/* $NetBSD: vge.c,v 1.3 2011/10/30 21:08:33 phx Exp $ */
/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>
#include "globals.h"
/*
* - reverse endian access every CSR.
* - no vtophys() translation, vaddr_t == paddr_t.
* - PIPT writeback cache aware.
*/
#define CSR_WRITE_1(l, r, v) out8((l)->csr+(r), (v))
#define CSR_READ_1(l, r) in8((l)->csr+(r))
#define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v))
#define CSR_READ_2(l, r) in16rb((l)->csr+(r))
#define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v))
#define CSR_READ_4(l, r) in32rb((l)->csr+(r))
#define VTOPHYS(va) (uint32_t)(va)
#define DEVTOV(pa) (uint32_t)(pa)
#define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n) delay(n)
#define ALLOC(T,A) (T *)allocaligned(sizeof(T),(A))
struct tdesc {
uint32_t t0, t1;
struct {
uint32_t lo;
uint32_t hi;
} tf[7];
};
struct rdesc {
uint32_t r0, r1, r2, r3;
};
#define T0_OWN (1U << 31) /* 1: loaded for HW to send */
#define T0_TERR (1U << 15) /* Tx error summary */
#define T0_UDF (1U << 12) /* found link down when Tx */
#define T0_SHDN (1U << 10) /* transfer was shutdowned */
#define T0_CRS (1U << 9) /* found carrier sense lost */
#define T0_CDH (1U << 8) /* heartbeat check failure */
#define T0_ABT (1U << 7) /* excessive collision Tx abort */
#define T0_OWT (1U << 6) /* jumbo Tx frame was aborted */
#define T0_OWC (1U << 5) /* found out of window collision */
#define T0_COLS (1U << 4) /* collision detected */
#define T0_NCRMASK 0xf /* number of collision retries */
#define T1_EOF (1U << 25) /* TCP large last segment */
#define T1_SOF (1U << 24) /* TCP large first segment */
#define T1_TIC (1U << 13) /* post Tx done interrupt */
#define T1_PIC (1U << 22) /* post priority interrupt */
#define T1_VTAG (1U << 21) /* insert VLAG tag */
#define T1_IPCK (1U << 20) /* generate IPv4 csum */
#define T1_UDPCK (1U << 19) /* generate UDPv4 csum */
#define T1_TCPCK (1U << 18) /* generate TCPv4 csum */
#define T1_JUMBO (1U << 17) /* jumbo frame */
#define T1_CRC (1U << 16) /* _disable_ CRC generation */
#define T1_PRIO 0x0000e000 /* VLAN priority value */
#define T1_CFI (1U << 12) /* VLAN CFI */
#define T1_VID 0x00000fff /* VLAN ID 11:0 */
#define T_FLMASK 0x00003fff /* Tx frame/segment length */
#define TF0_Q (1U << 31) /* "Q" bit of tf[0].hi */
#define R0_OWN (1U << 31) /* 1: empty for HW to load anew */
#define R0_FLMASK 0x3fff0000 /* frame length */
#define R0_RXOK (1U << 15)
#define R0_MAR (1U << 13) /* multicast frame */
#define R0_BAR (1U << 12) /* broadcast frame */
#define R0_PHY (1U << 11) /* unicast frame */
#define R0_VTAG (1U << 10) /* VTAG indicator */
#define R0_STP (1U << 9) /* first frame segment */
#define R0_EDP (1U << 8) /* last frame segment */
#define R0_DETAG (1U << 7) /* VTAG has removed */
#define R0_SNTAG (1U << 6) /* tagged SNAP frame */
#define R0_SYME (1U << 5) /* symbol error */
#define R0_LENE (1U << 4) /* frame length error */
#define R0_CSUME (1U << 3) /* TCP/IP bad csum */
#define R0_FAE (1U << 2) /* frame alignment error */
#define R0_CRCE (1U << 1) /* CRC error */
#define R0_VIDM (1U << 0) /* VTAG filter miss */
#define R1_IPOK (1U << 22) /* IP csum was fine */
#define R1_TUPOK (1U << 21) /* TCP/UDP csum was fine */
#define R1_FRAG (1U << 20) /* fragmented IP */
#define R1_CKSMZO (1U << 19) /* UDP csum field was zero */
#define R1_IPKT (1U << 18) /* frame was IPv4 */
#define R1_TPKT (1U << 17) /* frame was TCPv4 */
#define R1_UPKT (1U << 16) /* frame was UDPv4 */
#define R3_IC (1U << 31) /* post Rx interrupt */
#define R_FLMASK 0x00003ffd /* Rx segment buffer length */
#define VR_PAR0 0x00 /* SA [0] */
#define VR_PAR1 0x01 /* SA [1] */
#define VR_PAR2 0x02 /* SA [2] */
#define VR_PAR3 0x03 /* SA [3] */
#define VR_PAR4 0x04 /* SA [4] */
#define VR_PAR5 0x05 /* SA [5] */
#define VR_CAM0 0x10 /* 0..7 */
#define VR_RCR 0x06 /* Rx control */
#define RCR_AP (1U << 6) /* accept unicast frame */
#define RCR_AL (1U << 5) /* accept long VTAG frame */
#define RCR_PROM (1U << 4) /* accept any frame */
#define RCR_AB (1U << 3) /* accept broadcast frame */
#define RCR_AM (1U << 2) /* use multicast filter */
#define VR_TCR 0x07 /* Tx control */
#define VR_CTL0 0x08 /* control #0 */
#define CTL0_TXON (1U << 3) /* enable Tx DMA */
#define CTL0_RXON (1U << 2) /* enable Rx DMA */
#define CTL0_STOP (1U << 1) /* activate stop processing */
#define CTL0_START (1U << 0) /* start and activate */
#define VR_CTL1 0x09 /* control #1 */
#define CTL1_RESET (1U << 7)
#define CTL1_DPOLL (1U << 3) /* _disable_ TDES/RDES polling */
#define VR_CTL2 0x0a /* control #2 */
#define CTL2_3XFLC (1U << 7) /* 802.3x PAUSE flow control */
#define CTL2_TPAUSE (1U << 6) /* handle PAUSE on transmit side */
#define CTL2_RPAUSE (1U << 5) /* handle PAUSE on receive side */
#define CTL2_HDXFLC (1U << 4) /* HDX jabber flow control */
#define VR_CTL3 0x0b /* control #3 */
#define CTL3_GIEN (1U << 1) /* global interrupt enable */
#define VR_DESCHI 0x18 /* RDES/TDES base high 63:32 */
#define VR_DATAHI 0x1c /* frame data base high 63:48 */
#define VR_ISR 0x24 /* ISR0123 */
#define VR_IEN 0x28 /* IEN0123 */
#define VR_TDCSR 0x30
#define VR_RDCSR 0x32
#define VR_RDB 0x38 /* RDES base lo 31:0 */
#define VR_TDB0 0x40 /* #0 TDES base lo 31:0 */
#define VR_RDCSIZE 0x50 /* 0..255 */
#define VR_TDCSIZE 0x52 /* 0..4095 */
#define VR_RBRDU 0x5e /* 0..255 */
#define VR_CAMADR 0x68
#define CAM_EN (1U << 7) /* enable to manipulate */
#define SADR_CAM (0U << 6) /* station address table */
#define VTAG_CAM (1U << 6) /* VLAN tag table */
#define VR_CAMCTL 0x69
#define CAMCTL_MULT (00U << 6) /* multicast address hash */
#define CAMCTL_VBIT (01U << 6) /* valid bitmask */
#define CAMCTL_ADDR (02U << 6) /* address data */
#define CAMCTL_RD (1U << 3) /* CAM read op, auto cleared */
#define CAMCTL_WR (1U << 2) /* CAM write op, auto cleared */
#define VR_MIICFG 0x6c /* PHY number 4:0 */
#define VR_MIISR 0x6d /* MII status */
#define MIISR_MIDLE (1U << 7) /* not in auto polling */
#define VR_PHYSR0 0x6e /* PHY status 0 */
#define VR_MIICR 0x70 /* MII control */
#define MIICR_MAUTO (1U << 7) /* activate autopoll mode */
#define MIICR_RCMD (1U << 6) /* MII read operation */
#define MIICR_WCMD (1U << 5) /* MII write operation */
#define VR_MIIADR 0x71 /* MII indirect */
#define VR_MIIDATA 0x72 /* MII read/write */
#define FRAMESIZE 1536
#define NRXDESC 4 /* HW demands multiple of 4 */
struct local {
struct tdesc txd;
struct rdesc rxd[NRXDESC];
uint8_t rxstore[NRXDESC][FRAMESIZE];
unsigned csr, rx;
unsigned phy, bmsr, anlpar;
};
static void mii_autopoll(struct local *);
static void mii_stoppoll(struct local *);
static int mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_dealan(struct local *, unsigned);
int
vge_match(unsigned tag, void *data)
{
unsigned v;
v = pcicfgread(tag, PCI_ID_REG);
switch (v) {
case PCI_DEVICE(0x1106, 0x3119):
return 1;
}
return 0;
}
void *
vge_init(unsigned tag, void *data)
{
unsigned val, i, fdx, loop;
struct local *l;
struct tdesc *txd;
struct rdesc *rxd;
uint8_t *en;
l = ALLOC(struct local, 64); /* desc alignment */
memset(l, 0, sizeof(struct local));
l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */
val = CTL1_RESET;
CSR_WRITE_1(l, VR_CTL1, val);
do {
val = CSR_READ_1(l, VR_CTL1);
} while (val & CTL1_RESET);
l->phy = CSR_READ_1(l, VR_MIICFG) & 0x1f;
en = data;
en[0] = CSR_READ_1(l, VR_PAR0);
en[1] = CSR_READ_1(l, VR_PAR1);
en[2] = CSR_READ_1(l, VR_PAR2);
en[3] = CSR_READ_1(l, VR_PAR3);
en[4] = CSR_READ_1(l, VR_PAR4);
en[5] = CSR_READ_1(l, VR_PAR5);
printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
en[0], en[1], en[2], en[3], en[4], en[5]);
DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));
mii_dealan(l, 5);
/* speed and duplexity can be seen in MII 28 */
val = mii_read(l, l->phy, 28);
fdx = (val >> 5) & 01;
switch ((val >> 3) & 03) {
case 0: printf("10baseT"); break;
case 1: printf("100baseTX"); break;
case 2: printf("1000baseT"); break;
}
if (fdx)
printf("-FDX");
printf("\n");
txd = &l->txd;
rxd = &l->rxd[0];
for (i = 0; i < NRXDESC; i++) {
rxd[i].r0 = htole32(R0_OWN);
rxd[i].r1 = 0;
rxd[i].r2 = htole32(VTOPHYS(l->rxstore[i]));
rxd[i].r3 = htole32(FRAMESIZE << 16);
}
wbinv(l, sizeof(struct local));
l->rx = 0;
/* set own station address into entry #0 */
CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR);
CSR_WRITE_1(l, VR_CAMADR, CAM_EN | SADR_CAM | 0);
for (i = 0; i < 6; i++)
CSR_WRITE_1(l, VR_CAM0 + i, en[i]);
CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR | CAMCTL_WR);
loop = 20;
while (--loop > 0 && (i = CSR_READ_1(l, VR_CAMCTL)) & CAMCTL_WR)
DELAY(1);
/* mark entry #0 valid, position 0 of 63:0 */
CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_VBIT);
CSR_WRITE_1(l, VR_CAM0, 01);
for (i = 1; i < 8; i++)
CSR_WRITE_1(l, VR_CAM0 + i, 00);
CSR_WRITE_1(l, VR_CAMADR, 0);
CSR_WRITE_1(l, VR_CAMCTL, 0);
/* prepare descriptor lists */
CSR_WRITE_4(l, VR_RDB, VTOPHYS(rxd));
CSR_WRITE_2(l, VR_RDCSIZE, NRXDESC - 1);
CSR_WRITE_2(l, VR_RBRDU, NRXDESC - 1);
CSR_WRITE_4(l, VR_TDB0, VTOPHYS(txd));
CSR_WRITE_2(l, VR_TDCSIZE, 0);
/* enable transmitter and receiver */
CSR_WRITE_1(l, VR_RDCSR, 01);
CSR_WRITE_1(l, VR_RDCSR, 04);
CSR_WRITE_2(l, VR_TDCSR, 01);
CSR_WRITE_1(l, VR_RCR, RCR_AP);
CSR_WRITE_1(l, VR_TCR, 0);
CSR_WRITE_1(l, VR_CTL0 + 0x4, CTL0_STOP);
CSR_WRITE_1(l, VR_CTL0, CTL0_TXON | CTL0_RXON | CTL0_START);
CSR_WRITE_4(l, VR_ISR, ~0);
CSR_WRITE_4(l, VR_IEN, 0);
return l;
}
int
vge_send(void *dev, char *buf, unsigned len)
{
struct local *l = dev;
volatile struct tdesc *txd;
unsigned loop;
len = (len & T_FLMASK);
if (len < 60)
len = 60; /* needs to stretch to ETHER_MIN_LEN - 4 */
wbinv(buf, len);
txd = &l->txd;
txd->tf[0].lo = htole32(VTOPHYS(buf));
txd->tf[0].hi = htole32(len << 16);
txd->t1 = htole32(T1_SOF | T1_EOF | (2 << 28));
txd->t0 = htole32(T0_OWN | len << 16);
wbinv(txd, sizeof(struct tdesc));
CSR_WRITE_2(l, VR_TDCSR, 04);
loop = 100;
do {
if ((le32toh(txd->t0) & T0_OWN) == 0)
goto done;
DELAY(10);
inv(txd, sizeof(struct tdesc));
} while (--loop > 0);
printf("xmit failed\n");
return -1;
done:
return len;
}
int
vge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
struct local *l = dev;
volatile struct rdesc *rxd;
unsigned bound, rxstat, len;
uint8_t *ptr;
bound = 1000 * timo;
printf("recving with %u sec. timeout\n", timo);
again:
rxd = &l->rxd[l->rx];
do {
inv(rxd, sizeof(struct rdesc));
rxstat = le32toh(rxd->r0);
if ((rxstat & R0_OWN) == 0)
goto gotone;
DELAY(1000); /* 1 milli second */
} while (--bound > 0);
errno = 0;
return -1;
gotone:
if ((rxstat & R0_RXOK) == 0) {
rxd->r0 = htole32(R0_OWN);
rxd->r1 = 0;
wbinv(rxd, sizeof(struct rdesc));
l->rx ^= 1;
goto again;
}
len = ((rxstat & R0_FLMASK) >> 16) - 4 /* HASFCS */;
if (len > maxlen)
len = maxlen;
ptr = l->rxstore[l->rx];
inv(ptr, len);
memcpy(buf, ptr, len);
if ((l->rx & 03) == 3) {
/* needs to set R0_OWN to 4 descriptors at a time */
rxd[00].r0 = htole32(R0_OWN);
rxd[00].r1 = 0;
rxd[-1].r0 = htole32(R0_OWN);
rxd[-1].r1 = 0;
rxd[-2].r0 = htole32(R0_OWN);
rxd[-2].r1 = 0;
rxd[-3].r0 = htole32(R0_OWN);
rxd[-3].r1 = 0;
wbinv(rxd, NRXDESC * sizeof(struct rdesc));
}
l->rx = (l->rx + 1) & (NRXDESC - 1);
return len;
}
static void
mii_autopoll(struct local *l)
{
int v;
CSR_WRITE_1(l, VR_MIICR, 0);
CSR_WRITE_1(l, VR_MIIADR, 1U << 7);
do {
DELAY(1);
v = CSR_READ_1(l, VR_MIISR);
} while ((v & MIISR_MIDLE) == 0);
CSR_WRITE_1(l, VR_MIICR, MIICR_MAUTO);
do {
DELAY(1);
v = CSR_READ_1(l, VR_MIISR);
} while ((v & MIISR_MIDLE) != 0);
}
static void
mii_stoppoll(struct local *l)
{
int v;
CSR_WRITE_1(l, VR_MIICR, 0);
do {
DELAY(1);
v = CSR_READ_1(l, VR_MIISR);
} while ((v & MIISR_MIDLE) == 0);
}
static int
mii_read(struct local *l, int phy, int reg)
{
int v;
mii_stoppoll(l);
CSR_WRITE_1(l, VR_MIICFG, phy);
CSR_WRITE_1(l, VR_MIIADR, reg);
CSR_WRITE_1(l, VR_MIICR, MIICR_RCMD);
do {
v = CSR_READ_1(l, VR_MIICR);
} while (v & MIICR_RCMD);
v = CSR_READ_2(l, VR_MIIDATA);
mii_autopoll(l);
return v;
}
static void
mii_write(struct local *l, int phy, int reg, int data)
{
int v;
mii_stoppoll(l);
CSR_WRITE_2(l, VR_MIIDATA, data);
CSR_WRITE_1(l, VR_MIICFG, phy);
CSR_WRITE_1(l, VR_MIIADR, reg);
CSR_WRITE_1(l, VR_MIICR, MIICR_WCMD);
do {
v = CSR_READ_1(l, VR_MIICR);
} while (v & MIICR_WCMD);
mii_autopoll(l);
}
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define BMCR_RESET 0x8000 /* reset */
#define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
#define BMCR_ISO 0x0400 /* isolate */
#define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
#define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
#define BMSR_LINK 0x0004 /* Link status */
#define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
#define ANAR_FC 0x0400 /* local device supports PAUSE */
#define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
#define ANAR_TX 0x0080 /* local device supports 100bTx */
#define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
#define ANAR_10 0x0020 /* local device supports 10bT */
#define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
#define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
#define MII_GTCR 0x09 /* 1000baseT control */
#define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */
#define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */
#define MII_GTSR 0x0a /* 1000baseT status */
#define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */
#define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */
#define GLPA_ASM_DIR 0x0200 /* link partner asym. pause dir. capable */
void
mii_dealan(struct local *l, unsigned timo)
{
unsigned anar, gtcr, bound;
anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
anar |= ANAR_FC;
gtcr = GANA_1000TFDX | GANA_1000THDX;
mii_write(l, l->phy, MII_ANAR, anar);
mii_write(l, l->phy, MII_GTCR, gtcr);
mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
l->anlpar = 0;
bound = getsecs() + timo;
do {
l->bmsr = mii_read(l, l->phy, MII_BMSR) |
mii_read(l, l->phy, MII_BMSR); /* read twice */
if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
break;
}
DELAY(10 * 1000);
} while (getsecs() < bound);
return;
}