCLK / 1000000U, (AT91_PCLK / 1000U) % 1000U,
AT91_MSTCLK / 1000000U, (AT91_MSTCLK / 1000U) % 1000U,
AT91_PLLACLK / 1000000U, (AT91_PLLACLK / 1000U) % 1000U,
AT91_PLLBCLK / 1000000U, (AT91_PLLBCLK / 1000U) % 1000U);
/*
* Attach devices
*/
at91_search_peripherals(self, at91bus_found);
struct at91bus_attach_args sa;
memset(&sa, 0, sizeof(sa));
sa.sa_iot = sc->sc_iot;
sa.sa_dmat = sc->sc_dmat;
config_search_ia(at91bus_search, self, "at91bus", &sa);
}
int
at91bus_submatch(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
struct at91bus_attach_args *sa = aux;
if (cf->cf_loc[AT91BUSCF_ADDR] == ldesc[AT91BUSCF_ADDR]
&& cf->cf_loc[AT91BUSCF_PID] == ldesc[AT91BUSCF_PID]) {
sa->sa_addr = cf->cf_loc[AT91BUSCF_ADDR];
sa->sa_size = cf->cf_loc[AT91BUSCF_SIZE];
sa->sa_pid = cf->cf_loc[AT91BUSCF_PID];
return (config_match(parent, cf, aux));
} else
return (0);
}
int
at91bus_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
struct at91bus_attach_args *sa = aux;
sa->sa_addr = cf->cf_loc[AT91BUSCF_ADDR];
sa->sa_size = cf->cf_loc[AT91BUSCF_SIZE];
sa->sa_pid = cf->cf_loc[AT91BUSCF_PID];
if (config_match(parent, cf, aux) > 0)
config_attach(parent, cf, aux, at91bus_print);
return (0);
}
static int
at91bus_print(void *aux, const char *name)
{
struct at91bus_attach_args *sa = (struct at91bus_attach_args*)aux;
if (name)
aprint_normal("%s at %s", sa->sa_pid >= 0 ? at91_peripheral_name(sa->sa_pid) : "device", name);
if (sa->sa_size)
aprint_normal(" at addr 0x%lx", sa->sa_addr);
if (sa->sa_size > 1)
aprint_normal("-0x%lx", sa->sa_addr + sa->sa_size - 1);
if (sa->sa_pid >= 0)
aprint_normal(" pid %d", sa->sa_pid);
return (UNCONF);
}
void consinit(void)
{
static int consinit_called;
if (consinit_called != 0)
return;
consinit_called = 1;
if (at91_chip_ndx < 0)
panic("%s: at91_init() has not been called!", __FUNCTION__);
// call machine specific bus initialization code
(*at91bus_tag->init)(&at91bus_clocks);
// attach console
(*at91bus_tag->attach_cn)(&at91_bs_tag, cnspeed, cnmode);
}