/* $NetBSD: dm9000.c,v 1.3 2017/03/29 09:04:35 msaitoh Exp $ */
/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>
/*
* This DM9000 is wired as a 16bit device and manages Tx/Rx SRAM buffer
* in 16bit quantity. MRCMD/MWCMD access increments buffer pointer
* by two regardless of r/w size. Mixing 16/8bit access is not possible.
* Byte read would end up with loosing every odd indexed datum.
*
* The DM9000 CMD pin is tied with SoC LADDR2 address line. SA9-SA4
* pins are hardwired to fixed decoding 0x300. Thus address [26:3] in
* CS4 range 0x2000'0000 are don't-care bits to manipulate the chip.
* The DM9000 INDEX port is accessed at the address b'000 while the
* DATA port at the address b'100.
*
* This code assumes Little endian CPU.
*/
#define NCR 0x00 /* control */
#define NCR_FDX (1<<3) /* FDX link detection report */
#define NCR_RST (1<<0) /* instruct reset, goes 0 at done */
#define NSR 0x01 /* status */
#define NSR_SPEED (1<<7) /* 1->100M, 0->10M, when link is up */
#define NSR_LINKST (1<<6) /* 1->linkup, 0->linkdown */
#define NSR_TX2END (1<<3) /* Tx frame #2 completed */
#define NSR_TX1END (1<<2) /* Tx frame #1 completed */
#define NSR_RXOV (1<<1) /* Rx FIFO overflow detected */
#define TCR 0x02 /* Tx control */
#define TCR_TXREQ 0x01 /* request to start transmit, goes 0 at done */
#define TCR2 0x2d /* Tx control #2 */
#define TCR2_ONEPM 0x10 /* send single Tx frame at a time */
#define RCR 0x05 /* Rx control */
#define RCR_WTDIS 0x40 /* disable frame receipt watchdog timer */
#define RCR_DIS_LONG 0x20 /* discard too-long Rx frame */
#define RCR_DIS_CRC 0x10 /* discard CRC error Rx frame */
#define RCR_ALL 0x08 /* accept MCAST frames */
#define RCR_RUNT 0x04 /* accept runt Rx frame */
#define RCR_PRMSC 0x02 /* promiscous */
#define RCR_RXEN 0x01 /* enable frame reception */
#define RSR 0x06 /* RX status */
#define RSR_MF (1<<6) /* bcast/mcast frame found */
#define FCR 0x0a /* flow control */
#define FCR_FLCE 0x01 /* enable Tx/Rx flow control */
#define EPCR 0x0b /* EEPROM and PHY control */
#define EP_EPOS (1<<3) /* 1 for PHY op, 0 for EEPROM op */
#define EP_ERPRR (1<<2) /* instruct to start read op */
#define EP_ERPRW (1<<1) /* instruct to start write op */
#define EP_ERRE (1<<0) /* 1 while operation is in progress */
#define EPAR 0x0c /* [7:6] for PHY#, [5:0] for addr */
#define EPDRL 0x0d /* EEPROM/PHY data low byte */
#define EPDRH 0x0e /* EEPROM/PHY data high byte */
#define PAR 0x10 /* station address */
#define MAR 0x16 /* multicast filter hash value */
#define GPR 0x1f /* gpio control */
#define GPR_PHYPWROFF 0x01 /* powerdown internal PHY */
#define VID0 0x28 /* vendor ID low byte */
#define VID1 0x29 /* vendor ID high byte */
#define PID0 0x2a /* product ID low byte */
#define PID1 0x2b /* product ID high byte */
#define CHIPR 0x2c /* chip revision */
#define MRCMDX 0xf0 /* read data w/o pointer incr */
#define MRCMD 0xf2 /* read data with pointer auto incr */
#define MWCMD 0xf8 /* write data with pointer auto incr */
#define TXPLL 0xfc /* Tx frame length low byte */
#define TXPLH 0xfd /* Tx frame length high byte */
#define ISR 0xfe /* interrupt status report */
#define ISR_LNKCHG 0x20 /* link status change detected */
#define ISR_UDRUN 0x10 /* transmit underrun detected */
#define ISR_PTM (1<<1) /* frame Tx completed */
#define ISR_PRS (1<<0) /* frame Rx completed */
#define IMR 0xff /* interrupt mask */
#define IMR_PAR (1<<7) /* use 3/13K SRAM partitioning with autowrap */
#define IMR_PRM (1<<0) /* post interrupt when Rx completed */
#ifndef DM9000MAC
#define DM9000MAC 0x08,0x08,0x11,0x18,0x12,0x27
#endif
struct local {
unsigned int csr;
unsigned int phy, bmsr, anlpar;
uint8_t en[6];
};
static struct local dm9000local;
int dm9k_match(unsigned int, void *);
void *dm9k_init(unsigned int, void *);
int dm9k_send(void *, char *, unsigned int);
int dm9k_recv(void *, char *, unsigned int, unsigned int);
static unsigned mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_dealan(struct local *, unsigned int);
extern void usleep(int);
static inline int
CSR_READ_1(struct local *l, int reg)
{
*(volatile uint8_t *)(l->csr) = reg;
return *(volatile uint8_t*)(l->csr + 4);
}
static inline int
CSR_READ_2(struct local *l, int reg)
{
*(volatile uint8_t *)(l->csr) = reg;
return *(volatile uint16_t *)(l->csr + 4);
}
static inline void
CSR_WRITE_1(struct local *l, int reg, int data)
{
*(volatile uint8_t *)(l->csr) = reg;
*(volatile uint8_t *)(l->csr + 4) = data;
}
static inline void
CSR_WRITE_2(struct local *l, int reg, int data)
{
*(volatile uint8_t *)(l->csr) = reg;
*(volatile uint16_t *)(l->csr + 4) = data;
}
int
dm9k_match(unsigned int tag, void *aux)
{
struct local *l = &dm9000local;
uint8_t *en = aux;
uint8_t std[6] = { DM9000MAC };
int val;
l->csr = 0x20000000;
val = CSR_READ_1(l, PID0);
val |= CSR_READ_1(l, PID1) << 8;
val |= CSR_READ_1(l, VID0) << 16;
val |= CSR_READ_1(l, VID1) << 24;
if (val != 0x0a469000) {
printf("DM9000 not found at 0x%x\n", l->csr);
return 0;
}
if (en != NULL
&& en[0] && en[1] && en[2] && en[3] && en[4] && en[5])
memcpy(l->en, en, 6);
else if (en != NULL) {
memcpy(en, std, 6);
memcpy(l->en, std, 6);
}
return 1;
}
void *
dm9k_init(unsigned int tag, void *aux)
{
struct local *l = &dm9000local;
uint8_t *en = l->en;
unsigned int val, fdx;
val = CSR_READ_1(l, CHIPR);
printf("DM9000 rev. %#x", val);
val = CSR_READ_1(l, ISR);
printf(", %d bit mode\n", (val & 1<<7) ? 8 : 16);
CSR_WRITE_1(l, NCR, 0); /* use internal PHY */
l->phy = 1;
/* force PHY poweroff */
CSR_WRITE_1(l, GPR, GPR_PHYPWROFF);
CSR_WRITE_1(l, IMR, 0);
CSR_WRITE_1(l, TCR, 0);
CSR_WRITE_1(l, RCR, 0);
/* SW reset */
CSR_WRITE_1(l, NCR, NCR_RST);
do {
usleep(1);
} while (NCR_RST & CSR_READ_1(l, NCR));
/* negate PHY poweroff condition */
CSR_WRITE_1(l, GPR, 0);
/* SW reset, again */
CSR_WRITE_1(l, NCR, NCR_RST);
do {
usleep(1);
} while (NCR_RST & CSR_READ_1(l, NCR));
/* clear NSR bits */
(void) CSR_READ_1(l, NSR);
printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
en[0], en[1], en[2], en[3], en[4], en[5]);
CSR_WRITE_1(l, PAR + 0, en[0]);
CSR_WRITE_1(l, PAR + 1, en[1]);
CSR_WRITE_1(l, PAR + 2, en[2]);
CSR_WRITE_1(l, PAR + 3, en[3]);
CSR_WRITE_1(l, PAR + 4, en[4]);
CSR_WRITE_1(l, PAR + 5, en[5]);
/* make sure not to receive bcast/mcast frames */
CSR_WRITE_1(l, MAR + 0, 0);
CSR_WRITE_1(l, MAR + 1, 0);
CSR_WRITE_1(l, MAR + 2, 0);
CSR_WRITE_1(l, MAR + 3, 0);
CSR_WRITE_1(l, MAR + 4, 0);
CSR_WRITE_1(l, MAR + 5, 0);
CSR_WRITE_1(l, MAR + 6, 0);
CSR_WRITE_1(l, MAR + 7, 0);
/* perform link auto-negotiation */
printf("waiting for linkup ... ");
mii_dealan(l, 5);
val = CSR_READ_1(l, NSR);
if ((val & NSR_LINKST) == 0) {
printf("failed; cable problem?\n");
return NULL;
}
/*
* speed and duplexity can be seen in MII 17.
* bit15 100Mbps-FDX
* bit14 100Mbps
* bit13 10Mbps-FDX
* bit12 10Mbps
* also available in NSR[SPEED] and NCR[FDX] respectively.
*/
val = mii_read(l, l->phy, 17);
if (val & (03 << 14))
printf("100Mbps");
if (val & (03 << 12))
printf("10Mbps");
fdx = !!(val & (05 << 13));
if (fdx) {
printf("-FDX");
val = CSR_READ_1(l, FCR);
CSR_WRITE_1(l, FCR, val | FCR_FLCE);
}
printf("\n");
CSR_WRITE_1(l, NSR, ~0);
CSR_WRITE_1(l, ISR, ~0);
/*
* - send one frame at a time.
* - disable Rx watchdog timer, discard too-long/CRC error frames.
* - 3/13K SRAM partitioning, r/w pointer autowrap.
*/
CSR_WRITE_1(l, TCR2, TCR2_ONEPM);
CSR_WRITE_1(l, RCR, RCR_RXEN | RCR_WTDIS | RCR_DIS_LONG | RCR_DIS_CRC);
CSR_WRITE_1(l, IMR, IMR_PAR);
memcpy(aux, l->en, 6);
return l;
}
int
dm9k_send(void *dev, char *buf, unsigned int len)
{
struct local *l = dev;
unsigned int val, cnt, bound;
if (len > 1520) {
printf("dm9k_send: len > 1520 (%u)\n", len);
len = 1520;
}
CSR_WRITE_1(l, ISR, ISR_PTM); /* clear ISR Tx complete bit */
for (cnt = 0; cnt < len; cnt += 2) {
val = (buf[1] << 8) | buf[0];
CSR_WRITE_2(l, MWCMD, val);
buf += 2;
}
CSR_WRITE_1(l, TXPLL, len);
CSR_WRITE_1(l, TXPLH, len >> 8);
CSR_WRITE_1(l, TCR, TCR_TXREQ); /* request to transmit */
bound = getsecs() + 1;
do {
val = CSR_READ_1(l, TCR);
if ((val & TCR_TXREQ) == 0)
goto done;
} while (getsecs() < bound);
printf("xmit failed\n");
return -1;
done:
return len;
}
int
dm9k_recv(void *dev, char *buf, unsigned int maxlen, unsigned int timo)
{
struct local *l = dev;
unsigned int bound, val, mark, stat, len, upto, cnt;
char *ptr;
bound = getsecs() + timo; /* second */
again:
do {
/* wait for Rx completion */
val = CSR_READ_1(l, ISR);
if (val & ISR_PRS)
goto gotone;
/* usleep(10); this makes a stuck in mid transfer */
} while (getsecs() < bound);
printf("receive timeout (%d seconds wait)\n", timo);
errno = 0;
return -1;
gotone:
CSR_WRITE_1(l, ISR, ISR_PRS); /* clear ISR Rx complete bit */
(void) CSR_READ_2(l, MRCMDX); /* dummy read */
mark = CSR_READ_2(l, MRCMDX); /* mark in [7:0] */
if ((mark & 03) != 01) {
stat = CSR_READ_1(l, RSR);
printf("dm9k_recv: mark %x, RSR %x\n", mark, stat);
/* XXX got hosed, need full scale reinitialise XXX */
goto again;
}
stat = CSR_READ_2(l, MRCMD); /* stat in [15:8] */
len = CSR_READ_2(l, MRCMD);
/* should not happen, make sure to discard bcast/mcast frames */
if (stat & (RSR_MF<<8)) {
for (cnt = 0; cnt < len; cnt += 2)
(void) CSR_READ_2(l, MRCMD);
printf("bcast/mcast frame, len = %d\n", len);
goto again;
}
upto = len - 4; /* HASFCS */
if (upto > maxlen)
upto = maxlen;
ptr = buf;
for (cnt = 0; cnt < upto; cnt += 2) {
val = CSR_READ_2(l, MRCMD);
ptr[0] = val;
ptr[1] = val >> 8;
ptr += 2;
}
/* discard trailing bytes */
for (; cnt < len; cnt += 2)
(void) CSR_READ_2(l, MRCMD);
return upto;
}
static unsigned int
mii_read(struct local *l, int phy, int reg)
{
int v;
CSR_WRITE_1(l, EPAR, phy << 6 | reg);
CSR_WRITE_1(l, EPCR, EP_EPOS | EP_ERPRR);
do {
v = CSR_READ_1(l, EPCR);
} while (v & EP_ERRE);
CSR_WRITE_1(l, EPCR, 0);
v = (CSR_READ_1(l, EPDRH) << 8) | CSR_READ_1(l, EPDRL);
return v;
}
static void
mii_write(struct local *l, int phy, int reg, int data)
{
int v;
CSR_WRITE_1(l, EPAR, phy << 6 | reg);
CSR_WRITE_1(l, EPDRL, data);
CSR_WRITE_1(l, EPDRH, data >> 8);
CSR_WRITE_1(l, EPCR, EP_EPOS | EP_ERPRW);
do {
v = CSR_READ_1(l, EPCR);
} while (v & EP_ERRE);
CSR_WRITE_1(l, EPCR, 0);
}
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define BMCR_RESET 0x8000 /* reset */
#define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
#define BMCR_ISO 0x0400 /* isolate */
#define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
#define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
#define BMSR_LINK 0x0004 /* Link status */
#define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
#define ANAR_FC 0x0400 /* local device supports PAUSE */
#define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
#define ANAR_TX 0x0080 /* local device supports 100bTx */
#define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
#define ANAR_10 0x0020 /* local device supports 10bT */
#define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
#define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
static void
mii_dealan(struct local *l, unsigned int timo)
{
unsigned int bound;
mii_write(l, l->phy, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
ANAR_10 | ANAR_CSMA | ANAR_FC);
mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
l->anlpar = 0;
bound = getsecs() + timo;
do {
l->bmsr = mii_read(l, l->phy, MII_BMSR) |
mii_read(l, l->phy, MII_BMSR); /* read twice */
if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
break;
}
usleep(10 * 1000);
} while (getsecs() < bound);
return;
}