* $NetBSD: scosh.sa,v 1.2 1994/10/26 07:49:39 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* scosh.sa 3.1 12/10/90
*
* The entry point sCosh computes the hyperbolic cosine of
* an input argument; sCoshd does the same except for denormalized
* input.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The value cosh(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 3 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program sCOSH takes approximately 250 cycles.
*
* Algorithm:
*
* COSH
* 1. If |X| > 16380 log2, go to 3.
*
* 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae
* y = |X|, z = exp(Y), and
* cosh(X) = (1/2)*( z + 1/z ).
* Exit.
*
* 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.
*
* 4. (16380 log2 < |X| <= 16480 log2)
* cosh(X) = sign(X) * exp(|X|)/2.
* However, invoking exp(|X|) may cause premature overflow.
* Thus, we calculate sinh(X) as follows:
* Y := |X|
* Fact := 2**(16380)
* Y' := Y - 16381 log2
* cosh(X) := Fact * exp(Y').
* Exit.
*
* 5. (|X| > 16480 log2) sinh(X) must overflow. Return
* Huge*Huge to generate overflow and an infinity with
* the appropriate sign. Huge is the largest finite number in
* extended format. Exit.
*
SCOSH IDNT 2,1 Motorola 040 Floating Point Software Package
section 8
xref t_ovfl
xref t_frcinx
xref setox
T1 DC.L $40C62D38,$D3D64634 ... 16381 LOG2 LEAD
T2 DC.L $3D6F90AE,$B1E75CC7 ... 16381 LOG2 TRAIL
TWO16380 DC.L $7FFB0000,$80000000,$00000000,$00000000
xdef scoshd
scoshd:
*--COSH(X) = 1 FOR DENORMALIZED X
FMOVE.S #:3F800000,FP0
FMOVE.L d1,FPCR
FADD.S #:00800000,FP0
bra t_frcinx
xdef scosh
scosh:
FMOVE.X (a0),FP0 ...LOAD INPUT
move.l (a0),d0
move.w 4(a0),d0
ANDI.L #$7FFFFFFF,d0
CMPI.L #$400CB167,d0
BGT.B COSHBIG
*--THIS IS THE USUAL CASE, |X| < 16380 LOG2
*--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
FABS.X FP0 ...|X|
move.l d1,-(sp)
clr.l d1
fmovem.x fp0,(a0) ;pass parameter to setox
bsr setox ...FP0 IS EXP(|X|)
FMUL.S #:3F000000,FP0 ...(1/2)EXP(|X|)
move.l (sp)+,d1
FMOVE.S #:3E800000,FP1 ...(1/4)
FDIV.X FP0,FP1 ...1/(2 EXP(|X|))
FMOVE.L d1,FPCR
FADD.X fp1,FP0
bra t_frcinx
COSHBIG:
CMPI.L #$400CB2B3,d0
BGT.B COSHHUGE
FABS.X FP0
FSUB.D T1(pc),FP0 ...(|X|-16381LOG2_LEAD)
FSUB.D T2(pc),FP0 ...|X| - 16381 LOG2, ACCURATE
move.l d1,-(sp)
clr.l d1
fmovem.x fp0,(a0)
bsr setox
fmove.l (sp)+,fpcr
FMUL.X TWO16380(pc),FP0
bra t_frcinx
COSHHUGE:
fmove.l #0,fpsr ;clr N bit if set by source
bclr.b #7,(a0) ;always return positive value
fmovem.x (a0),fp0
bra t_ovfl
end