Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*	$NetBSD: zs.c,v 1.42 2009/04/11 11:01:47 scw Exp $	*/

/*-
 * Copyright (c) 1996 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Gordon W. Ross.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Zilog Z8530 Dual UART driver (machine-dependent part)
 *
 * Runs two serial lines per chip using slave drivers.
 * Plain tty/async lines use the zs_async slave.
 *
 * Modified for NetBSD/mvme68k by Jason R. Thorpe <thorpej@NetBSD.org>
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.42 2009/04/11 11:01:47 scw Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <sys/cpu.h>
#include <sys/bus.h>
#include <sys/intr.h>

#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <machine/z8530var.h>

#include <mvme68k/dev/zsvar.h>

#include "ioconf.h"

/*
 * Some warts needed by z8530tty.c -
 * The default parity REALLY needs to be the same as the PROM uses,
 * or you can not see messages done with printf during boot-up...
 */
int zs_def_cflag = (CREAD | CS8 | HUPCL);

/* Flags from zscnprobe() */
static int zs_hwflags[NZSC][2];

/* Default speed for each channel */
static int zs_defspeed[NZSC][2] = {
	{ 9600, 	/* port 1 */
	  9600 },	/* port 2 */
	{ 9600, 	/* port 3 */
	  9600 },	/* port 4 */
};

static struct zs_chanstate zs_conschan_store;
static struct zs_chanstate *zs_conschan;

uint8_t zs_init_reg[16] = {
	0,	/* 0: CMD (reset, etc.) */
	0,	/* 1: No interrupts yet. */
	0x18 + ZSHARD_PRI,	/* IVECT */
	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
	0,	/* 6: TXSYNC/SYNCLO */
	0,	/* 7: RXSYNC/SYNCHI */
	0,	/* 8: alias for data port */
	ZSWR9_MASTER_IE,
	0,	/*10: Misc. TX/RX control bits */
	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
	0,			/*12: BAUDLO (default=9600) */
	0,			/*13: BAUDHI (default=9600) */
	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
	ZSWR15_BREAK_IE,
};


/****************************************************************
 * Autoconfig
 ****************************************************************/

/* Definition of the driver for autoconfig. */
static int	zsc_print(void *, const char *name);
int	zs_getc(void *);
void	zs_putc(void *, int);

#if 0
static int zs_get_speed(struct zs_chanstate *);
#endif

cons_decl(zsc_pcc);


/*
 * Configure children of an SCC.
 */
void
zs_config(struct zsc_softc *zsc, struct zsdevice *zs, int vector, int pclk)
{
	struct zsc_attach_args zsc_args;
	volatile struct zschan *zc;
	struct zs_chanstate *cs;
	int zsc_unit, channel, s;

	zsc_unit = device_unit(zsc->zsc_dev);
	printf(": Zilog 8530 SCC at vector 0x%x\n", vector);

	/*
	 * Initialize software state for each channel.
	 */
	for (channel = 0; channel < 2; channel++) {
		zsc_args.channel = channel;
		zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
		cs = &zsc->zsc_cs_store[channel];
		zsc->zsc_cs[channel] = cs;

		/*
		 * If we're the console, copy the channel state, and
		 * adjust the console channel pointer.
		 */
		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
			memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
			zs_conschan = cs;
		} else {
			zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
			cs->cs_reg_csr  = zc->zc_csr;
			cs->cs_reg_data = zc->zc_data;
			memcpy(cs->cs_creg, zs_init_reg, 16);
			memcpy(cs->cs_preg, zs_init_reg, 16);
			cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
		}

		zs_lock_init(cs);
		cs->cs_brg_clk = pclk / 16;
		cs->cs_creg[2] = cs->cs_preg[2] = vector;
		zs_set_speed(cs, cs->cs_defspeed);
		cs->cs_creg[12] = cs->cs_preg[12];
		cs->cs_creg[13] = cs->cs_preg[13];
		cs->cs_defcflag = zs_def_cflag;

		/* Make these correspond to cs_defcflag (-crtscts) */
		cs->cs_rr0_dcd = ZSRR0_DCD;
		cs->cs_rr0_cts = 0;
		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
		cs->cs_wr5_rts = 0;

		cs->cs_channel = channel;
		cs->cs_private = NULL;
		cs->cs_ops = &zsops_null;

		/*
		 * Clear the master interrupt enable.
		 * The INTENA is common to both channels,
		 * so just do it on the A channel.
		 * Write the interrupt vector while we're at it.
		 */
		if (channel == 0) {
			zs_write_reg(cs, 9, 0);
			zs_write_reg(cs, 2, vector);
		}

		/*
		 * Look for a child driver for this channel.
		 * The child attach will setup the hardware.
		 */
		if (!config_found(zsc->zsc_dev, (void *)&zsc_args,
		    zsc_print)) {
			/* No sub-driver.  Just reset it. */
			uint8_t reset = (channel == 0) ?
				ZSWR9_A_RESET : ZSWR9_B_RESET;
			s = splzs();
			zs_write_reg(cs,  9, reset);
			splx(s);
		}
	}

	/*
	 * Allocate a software interrupt cookie.
	 */
	zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL,
	    (void (*)(void *)) zsc_intr_soft, zsc);
#ifdef DEBUG
	assert(zsc->zsc_softintr_cookie);
#endif
}

static int
zsc_print(void *aux, const char *name)
{
	struct zsc_attach_args *args = aux;

	if (name != NULL)
		aprint_normal("%s: ", name);

	if (args->channel != -1)
		aprint_normal(" channel %d", args->channel);

	return UNCONF;
}

#if defined(MVME162) || defined(MVME172)
/*
 * Our ZS chips each have their own interrupt vector.
 */
int
zshard_unshared(void *arg)
{
	struct zsc_softc *zsc = arg;
	int rval;

	rval = zsc_intr_hard(zsc);

	if (rval) {
		if ((zsc->zsc_cs[0]->cs_softreq) ||
		    (zsc->zsc_cs[1]->cs_softreq))
			softint_schedule(zsc->zsc_softintr_cookie);
		zsc->zsc_evcnt.ev_count++;
	}

	return rval;
}
#endif

#ifdef MVME147
/*
 * Our ZS chips all share a common, PCC-vectored interrupt,
 * so we have to look at all of them on each interrupt.
 */
int
zshard_shared(void *arg)
{
	struct zsc_softc *zsc;
	int unit, rval;

	rval = 0;
	for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
		zsc = device_lookup_private(&zsc_cd, unit);
		if (zsc != NULL && zsc_intr_hard(zsc)) {
			if ((zsc->zsc_cs[0]->cs_softreq) ||
			    (zsc->zsc_cs[1]->cs_softreq))
				softint_schedule(zsc->zsc_softintr_cookie);
			zsc->zsc_evcnt.ev_count++;
			rval++;
		}
	}
	return rval;
}
#endif


#if 0
/*
 * Compute the current baud rate given a ZSCC channel.
 */
static int
zs_get_speed(struct zs_chanstate *cs)
{
	int tconst;

	tconst = zs_read_reg(cs, 12);
	tconst |= zs_read_reg(cs, 13) << 8;
	return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
}
#endif

/*
 * MD functions for setting the baud rate and control modes.
 */
int
zs_set_speed(struct zs_chanstate *cs, int bps)
{
	int tconst, real_bps;

	if (bps == 0)
		return 0;

#ifdef	DIAGNOSTIC
	if (cs->cs_brg_clk == 0)
		panic("zs_set_speed");
#endif

	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
	if (tconst < 0)
		return EINVAL;

	/* Convert back to make sure we can do it. */
	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);

	/* Allow 2% tolerance WRT the required bps */
	if (((abs(real_bps - bps) * 1000) / bps) > 20)
		return EINVAL;

	cs->cs_preg[12] = tconst;
	cs->cs_preg[13] = tconst >> 8;

	/* Caller will stuff the pending registers. */
	return 0;
}

int
zs_set_modes(struct zs_chanstate *cs, int cflag)
{
	int s;

	/*
	 * Output hardware flow control on the chip is horrendous:
	 * if carrier detect drops, the receiver is disabled, and if
	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
	 * Therefore, NEVER set the HFC bit, and instead use the
	 * status interrupt to detect CTS changes.
	 */
	s = splzs();
	cs->cs_rr0_pps = 0;
	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
		cs->cs_rr0_dcd = 0;
		if ((cflag & MDMBUF) == 0)
			cs->cs_rr0_pps = ZSRR0_DCD;
	} else
		cs->cs_rr0_dcd = ZSRR0_DCD;
	if ((cflag & CRTSCTS) != 0) {
		cs->cs_wr5_dtr = ZSWR5_DTR;
		cs->cs_wr5_rts = ZSWR5_RTS;
		cs->cs_rr0_cts = ZSRR0_CTS;
	} else if ((cflag & MDMBUF) != 0) {
		cs->cs_wr5_dtr = 0;
		cs->cs_wr5_rts = ZSWR5_DTR;
		cs->cs_rr0_cts = ZSRR0_DCD;
	} else {
		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
		cs->cs_wr5_rts = 0;
		cs->cs_rr0_cts = 0;
	}
	splx(s);

	/* Caller will stuff the pending registers. */
	return 0;
}


/*
 * Read or write the chip with suitable delays.
 */

uint8_t
zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
{
	uint8_t val;

	*cs->cs_reg_csr = reg;
	ZS_DELAY();
	val = *cs->cs_reg_csr;
	ZS_DELAY();
	return val;
}

void
zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
{

	*cs->cs_reg_csr = reg;
	ZS_DELAY();
	*cs->cs_reg_csr = val;
	ZS_DELAY();
}

uint8_t
zs_read_csr(struct zs_chanstate *cs)
{
	uint8_t val;

	val = *cs->cs_reg_csr;
	ZS_DELAY();
	return val;
}

void
zs_write_csr(struct zs_chanstate *cs, uint8_t val)
{

	*cs->cs_reg_csr = val;
	ZS_DELAY();
}

uint8_t
zs_read_data(struct zs_chanstate *cs)
{
	uint8_t val;

	val = *cs->cs_reg_data;
	ZS_DELAY();
	return val;
}

void
zs_write_data(struct zs_chanstate *cs, uint8_t val)
{

	*cs->cs_reg_data = val;
	ZS_DELAY();
}

/****************************************************************
 * Console support functions (MVME specific!)
 ****************************************************************/

/*
 * Polled input char.
 */
int
zs_getc(void *arg)
{
	struct zs_chanstate *cs = arg;
	int s, c, rr0, stat;

	s = splhigh();
 top:
	/* Wait for a character to arrive. */
	do {
		rr0 = *cs->cs_reg_csr;
		ZS_DELAY();
	} while ((rr0 & ZSRR0_RX_READY) == 0);

	/* Read error register. */
	stat = zs_read_reg(cs, 1) & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE);
	if (stat) {
		zs_write_csr(cs, ZSM_RESET_ERR);
		goto top;
	}

	/* Read character. */
	c = *cs->cs_reg_data;
	ZS_DELAY();
	splx(s);

	return c;
}

/*
 * Polled output char.
 */
void
zs_putc(void *arg, int c)
{
	struct zs_chanstate *cs = arg;
	int s, rr0;

	s = splhigh();
	/* Wait for transmitter to become ready. */
	do {
		rr0 = *cs->cs_reg_csr;
		ZS_DELAY();
	} while ((rr0 & ZSRR0_TX_READY) == 0);

	*cs->cs_reg_data = c;
	ZS_DELAY();
	splx(s);
}

/*
 * Common parts of console init.
 */
void
zs_cnconfig(int zsc_unit, int channel, struct zsdevice *zs, int pclk)
{
	struct zs_chanstate *cs;
	struct zschan *zc;

	zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;

	/*
	 * Pointer to channel state.  Later, the console channel
	 * state is copied into the softc, and the console channel
	 * pointer adjusted to point to the new copy.
	 */
	zs_conschan = cs = &zs_conschan_store;
	zs_hwflags[zsc_unit][channel] = ZS_HWFLAG_CONSOLE;

	/* Setup temporary chanstate. */
	cs->cs_brg_clk = pclk / 16;
	cs->cs_reg_csr  = zc->zc_csr;
	cs->cs_reg_data = zc->zc_data;

	/* Initialize the pending registers. */
	memcpy(cs->cs_preg, zs_init_reg, 16);
	cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS);

#if 0
	/* XXX: Preserve BAUD rate from boot loader. */
	/* XXX: Also, why reset the chip here? -gwr */
	cs->cs_defspeed = zs_get_speed(cs);
#else
	cs->cs_defspeed = 9600;	/* XXX */
#endif
	zs_set_speed(cs, cs->cs_defspeed);
	cs->cs_creg[12] = cs->cs_preg[12];
	cs->cs_creg[13] = cs->cs_preg[13];

	/* Clear the master interrupt enable. */
	zs_write_reg(cs, 9, 0);

	/* Reset the whole SCC chip. */
	zs_write_reg(cs, 9, ZSWR9_HARD_RESET);

	/* Copy "pending" to "current" and H/W. */
	zs_loadchannelregs(cs);
}

/*
 * Polled console input putchar.
 */
int
zsc_pcccngetc(dev_t dev)
{
	struct zs_chanstate *cs = zs_conschan;
	int c;

	c = zs_getc(cs);
	return c;
}

/*
 * Polled console output putchar.
 */
void
zsc_pcccnputc(dev_t dev, int c)
{
	struct zs_chanstate *cs = zs_conschan;

	zs_putc(cs, c);
}

/*
 * Handle user request to enter kernel debugger.
 */
void
zs_abort(struct zs_chanstate *cs)
{
	int rr0;

	/* Wait for end of break to avoid PROM abort. */
	/* XXX - Limit the wait? */
	do {
		rr0 = *cs->cs_reg_csr;
		ZS_DELAY();
	} while (rr0 & ZSRR0_BREAK);

	mvme68k_abort("SERIAL LINE ABORT");
}