Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/* $NetBSD: dm9000.c,v 1.3 2017/03/29 09:04:35 msaitoh Exp $ */

/*-
 * Copyright (c) 2012 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tohru Nishimura.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>

#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>

/*
 * This DM9000 is wired as a 16bit device and manages Tx/Rx SRAM buffer
 * in 16bit quantity.  MRCMD/MWCMD access increments buffer pointer
 * by two regardless of r/w size.  Mixing 16/8bit access is not possible.
 * Byte read would end up with loosing every odd indexed datum.
 *
 * The DM9000 CMD pin is tied with SoC LADDR2 address line.  SA9-SA4
 * pins are hardwired to fixed decoding 0x300.  Thus address [26:3] in
 * CS4 range 0x2000'0000 are don't-care bits to manipulate the chip.
 * The DM9000 INDEX port is accessed at the address b'000 while the
 * DATA port at the address b'100.
 *
 * This code assumes Little endian CPU.
 */

#define NCR	0x00		/* control */
#define  NCR_FDX	(1<<3)	/* FDX link detection report */
#define  NCR_RST	(1<<0)	/* instruct reset, goes 0 at done */
#define NSR	0x01		/* status */
#define  NSR_SPEED	(1<<7)	/* 1->100M, 0->10M, when link is up */
#define  NSR_LINKST	(1<<6)	/* 1->linkup, 0->linkdown */
#define  NSR_TX2END	(1<<3)	/* Tx frame #2 completed */
#define  NSR_TX1END	(1<<2)	/* Tx frame #1 completed */
#define  NSR_RXOV	(1<<1)	/* Rx FIFO overflow detected */
#define TCR	0x02		/* Tx control */
#define  TCR_TXREQ	0x01	/* request to start transmit, goes 0 at done */
#define TCR2	0x2d		/* Tx control #2 */
#define  TCR2_ONEPM	0x10	/* send single Tx frame at a time */
#define RCR	0x05		/* Rx control */
#define  RCR_WTDIS	0x40	/* disable frame receipt watchdog timer */
#define  RCR_DIS_LONG	0x20	/* discard too-long Rx frame */
#define  RCR_DIS_CRC	0x10	/* discard CRC error Rx frame */
#define  RCR_ALL	0x08	/* accept MCAST frames */
#define  RCR_RUNT	0x04	/* accept runt Rx frame */
#define  RCR_PRMSC	0x02	/* promiscous */
#define  RCR_RXEN	0x01	/* enable frame reception */
#define RSR	0x06		/* RX status */
#define  RSR_MF		(1<<6)	/* bcast/mcast frame found */
#define FCR	0x0a		/* flow control */
#define  FCR_FLCE	0x01	/* enable Tx/Rx flow control */
#define EPCR	0x0b		/* EEPROM and PHY control */
#define  EP_EPOS	(1<<3)	/* 1 for PHY op, 0 for EEPROM op */
#define  EP_ERPRR	(1<<2)	/* instruct to start read op */
#define  EP_ERPRW	(1<<1)	/* instruct to start write op */
#define  EP_ERRE	(1<<0)	/* 1 while operation is in progress */
#define EPAR	0x0c		/* [7:6] for PHY#, [5:0] for addr */
#define EPDRL	0x0d		/* EEPROM/PHY data low byte */
#define EPDRH	0x0e		/* EEPROM/PHY data high byte */
#define PAR	0x10		/* station address */
#define MAR	0x16		/* multicast filter hash value */
#define GPR	0x1f		/* gpio control */
#define  GPR_PHYPWROFF	0x01	/* powerdown internal PHY */
#define VID0	0x28		/* vendor ID low byte */
#define VID1	0x29		/* vendor ID high byte */
#define PID0	0x2a		/* product ID low byte */
#define PID1	0x2b		/* product ID high byte */
#define CHIPR	0x2c		/* chip revision */
#define MRCMDX	0xf0		/* read data w/o pointer incr */
#define MRCMD	0xf2		/* read data with pointer auto incr */
#define MWCMD	0xf8		/* write data with pointer auto incr */
#define TXPLL	0xfc		/* Tx frame length low byte */
#define TXPLH	0xfd		/* Tx frame length high byte */
#define ISR	0xfe		/* interrupt status report */
#define  ISR_LNKCHG	0x20	/* link status change detected */
#define  ISR_UDRUN	0x10	/* transmit underrun detected */
#define  ISR_PTM	(1<<1)	/* frame Tx completed */
#define  ISR_PRS	(1<<0)	/* frame Rx completed */
#define IMR	0xff		/* interrupt mask */
#define  IMR_PAR	(1<<7)	/* use 3/13K SRAM partitioning with autowrap */
#define  IMR_PRM	(1<<0)	/* post interrupt when Rx completed */

#ifndef DM9000MAC
#define DM9000MAC 0x08,0x08,0x11,0x18,0x12,0x27
#endif

struct local {
	unsigned int csr;
	unsigned int phy, bmsr, anlpar;
	uint8_t en[6];
};

static struct local dm9000local;

int dm9k_match(unsigned int, void *);
void *dm9k_init(unsigned int, void *);
int dm9k_send(void *, char *, unsigned int);
int dm9k_recv(void *, char *, unsigned int, unsigned int);

static unsigned mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_dealan(struct local *, unsigned int);

extern void usleep(int);

static inline int
CSR_READ_1(struct local *l, int reg)
{
	*(volatile uint8_t *)(l->csr) = reg;
	return *(volatile uint8_t*)(l->csr + 4);
}

static inline int
CSR_READ_2(struct local *l, int reg)
{
	*(volatile uint8_t *)(l->csr) = reg;
	return *(volatile uint16_t *)(l->csr + 4);
}

static inline void
CSR_WRITE_1(struct local *l, int reg, int data)
{
	*(volatile uint8_t *)(l->csr) = reg;
	*(volatile uint8_t *)(l->csr + 4) = data;
}

static inline void
CSR_WRITE_2(struct local *l, int reg, int data)
{
	*(volatile uint8_t *)(l->csr) = reg;
	*(volatile uint16_t *)(l->csr + 4) = data;
}

int
dm9k_match(unsigned int tag, void *aux)
{
	struct local *l = &dm9000local;
	uint8_t *en = aux;
	uint8_t std[6] = { DM9000MAC };
	int val;

	l->csr = 0x20000000;
	val =  CSR_READ_1(l, PID0);
	val |= CSR_READ_1(l, PID1) << 8;
	val |= CSR_READ_1(l, VID0) << 16;
	val |= CSR_READ_1(l, VID1) << 24;
	if (val != 0x0a469000) {
		printf("DM9000 not found at 0x%x\n", l->csr);
		return 0;
	}
	if (en != NULL
	    && en[0] && en[1] && en[2] && en[3] && en[4] && en[5])
		memcpy(l->en, en, 6);
	else if (en != NULL) {
		memcpy(en, std, 6);
		memcpy(l->en, std, 6);
	}
	return 1;
}

void *
dm9k_init(unsigned int tag, void *aux)
{
	struct local *l = &dm9000local;
	uint8_t *en = l->en;
	unsigned int val, fdx;

	val = CSR_READ_1(l, CHIPR);
	printf("DM9000 rev. %#x", val);
	val = CSR_READ_1(l, ISR);
	printf(", %d bit mode\n", (val & 1<<7) ? 8 : 16);

	CSR_WRITE_1(l, NCR, 0);	/* use internal PHY */
	l->phy = 1;

	/* force PHY poweroff */
	CSR_WRITE_1(l, GPR, GPR_PHYPWROFF);

	CSR_WRITE_1(l, IMR, 0);
	CSR_WRITE_1(l, TCR, 0);
	CSR_WRITE_1(l, RCR, 0);

	/* SW reset */
	CSR_WRITE_1(l, NCR, NCR_RST);
	do {
		usleep(1);
	} while (NCR_RST & CSR_READ_1(l, NCR));

	/* negate PHY poweroff condition */
	CSR_WRITE_1(l, GPR, 0);

	/* SW reset, again */
	CSR_WRITE_1(l, NCR, NCR_RST);
	do {
		usleep(1);
	} while (NCR_RST & CSR_READ_1(l, NCR));

	/* clear NSR bits */
	(void) CSR_READ_1(l, NSR);

	printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
	       en[0], en[1], en[2], en[3], en[4], en[5]);
	CSR_WRITE_1(l, PAR + 0, en[0]);
	CSR_WRITE_1(l, PAR + 1, en[1]);
	CSR_WRITE_1(l, PAR + 2, en[2]);
	CSR_WRITE_1(l, PAR + 3, en[3]);
	CSR_WRITE_1(l, PAR + 4, en[4]);
	CSR_WRITE_1(l, PAR + 5, en[5]);

	/* make sure not to receive bcast/mcast frames */
	CSR_WRITE_1(l, MAR + 0, 0);
	CSR_WRITE_1(l, MAR + 1, 0);
	CSR_WRITE_1(l, MAR + 2, 0);
	CSR_WRITE_1(l, MAR + 3, 0);
	CSR_WRITE_1(l, MAR + 4, 0);
	CSR_WRITE_1(l, MAR + 5, 0);
	CSR_WRITE_1(l, MAR + 6, 0);
	CSR_WRITE_1(l, MAR + 7, 0);

	/* perform link auto-negotiation */
	printf("waiting for linkup ... ");
	mii_dealan(l, 5);

	val = CSR_READ_1(l, NSR);
	if ((val & NSR_LINKST) == 0) {
		printf("failed; cable problem?\n");
		return NULL;
	}

	/*
	 * speed and duplexity can be seen in MII 17.
	 *  bit15 100Mbps-FDX
	 *  bit14 100Mbps
	 *  bit13 10Mbps-FDX
	 *  bit12 10Mbps
	 * also available in NSR[SPEED] and NCR[FDX] respectively.
	 */
	val = mii_read(l, l->phy, 17);
	if (val & (03 << 14))
		printf("100Mbps");
	if (val & (03 << 12))
		printf("10Mbps");
	fdx = !!(val & (05 << 13));
	if (fdx) {
		printf("-FDX");
		val = CSR_READ_1(l, FCR);
		CSR_WRITE_1(l, FCR, val | FCR_FLCE);
	}
	printf("\n");

	CSR_WRITE_1(l, NSR, ~0);
	CSR_WRITE_1(l, ISR, ~0);

	/*
	 * - send one frame at a time.
	 * - disable Rx watchdog timer, discard too-long/CRC error frames.
	 * - 3/13K SRAM partitioning, r/w pointer autowrap.
	 */
	CSR_WRITE_1(l, TCR2, TCR2_ONEPM); 
	CSR_WRITE_1(l, RCR, RCR_RXEN | RCR_WTDIS | RCR_DIS_LONG | RCR_DIS_CRC);
	CSR_WRITE_1(l, IMR, IMR_PAR);

	memcpy(aux, l->en, 6);
	return l;
}

int
dm9k_send(void *dev, char *buf, unsigned int len)
{
	struct local *l = dev;
	unsigned int val, cnt, bound;

	if (len > 1520) {
		printf("dm9k_send: len > 1520 (%u)\n", len);
		len = 1520;
	}

	CSR_WRITE_1(l, ISR, ISR_PTM); /* clear ISR Tx complete bit */
	for (cnt = 0; cnt < len; cnt += 2) {
		val = (buf[1] << 8) | buf[0];
		CSR_WRITE_2(l, MWCMD, val);
		buf += 2;
	}
	CSR_WRITE_1(l, TXPLL, len);
	CSR_WRITE_1(l, TXPLH, len >> 8);
	CSR_WRITE_1(l, TCR, TCR_TXREQ);	/* request to transmit */

	bound = getsecs() + 1;
	do {
		val = CSR_READ_1(l, TCR);
		if ((val & TCR_TXREQ) == 0)
			goto done;
	} while (getsecs() < bound);
	printf("xmit failed\n");
	return -1;
  done:
	return len;
}

int
dm9k_recv(void *dev, char *buf, unsigned int maxlen, unsigned int timo)
{
	struct local *l = dev;
	unsigned int bound, val, mark, stat, len, upto, cnt;
	char *ptr;

	bound = getsecs() + timo; /* second */
  again:
	do {
		/* wait for Rx completion */
		val = CSR_READ_1(l, ISR);
		if (val & ISR_PRS)
			goto gotone;
		/* usleep(10); this makes a stuck in mid transfer */
	} while (getsecs() < bound);
	printf("receive timeout (%d seconds wait)\n", timo);
	errno = 0;
	return -1;
  gotone:
	CSR_WRITE_1(l, ISR, ISR_PRS); /* clear ISR Rx complete bit */
	(void) CSR_READ_2(l, MRCMDX); /* dummy read */
	mark = CSR_READ_2(l, MRCMDX); /* mark in [7:0] */
	if ((mark & 03) != 01) {
		stat = CSR_READ_1(l, RSR);
		printf("dm9k_recv: mark %x, RSR %x\n", mark, stat);
		/* XXX got hosed, need full scale reinitialise XXX */
		goto again;
	}

	stat = CSR_READ_2(l, MRCMD); /* stat in [15:8] */
	len  = CSR_READ_2(l, MRCMD);

	/* should not happen, make sure to discard bcast/mcast frames */
	if (stat & (RSR_MF<<8)) {
		for (cnt = 0; cnt < len; cnt += 2)
			(void) CSR_READ_2(l, MRCMD);
		printf("bcast/mcast frame, len = %d\n", len);
		goto again;
	}

	upto = len - 4;	/* HASFCS */
	if (upto > maxlen)
		upto = maxlen;
	ptr = buf;
	for (cnt = 0; cnt < upto; cnt += 2) {
		val = CSR_READ_2(l, MRCMD);
		ptr[0] = val;
		ptr[1] = val >> 8;
		ptr += 2;
	}
	/* discard trailing bytes */
	for (; cnt < len; cnt += 2)
		(void) CSR_READ_2(l, MRCMD);

	return upto;
}

static unsigned int
mii_read(struct local *l, int phy, int reg)
{
	int v;

	CSR_WRITE_1(l, EPAR, phy << 6 | reg);
	CSR_WRITE_1(l, EPCR, EP_EPOS | EP_ERPRR);
	do {
		v = CSR_READ_1(l, EPCR);
	} while (v & EP_ERRE);
	CSR_WRITE_1(l, EPCR, 0);
	v = (CSR_READ_1(l, EPDRH) << 8) | CSR_READ_1(l, EPDRL);
	return v;
}

static void
mii_write(struct local *l, int phy, int reg, int data)
{
	int v;

	CSR_WRITE_1(l, EPAR, phy << 6 | reg);
	CSR_WRITE_1(l, EPDRL, data);
	CSR_WRITE_1(l, EPDRH, data >> 8);
	CSR_WRITE_1(l, EPCR, EP_EPOS | EP_ERPRW);
	do {
		v = CSR_READ_1(l, EPCR);
	} while (v & EP_ERRE);
	CSR_WRITE_1(l, EPCR, 0);
}

#define MII_BMCR	0x00	/* Basic mode control register (rw) */
#define  BMCR_RESET	0x8000	/* reset */
#define  BMCR_AUTOEN	0x1000	/* autonegotiation enable */
#define  BMCR_ISO	0x0400	/* isolate */
#define  BMCR_STARTNEG	0x0200	/* restart autonegotiation */
#define MII_BMSR	0x01	/* Basic mode status register (ro) */
#define  BMSR_ACOMP	0x0020	/* Autonegotiation complete */
#define  BMSR_LINK	0x0004	/* Link status */
#define MII_ANAR	0x04	/* Autonegotiation advertisement (rw) */
#define  ANAR_FC	0x0400	/* local device supports PAUSE */
#define  ANAR_TX_FD	0x0100	/* local device supports 100bTx FD */
#define  ANAR_TX	0x0080	/* local device supports 100bTx */
#define  ANAR_10_FD	0x0040	/* local device supports 10bT FD */
#define  ANAR_10	0x0020	/* local device supports 10bT */
#define  ANAR_CSMA	0x0001	/* protocol selector CSMA/CD */
#define MII_ANLPAR	0x05	/* Autonegotiation lnk partner abilities (rw) */

static void
mii_dealan(struct local *l, unsigned int timo)
{
	unsigned int bound;

	mii_write(l, l->phy, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
	    ANAR_10 | ANAR_CSMA | ANAR_FC);
	mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
	l->anlpar = 0;
	bound = getsecs() + timo;
	do {
		l->bmsr = mii_read(l, l->phy, MII_BMSR) |
		   mii_read(l, l->phy, MII_BMSR); /* read twice */
		if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
			l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
			break;
		}
		usleep(10 * 1000);
	} while (getsecs() < bound);
	return;
}