Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/* $NetBSD: vge.c,v 1.3 2011/10/30 21:08:33 phx Exp $ */

/*-
 * Copyright (c) 2007 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tohru Nishimura.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/param.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>

#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>

#include "globals.h"

/*
 * - reverse endian access every CSR.
 * - no vtophys() translation, vaddr_t == paddr_t.
 * - PIPT writeback cache aware.
 */
#define CSR_WRITE_1(l, r, v)	out8((l)->csr+(r), (v))
#define CSR_READ_1(l, r)	in8((l)->csr+(r))
#define CSR_WRITE_2(l, r, v)	out16rb((l)->csr+(r), (v))
#define CSR_READ_2(l, r)	in16rb((l)->csr+(r))
#define CSR_WRITE_4(l, r, v)	out32rb((l)->csr+(r), (v))
#define CSR_READ_4(l, r)	in32rb((l)->csr+(r))
#define VTOPHYS(va)		(uint32_t)(va)
#define DEVTOV(pa)		(uint32_t)(pa)
#define wbinv(adr, siz)		_wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz)		_inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n)		delay(n)
#define ALLOC(T,A)		(T *)allocaligned(sizeof(T),(A))

struct tdesc {
	uint32_t t0, t1;
	struct {
		uint32_t lo;
		uint32_t hi;
	} tf[7];
};
struct rdesc {
	uint32_t r0, r1, r2, r3;
};
#define T0_OWN		(1U << 31)	/* 1: loaded for HW to send */	
#define T0_TERR		(1U << 15)	/* Tx error summary */		
#define T0_UDF		(1U << 12)	/* found link down when Tx */	
#define T0_SHDN		(1U << 10)	/* transfer was shutdowned */	
#define T0_CRS		(1U << 9)	/* found carrier sense lost */
#define T0_CDH		(1U << 8)	/* heartbeat check failure */
#define T0_ABT		(1U << 7)	/* excessive collision Tx abort */
#define T0_OWT		(1U << 6)	/* jumbo Tx frame was aborted */
#define T0_OWC		(1U << 5)	/* found out of window collision */
#define T0_COLS		(1U << 4)	/* collision detected */
#define T0_NCRMASK	0xf		/* number of collision retries */
#define T1_EOF		(1U << 25)	/* TCP large last segment */
#define T1_SOF		(1U << 24)	/* TCP large first segment */
#define T1_TIC		(1U << 13)	/* post Tx done interrupt */
#define T1_PIC		(1U << 22)	/* post priority interrupt */
#define T1_VTAG		(1U << 21)	/* insert VLAG tag */
#define T1_IPCK		(1U << 20)	/* generate IPv4 csum */
#define T1_UDPCK	(1U << 19)	/* generate UDPv4 csum */
#define T1_TCPCK	(1U << 18)	/* generate TCPv4 csum */
#define T1_JUMBO	(1U << 17)	/* jumbo frame */
#define T1_CRC		(1U << 16)	/* _disable_ CRC generation */
#define T1_PRIO		0x0000e000	/* VLAN priority value */
#define T1_CFI		(1U << 12)	/* VLAN CFI */
#define T1_VID		0x00000fff	/* VLAN ID 11:0 */
#define T_FLMASK	0x00003fff	/* Tx frame/segment length */
#define TF0_Q		(1U << 31)	/* "Q" bit of tf[0].hi */

#define R0_OWN		(1U << 31)	/* 1: empty for HW to load anew */
#define R0_FLMASK	0x3fff0000	/* frame length */
#define R0_RXOK		(1U << 15)
#define R0_MAR		(1U << 13)	/* multicast frame */
#define R0_BAR		(1U << 12)	/* broadcast frame */
#define R0_PHY		(1U << 11)	/* unicast frame */	
#define R0_VTAG		(1U << 10)	/* VTAG indicator */	
#define R0_STP		(1U << 9)	/* first frame segment */	
#define R0_EDP		(1U << 8)	/* last frame segment */
#define R0_DETAG	(1U << 7)	/* VTAG has removed */
#define R0_SNTAG	(1U << 6)	/* tagged SNAP frame */
#define R0_SYME		(1U << 5)	/* symbol error */
#define R0_LENE		(1U << 4)	/* frame length error */	
#define R0_CSUME	(1U << 3)	/* TCP/IP bad csum */
#define R0_FAE		(1U << 2)	/* frame alignment error */
#define R0_CRCE		(1U << 1)	/* CRC error */ 
#define R0_VIDM		(1U << 0)	/* VTAG filter miss */		
#define R1_IPOK		(1U << 22)	/* IP csum was fine */
#define R1_TUPOK	(1U << 21)	/* TCP/UDP csum was fine */	
#define R1_FRAG		(1U << 20)	/* fragmented IP */
#define R1_CKSMZO	(1U << 19)	/* UDP csum field was zero */
#define R1_IPKT		(1U << 18)	/* frame was IPv4 */
#define R1_TPKT		(1U << 17)	/* frame was TCPv4 */
#define R1_UPKT		(1U << 16)	/* frame was UDPv4 */		
#define R3_IC		(1U << 31)	/* post Rx interrupt */
#define R_FLMASK	0x00003ffd	/* Rx segment buffer length */	

#define VR_PAR0		0x00		/* SA [0] */
#define VR_PAR1		0x01		/* SA [1] */
#define VR_PAR2		0x02		/* SA [2] */
#define VR_PAR3		0x03		/* SA [3] */
#define VR_PAR4		0x04		/* SA [4] */
#define VR_PAR5		0x05		/* SA [5] */
#define VR_CAM0		0x10		/* 0..7 */
#define VR_RCR		0x06		/* Rx control */
#define  RCR_AP		(1U << 6)	/* accept unicast frame */
#define  RCR_AL		(1U << 5)	/* accept long VTAG frame */
#define  RCR_PROM	(1U << 4)	/* accept any frame */
#define  RCR_AB		(1U << 3)	/* accept broadcast frame */
#define  RCR_AM		(1U << 2)	/* use multicast filter */
#define VR_TCR		0x07		/* Tx control */
#define VR_CTL0		0x08		/* control #0 */
#define  CTL0_TXON	(1U << 3)	/* enable Tx DMA */
#define  CTL0_RXON	(1U << 2)	/* enable Rx DMA */
#define  CTL0_STOP	(1U << 1)	/* activate stop processing */
#define  CTL0_START	(1U << 0)	/* start and activate */
#define VR_CTL1		0x09		/* control #1 */
#define  CTL1_RESET	(1U << 7)
#define  CTL1_DPOLL	(1U << 3)	/* _disable_ TDES/RDES polling */
#define VR_CTL2		0x0a		/* control #2 */
#define  CTL2_3XFLC	(1U << 7)	/* 802.3x PAUSE flow control */
#define  CTL2_TPAUSE	(1U << 6)	/* handle PAUSE on transmit side */
#define  CTL2_RPAUSE	(1U << 5)	/* handle PAUSE on receive side */
#define  CTL2_HDXFLC	(1U << 4)	/* HDX jabber flow control */
#define VR_CTL3		0x0b		/* control #3 */
#define  CTL3_GIEN	(1U << 1)	/* global interrupt enable */
#define VR_DESCHI	0x18		/* RDES/TDES base high 63:32 */
#define VR_DATAHI	0x1c		/* frame data base high 63:48 */
#define VR_ISR		0x24		/* ISR0123 */
#define VR_IEN		0x28		/* IEN0123 */
#define VR_TDCSR	0x30
#define VR_RDCSR	0x32
#define VR_RDB		0x38		/* RDES base lo 31:0 */
#define VR_TDB0		0x40		/* #0 TDES base lo 31:0 */
#define VR_RDCSIZE	0x50		/* 0..255 */
#define VR_TDCSIZE	0x52		/* 0..4095 */
#define VR_RBRDU	0x5e		/* 0..255 */
#define VR_CAMADR	0x68
#define  CAM_EN		(1U << 7)	/* enable to manipulate */
#define  SADR_CAM	(0U << 6)	/* station address table */
#define  VTAG_CAM	(1U << 6)	/* VLAN tag table */
#define VR_CAMCTL	0x69
#define  CAMCTL_MULT	(00U << 6)	/* multicast address hash */
#define  CAMCTL_VBIT	(01U << 6)	/* valid bitmask */
#define  CAMCTL_ADDR	(02U << 6)	/* address data */
#define  CAMCTL_RD	(1U << 3)	/* CAM read op, auto cleared */
#define  CAMCTL_WR	(1U << 2)	/* CAM write op, auto cleared */
#define VR_MIICFG	0x6c		/* PHY number 4:0 */
#define VR_MIISR	0x6d		/* MII status */
#define  MIISR_MIDLE	(1U << 7)	/* not in auto polling */
#define VR_PHYSR0	0x6e		/* PHY status 0 */
#define VR_MIICR	0x70		/* MII control */
#define  MIICR_MAUTO	(1U << 7)	/* activate autopoll mode */
#define  MIICR_RCMD	(1U << 6)	/* MII read operation */
#define  MIICR_WCMD	(1U << 5)	/* MII write operation */
#define VR_MIIADR	0x71		/* MII indirect */
#define VR_MIIDATA	0x72		/* MII read/write */

#define FRAMESIZE	1536
#define NRXDESC		4	/* HW demands multiple of 4 */

struct local {
	struct tdesc txd;
	struct rdesc rxd[NRXDESC];
	uint8_t rxstore[NRXDESC][FRAMESIZE];
	unsigned csr, rx;
	unsigned phy, bmsr, anlpar;
};

static void mii_autopoll(struct local *);
static void mii_stoppoll(struct local *);
static int mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_dealan(struct local *, unsigned);

int
vge_match(unsigned tag, void *data)
{
	unsigned v;

	v = pcicfgread(tag, PCI_ID_REG);
	switch (v) {
	case PCI_DEVICE(0x1106, 0x3119):
		return 1;
	}
	return 0;
}

void *
vge_init(unsigned tag, void *data)
{
	unsigned val, i, fdx, loop;
	struct local *l;
	struct tdesc *txd;
	struct rdesc *rxd;
	uint8_t *en;


	l = ALLOC(struct local, 64);   /* desc alignment */
	memset(l, 0, sizeof(struct local));
	l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */

	val = CTL1_RESET;
	CSR_WRITE_1(l, VR_CTL1, val);
	do {
		val = CSR_READ_1(l, VR_CTL1);
	} while (val & CTL1_RESET);

	l->phy = CSR_READ_1(l, VR_MIICFG) & 0x1f;

	en = data;
	en[0] = CSR_READ_1(l, VR_PAR0);
	en[1] = CSR_READ_1(l, VR_PAR1);
	en[2] = CSR_READ_1(l, VR_PAR2);
	en[3] = CSR_READ_1(l, VR_PAR3);
	en[4] = CSR_READ_1(l, VR_PAR4);
	en[5] = CSR_READ_1(l, VR_PAR5);

	printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
	    en[0], en[1], en[2], en[3], en[4], en[5]);
	DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
	    mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));

	mii_dealan(l, 5);
	
	/* speed and duplexity can be seen in MII 28 */
	val = mii_read(l, l->phy, 28);
	fdx = (val >> 5) & 01;
	switch ((val >> 3) & 03) {
	case 0: printf("10baseT"); break;
	case 1: printf("100baseTX"); break;
	case 2: printf("1000baseT"); break;
	}
	if (fdx)
		printf("-FDX");
	printf("\n");

	txd = &l->txd;
	rxd = &l->rxd[0];
	for (i = 0; i < NRXDESC; i++) {
		rxd[i].r0 = htole32(R0_OWN);
		rxd[i].r1 = 0;
		rxd[i].r2 = htole32(VTOPHYS(l->rxstore[i]));
		rxd[i].r3 = htole32(FRAMESIZE << 16);
	}
	wbinv(l, sizeof(struct local));
	l->rx = 0;

	/* set own station address into entry #0 */	
	CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR);
	CSR_WRITE_1(l, VR_CAMADR, CAM_EN | SADR_CAM | 0);
	for (i = 0; i < 6; i++)
		CSR_WRITE_1(l, VR_CAM0 + i, en[i]);
	CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR | CAMCTL_WR);
	loop = 20;
	while (--loop > 0 && (i = CSR_READ_1(l, VR_CAMCTL)) & CAMCTL_WR)
		DELAY(1);
	/* mark entry #0 valid, position 0 of 63:0 */
	CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_VBIT);
	CSR_WRITE_1(l, VR_CAM0, 01);
	for (i = 1; i < 8; i++)
		CSR_WRITE_1(l, VR_CAM0 + i, 00);
	CSR_WRITE_1(l, VR_CAMADR, 0);
	CSR_WRITE_1(l, VR_CAMCTL, 0);

	/* prepare descriptor lists */
	CSR_WRITE_4(l, VR_RDB, VTOPHYS(rxd));
	CSR_WRITE_2(l, VR_RDCSIZE, NRXDESC - 1);
	CSR_WRITE_2(l, VR_RBRDU, NRXDESC - 1);
	CSR_WRITE_4(l, VR_TDB0, VTOPHYS(txd));
	CSR_WRITE_2(l, VR_TDCSIZE, 0);

	/* enable transmitter and receiver */
	CSR_WRITE_1(l, VR_RDCSR, 01);
	CSR_WRITE_1(l, VR_RDCSR, 04);
	CSR_WRITE_2(l, VR_TDCSR, 01);
	CSR_WRITE_1(l, VR_RCR, RCR_AP);
	CSR_WRITE_1(l, VR_TCR, 0);
	CSR_WRITE_1(l, VR_CTL0 + 0x4, CTL0_STOP);
	CSR_WRITE_1(l, VR_CTL0, CTL0_TXON | CTL0_RXON | CTL0_START);
	CSR_WRITE_4(l, VR_ISR, ~0);
	CSR_WRITE_4(l, VR_IEN, 0);

	return l;
}

int
vge_send(void *dev, char *buf, unsigned len)
{
	struct local *l = dev;
	volatile struct tdesc *txd;
	unsigned loop;
	
	len = (len & T_FLMASK);
	if (len < 60)
		len = 60; /* needs to stretch to ETHER_MIN_LEN - 4 */
	wbinv(buf, len);
	txd = &l->txd;
	txd->tf[0].lo = htole32(VTOPHYS(buf));
	txd->tf[0].hi = htole32(len << 16);
	txd->t1 = htole32(T1_SOF | T1_EOF | (2 << 28));
	txd->t0 = htole32(T0_OWN | len << 16);
	wbinv(txd, sizeof(struct tdesc));
	CSR_WRITE_2(l, VR_TDCSR, 04);
	loop = 100;
	do {
		if ((le32toh(txd->t0) & T0_OWN) == 0)
			goto done;
		DELAY(10);
		inv(txd, sizeof(struct tdesc));
	} while (--loop > 0);
	printf("xmit failed\n");
	return -1;
  done:
	return len;
}

int
vge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
	struct local *l = dev;
	volatile struct rdesc *rxd;
	unsigned bound, rxstat, len;
	uint8_t *ptr;

	bound = 1000 * timo;
printf("recving with %u sec. timeout\n", timo);
  again:
	rxd = &l->rxd[l->rx];
	do {
		inv(rxd, sizeof(struct rdesc));
		rxstat = le32toh(rxd->r0);
		if ((rxstat & R0_OWN) == 0)
			goto gotone;
		DELAY(1000);	/* 1 milli second */
	} while (--bound > 0);
	errno = 0;
	return -1;
  gotone:
	if ((rxstat & R0_RXOK) == 0) {
		rxd->r0 = htole32(R0_OWN);
		rxd->r1 = 0;
		wbinv(rxd, sizeof(struct rdesc));
		l->rx ^= 1;
		goto again;
	}
	len = ((rxstat & R0_FLMASK) >> 16) - 4 /* HASFCS */;
	if (len > maxlen)
		len = maxlen;
	ptr = l->rxstore[l->rx];
	inv(ptr, len);
	memcpy(buf, ptr, len);
	if ((l->rx & 03) == 3) {
		/* needs to set R0_OWN to 4 descriptors at a time */
		rxd[00].r0 = htole32(R0_OWN);
		rxd[00].r1 = 0;
		rxd[-1].r0 = htole32(R0_OWN);
		rxd[-1].r1 = 0;
		rxd[-2].r0 = htole32(R0_OWN);
		rxd[-2].r1 = 0;
		rxd[-3].r0 = htole32(R0_OWN);
		rxd[-3].r1 = 0;
		wbinv(rxd, NRXDESC * sizeof(struct rdesc));
	}
	l->rx = (l->rx + 1) & (NRXDESC - 1);
	return len;
}

static void
mii_autopoll(struct local *l)
{
	int v;

	CSR_WRITE_1(l, VR_MIICR, 0);
	CSR_WRITE_1(l, VR_MIIADR, 1U << 7);
	do {
		DELAY(1);
		v = CSR_READ_1(l, VR_MIISR);
	} while ((v & MIISR_MIDLE) == 0);
	CSR_WRITE_1(l, VR_MIICR, MIICR_MAUTO);
	do {
		DELAY(1);
		v = CSR_READ_1(l, VR_MIISR);
	} while ((v & MIISR_MIDLE) != 0);
}

static void
mii_stoppoll(struct local *l)
{	
	int v;
	
	CSR_WRITE_1(l, VR_MIICR, 0);
	do {
		DELAY(1);
		v = CSR_READ_1(l, VR_MIISR);
	} while ((v & MIISR_MIDLE) == 0);
}

static int
mii_read(struct local *l, int phy, int reg)
{
	int v;

	mii_stoppoll(l);
	CSR_WRITE_1(l, VR_MIICFG, phy);
	CSR_WRITE_1(l, VR_MIIADR, reg);
	CSR_WRITE_1(l, VR_MIICR, MIICR_RCMD);
	do {
		v = CSR_READ_1(l, VR_MIICR);
	} while (v & MIICR_RCMD);
	v = CSR_READ_2(l, VR_MIIDATA);
	mii_autopoll(l);
	return v;
}

static void
mii_write(struct local *l, int phy, int reg, int data)
{
	int v;

	mii_stoppoll(l);
	CSR_WRITE_2(l, VR_MIIDATA, data);
	CSR_WRITE_1(l, VR_MIICFG, phy);
	CSR_WRITE_1(l, VR_MIIADR, reg);
	CSR_WRITE_1(l, VR_MIICR, MIICR_WCMD);
	do {
		v = CSR_READ_1(l, VR_MIICR);
	} while (v & MIICR_WCMD);
	mii_autopoll(l);
}

#define MII_BMCR	0x00	/* Basic mode control register (rw) */
#define  BMCR_RESET	0x8000	/* reset */
#define  BMCR_AUTOEN	0x1000	/* autonegotiation enable */
#define  BMCR_ISO	0x0400	/* isolate */
#define  BMCR_STARTNEG	0x0200	/* restart autonegotiation */
#define MII_BMSR	0x01	/* Basic mode status register (ro) */
#define  BMSR_ACOMP	0x0020	/* Autonegotiation complete */
#define  BMSR_LINK	0x0004	/* Link status */
#define MII_ANAR	0x04	/* Autonegotiation advertisement (rw) */
#define  ANAR_FC	0x0400	/* local device supports PAUSE */
#define  ANAR_TX_FD	0x0100	/* local device supports 100bTx FD */
#define  ANAR_TX	0x0080	/* local device supports 100bTx */
#define  ANAR_10_FD	0x0040	/* local device supports 10bT FD */
#define  ANAR_10	0x0020	/* local device supports 10bT */
#define  ANAR_CSMA	0x0001	/* protocol selector CSMA/CD */
#define MII_ANLPAR	0x05	/* Autonegotiation lnk partner abilities (rw) */
#define MII_GTCR	0x09	/* 1000baseT control */
#define  GANA_1000TFDX	0x0200	/* advertise 1000baseT FDX */
#define  GANA_1000THDX	0x0100	/* advertise 1000baseT HDX */
#define MII_GTSR	0x0a	/* 1000baseT status */
#define  GLPA_1000TFDX	0x0800	/* link partner 1000baseT FDX capable */
#define  GLPA_1000THDX	0x0400	/* link partner 1000baseT HDX capable */
#define  GLPA_ASM_DIR	0x0200	/* link partner asym. pause dir. capable */

void
mii_dealan(struct local *l, unsigned timo)
{
	unsigned anar, gtcr, bound;

	anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
	anar |= ANAR_FC;
	gtcr = GANA_1000TFDX | GANA_1000THDX;
	mii_write(l, l->phy, MII_ANAR, anar);
	mii_write(l, l->phy, MII_GTCR, gtcr);
	mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
	l->anlpar = 0;
	bound = getsecs() + timo;
	do {
		l->bmsr = mii_read(l, l->phy, MII_BMSR) |
		   mii_read(l, l->phy, MII_BMSR); /* read twice */
		if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
			l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
			break;
		}
		DELAY(10 * 1000);
	} while (getsecs() < bound);
	return;
}