Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/*	$NetBSD: rf_decluster.c,v 1.26 2019/02/09 03:34:00 christos Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Mark Holland
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*----------------------------------------------------------------------
 *
 * rf_decluster.c -- code related to the declustered layout
 *
 * Created 10-21-92 (MCH)
 *
 * Nov 93:  adding support for distributed sparing.  This code is a little
 *          complex:  the basic layout used is as follows:
 *          let F = (v-1)/GCD(r,v-1).  The spare space for each set of
 *          F consecutive fulltables is grouped together and placed after
 *          that set of tables.
 *                   +------------------------------+
 *                   |        F fulltables          |
 *                   |        Spare Space           |
 *                   |        F fulltables          |
 *                   |        Spare Space           |
 *                   |            ...               |
 *                   +------------------------------+
 *
 *--------------------------------------------------------------------*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_decluster.c,v 1.26 2019/02/09 03:34:00 christos Exp $");

#include <dev/raidframe/raidframevar.h>

#include "rf_archs.h"
#include "rf_raid.h"
#include "rf_decluster.h"
#include "rf_debugMem.h"
#include "rf_utils.h"
#include "rf_alloclist.h"
#include "rf_general.h"
#include "rf_kintf.h"
#include "rf_shutdown.h"
#include "rf_copyback.h"

#if (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0)

/* configuration code */

int
rf_ConfigureDeclustered(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
			RF_Config_t *cfgPtr)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	int     b, v, k, r, lambda;	/* block design params */
	int     i, j;
	RF_RowCol_t *first_avail_slot;
	RF_StripeCount_t complete_FT_count, numCompleteFullTablesPerDisk;
	RF_DeclusteredConfigInfo_t *info;
	RF_StripeCount_t PUsPerDisk, spareRegionDepthInPUs, numCompleteSpareRegionsPerDisk,
	        extraPUsPerDisk;
	RF_StripeCount_t totSparePUsPerDisk;
	RF_SectorNum_t diskOffsetOfLastFullTableInSUs;
	RF_SectorCount_t SpareSpaceInSUs;
	char   *cfgBuf = (char *) (cfgPtr->layoutSpecific);
	RF_StripeNum_t l, SUID;

	SUID = l = 0;
	numCompleteSpareRegionsPerDisk = 0;

	/* 1. create layout specific structure */
	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
	if (info == NULL)
		return (ENOMEM);
	layoutPtr->layoutSpecificInfo = (void *) info;
	info->SpareTable = NULL;

	/* 2. extract parameters from the config structure */
	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
		(void)memcpy(info->sparemap_fname, cfgBuf, RF_SPAREMAP_NAME_LEN);
	}
	cfgBuf += RF_SPAREMAP_NAME_LEN;

	b = *((int *) cfgBuf);
	cfgBuf += sizeof(int);
	v = *((int *) cfgBuf);
	cfgBuf += sizeof(int);
	k = *((int *) cfgBuf);
	cfgBuf += sizeof(int);
	r = *((int *) cfgBuf);
	cfgBuf += sizeof(int);
	lambda = *((int *) cfgBuf);
	cfgBuf += sizeof(int);
	raidPtr->noRotate = *((int *) cfgBuf);
	cfgBuf += sizeof(int);

	/* the sparemaps are generated assuming that parity is rotated, so we
	 * issue a warning if both distributed sparing and no-rotate are on at
	 * the same time */
	if ((layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) && raidPtr->noRotate) {
		RF_ERRORMSG("Warning:  distributed sparing specified without parity rotation.\n");
	}
	if (raidPtr->numCol != v) {
		RF_ERRORMSG2("RAID: config error: table element count (%d) not equal to no. of cols (%d)\n", v, raidPtr->numCol);
		return (EINVAL);
	}
	/* 3.  set up the values used in the mapping code */
	info->BlocksPerTable = b;
	info->Lambda = lambda;
	info->NumParityReps = info->groupSize = k;
	info->SUsPerTable = b * (k - 1) * layoutPtr->SUsPerPU;	/* b blks, k-1 SUs each */
	info->SUsPerFullTable = k * info->SUsPerTable;	/* rot k times */
	info->PUsPerBlock = k - 1;
	info->SUsPerBlock = info->PUsPerBlock * layoutPtr->SUsPerPU;
	info->TableDepthInPUs = (b * k) / v;
	info->FullTableDepthInPUs = info->TableDepthInPUs * k;	/* k repetitions */

	/* used only in distributed sparing case */
	info->FullTablesPerSpareRegion = (v - 1) / rf_gcd(r, v - 1);	/* (v-1)/gcd fulltables */
	info->TablesPerSpareRegion = k * info->FullTablesPerSpareRegion;
	info->SpareSpaceDepthPerRegionInSUs = (r * info->TablesPerSpareRegion / (v - 1)) * layoutPtr->SUsPerPU;

	/* check to make sure the block design is sufficiently small */
	if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
		if (info->FullTableDepthInPUs * layoutPtr->SUsPerPU + info->SpareSpaceDepthPerRegionInSUs > layoutPtr->stripeUnitsPerDisk) {
			RF_ERRORMSG3("RAID: config error: Full Table depth (%d) + Spare Space (%d) larger than disk size (%d) (BD too big)\n",
			    (int) info->FullTableDepthInPUs,
			    (int) info->SpareSpaceDepthPerRegionInSUs,
			    (int) layoutPtr->stripeUnitsPerDisk);
			return (EINVAL);
		}
	} else {
		if (info->TableDepthInPUs * layoutPtr->SUsPerPU > layoutPtr->stripeUnitsPerDisk) {
			RF_ERRORMSG2("RAID: config error: Table depth (%d) larger than disk size (%d) (BD too big)\n",
			    (int) (info->TableDepthInPUs * layoutPtr->SUsPerPU), \
			    (int) layoutPtr->stripeUnitsPerDisk);
			return (EINVAL);
		}
	}


	/* compute the size of each disk, and the number of tables in the last
	 * fulltable (which need not be complete) */
	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {

		PUsPerDisk = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU;
		spareRegionDepthInPUs = (info->TablesPerSpareRegion * info->TableDepthInPUs +
		    (info->TablesPerSpareRegion * info->TableDepthInPUs) / (v - 1));
		info->SpareRegionDepthInSUs = spareRegionDepthInPUs * layoutPtr->SUsPerPU;

		numCompleteSpareRegionsPerDisk = PUsPerDisk / spareRegionDepthInPUs;
		info->NumCompleteSRs = numCompleteSpareRegionsPerDisk;
		extraPUsPerDisk = PUsPerDisk % spareRegionDepthInPUs;

		/* assume conservatively that we need the full amount of spare
		 * space in one region in order to provide spares for the
		 * partial spare region at the end of the array.  We set "i"
		 * to the number of tables in the partial spare region.  This
		 * may actually include some fulltables. */
		extraPUsPerDisk -= (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
		if (extraPUsPerDisk <= 0)
			i = 0;
		else
			i = extraPUsPerDisk / info->TableDepthInPUs;

		complete_FT_count = (numCompleteSpareRegionsPerDisk * (info->TablesPerSpareRegion / k) + i / k);
		info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
		info->ExtraTablesPerDisk = i % k;

		/* note that in the last spare region, the spare space is
		 * complete even though data/parity space is not */
		totSparePUsPerDisk = (numCompleteSpareRegionsPerDisk + 1) * (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
		info->TotSparePUsPerDisk = totSparePUsPerDisk;

		layoutPtr->stripeUnitsPerDisk =
		    ((complete_FT_count) * info->FullTableDepthInPUs +	/* data & parity space */
		    info->ExtraTablesPerDisk * info->TableDepthInPUs +
		    totSparePUsPerDisk	/* spare space */
		    ) * layoutPtr->SUsPerPU;
		layoutPtr->dataStripeUnitsPerDisk =
		    (complete_FT_count * info->FullTableDepthInPUs + info->ExtraTablesPerDisk * info->TableDepthInPUs)
		    * layoutPtr->SUsPerPU * (k - 1) / k;

	} else {
		/* non-dist spare case:  force each disk to contain an
		 * integral number of tables */
		layoutPtr->stripeUnitsPerDisk /= (info->TableDepthInPUs * layoutPtr->SUsPerPU);
		layoutPtr->stripeUnitsPerDisk *= (info->TableDepthInPUs * layoutPtr->SUsPerPU);

		/* compute the number of tables in the last fulltable, which
		 * need not be complete */
		complete_FT_count =
		    ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->FullTableDepthInPUs);

		info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
		info->ExtraTablesPerDisk =
		    ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->TableDepthInPUs) % k;
	}

	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;

	/* find the disk offset of the stripe unit where the last fulltable
	 * starts */
	numCompleteFullTablesPerDisk = complete_FT_count;
	diskOffsetOfLastFullTableInSUs = numCompleteFullTablesPerDisk * info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
		SpareSpaceInSUs = numCompleteSpareRegionsPerDisk * info->SpareSpaceDepthPerRegionInSUs;
		diskOffsetOfLastFullTableInSUs += SpareSpaceInSUs;
		info->DiskOffsetOfLastSpareSpaceChunkInSUs =
		    diskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;
	}
	info->DiskOffsetOfLastFullTableInSUs = diskOffsetOfLastFullTableInSUs;
	info->numCompleteFullTablesPerDisk = numCompleteFullTablesPerDisk;

	/* 4.  create and initialize the lookup tables */
	info->LayoutTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
	if (info->LayoutTable == NULL)
		return (ENOMEM);
	info->OffsetTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
	if (info->OffsetTable == NULL)
		return (ENOMEM);
	info->BlockTable = rf_make_2d_array(info->TableDepthInPUs * layoutPtr->SUsPerPU, raidPtr->numCol, raidPtr->cleanupList);
	if (info->BlockTable == NULL)
		return (ENOMEM);

	first_avail_slot = rf_make_1d_array(v, NULL);
	if (first_avail_slot == NULL)
		return (ENOMEM);

	for (i = 0; i < b; i++)
		for (j = 0; j < k; j++)
			info->LayoutTable[i][j] = *cfgBuf++;

	/* initialize offset table */
	for (i = 0; i < b; i++)
		for (j = 0; j < k; j++) {
			info->OffsetTable[i][j] = first_avail_slot[info->LayoutTable[i][j]];
			first_avail_slot[info->LayoutTable[i][j]]++;
		}

	/* initialize block table */
	for (SUID = l = 0; l < layoutPtr->SUsPerPU; l++) {
		for (i = 0; i < b; i++) {
			for (j = 0; j < k; j++) {
				info->BlockTable[(info->OffsetTable[i][j] * layoutPtr->SUsPerPU) + l]
				    [info->LayoutTable[i][j]] = SUID;
			}
			SUID++;
		}
	}

	rf_free_1d_array(first_avail_slot, v);

	/* 5.  set up the remaining redundant-but-useful parameters */

	raidPtr->totalSectors = (k * complete_FT_count + info->ExtraTablesPerDisk) *
	    info->SUsPerTable * layoutPtr->sectorsPerStripeUnit;
	layoutPtr->numStripe = (raidPtr->totalSectors / layoutPtr->sectorsPerStripeUnit) / (k - 1);

	/* strange evaluation order below to try and minimize overflow
	 * problems */

	layoutPtr->dataSectorsPerStripe = (k - 1) * layoutPtr->sectorsPerStripeUnit;
	layoutPtr->numDataCol = k - 1;
	layoutPtr->numParityCol = 1;

	return (0);
}
/* declustering with distributed sparing */
static void rf_ShutdownDeclusteredDS(RF_ThreadArg_t);
static void
rf_ShutdownDeclusteredDS(RF_ThreadArg_t arg)
{
	RF_DeclusteredConfigInfo_t *info;
	RF_Raid_t *raidPtr;

	raidPtr = (RF_Raid_t *) arg;
	info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
	if (info->SpareTable)
		rf_FreeSpareTable(raidPtr);
}

int
rf_ConfigureDeclusteredDS(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
			  RF_Config_t *cfgPtr)
{
	int     rc;

	rc = rf_ConfigureDeclustered(listp, raidPtr, cfgPtr);
	if (rc)
		return (rc);
	rf_ShutdownCreate(listp, rf_ShutdownDeclusteredDS, raidPtr);

	return (0);
}

void
rf_MapSectorDeclustered(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
			RF_RowCol_t *col,
			RF_SectorNum_t *diskSector, int remap)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
	RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
	RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
	RF_StripeNum_t BlockID, BlockOffset, RepIndex;
	RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
	RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
	RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;

	rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);

	FullTableID = SUID / sus_per_fulltable;	/* fulltable ID within array
						 * (across rows) */

	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
		SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
		SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
	}
	FullTableOffset = SUID % sus_per_fulltable;
	TableID = FullTableOffset / info->SUsPerTable;
	TableOffset = FullTableOffset - TableID * info->SUsPerTable;
	BlockID = TableOffset / info->PUsPerBlock;
	BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
	BlockID %= info->BlocksPerTable;
	RepIndex = info->PUsPerBlock - TableID;
	if (!raidPtr->noRotate)
		BlockOffset += ((BlockOffset >= RepIndex) ? 1 : 0);
	*col = info->LayoutTable[BlockID][BlockOffset];

	/* remap to distributed spare space if indicated */
	if (remap) {
		RF_ASSERT(raidPtr->Disks[*col].status == rf_ds_reconstructing || raidPtr->Disks[*col].status == rf_ds_dist_spared ||
		    (rf_copyback_in_progress && raidPtr->Disks[*col].status == rf_ds_optimal));
		rf_remap_to_spare_space(layoutPtr, info, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
	} else {

		outSU = base_suid;
		outSU += FullTableID * fulltable_depth;	/* offs to strt of FT */
		outSU += SpareSpace;	/* skip rsvd spare space */
		outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU;	/* offs to strt of tble */
		outSU += info->OffsetTable[BlockID][BlockOffset] * layoutPtr->SUsPerPU;	/* offs to the PU */
	}
	outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);	/* offs to the SU within
										 * a PU */

	/* convert SUs to sectors, and, if not aligned to SU boundary, add in
	 * offset to sector.  */
	*diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);

	RF_ASSERT(*col != -1);
}


/* prototyping this inexplicably causes the compile of the layout table (rf_layout.c) to fail */
void
rf_MapParityDeclustered(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
			RF_RowCol_t *col,
			RF_SectorNum_t *diskSector, int remap)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
	RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
	RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
	RF_StripeNum_t BlockID, RepIndex;
	RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
	RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
	RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;

	rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);

	/* compute row & (possibly) spare space exactly as before */
	FullTableID = SUID / sus_per_fulltable;

	if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
		SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
		SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
	}
	/* compute BlockID and RepIndex exactly as before */
	FullTableOffset = SUID % sus_per_fulltable;
	TableID = FullTableOffset / info->SUsPerTable;
	TableOffset = FullTableOffset - TableID * info->SUsPerTable;
	/* TableOffset     = FullTableOffset % info->SUsPerTable; */
	/* BlockID         = (TableOffset / info->PUsPerBlock) %
	 * info->BlocksPerTable; */
	BlockID = TableOffset / info->PUsPerBlock;
	BlockID %= info->BlocksPerTable;

	/* the parity block is in the position indicated by RepIndex */
	RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->PUsPerBlock - TableID;
	*col = info->LayoutTable[BlockID][RepIndex];

	if (remap) {
		RF_ASSERT(raidPtr->Disks[*col].status == rf_ds_reconstructing || raidPtr->Disks[*col].status == rf_ds_dist_spared ||
		    (rf_copyback_in_progress && raidPtr->Disks[*col].status == rf_ds_optimal));
		rf_remap_to_spare_space(layoutPtr, info, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
	} else {

		/* compute sector as before, except use RepIndex instead of
		 * BlockOffset */
		outSU = base_suid;
		outSU += FullTableID * fulltable_depth;
		outSU += SpareSpace;	/* skip rsvd spare space */
		outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU;
		outSU += info->OffsetTable[BlockID][RepIndex] * layoutPtr->SUsPerPU;
	}

	outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);
	*diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);

	RF_ASSERT(*col != -1);
}
/* returns an array of ints identifying the disks that comprise the stripe containing the indicated address.
 * the caller must _never_ attempt to modify this array.
 */
void
rf_IdentifyStripeDeclustered(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
			     RF_RowCol_t **diskids)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
	RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
	RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
	RF_StripeNum_t base_suid = 0;
	RF_StripeNum_t SUID = rf_RaidAddressToStripeUnitID(layoutPtr, addr);
	RF_StripeNum_t stripeID;
	int     tableOffset;

	rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
	stripeID = rf_StripeUnitIDToStripeID(layoutPtr, SUID);	/* find stripe offset
								 * into array */
	tableOffset = (stripeID % info->BlocksPerTable);	/* find offset into
								 * block design table */
	*diskids = info->LayoutTable[tableOffset];
}
/* This returns the default head-separation limit, which is measured
 * in "required units for reconstruction".  Each time a disk fetches
 * a unit, it bumps a counter.  The head-sep code prohibits any disk
 * from getting more than headSepLimit counter values ahead of any
 * other.
 *
 * We assume here that the number of floating recon buffers is already
 * set.  There are r stripes to be reconstructed in each table, and so
 * if we have a total of B buffers, we can have at most B/r tables
 * under recon at any one time.  In each table, lambda units are required
 * from each disk, so given B buffers, the head sep limit has to be
 * (lambda*B)/r units.  We subtract one to avoid weird boundary cases.
 *
 * for example, suppose were given 50 buffers, r=19, and lambda=4 as in
 * the 20.5 design.  There are 19 stripes/table to be reconstructed, so
 * we can have 50/19 tables concurrently under reconstruction, which means
 * we can allow the fastest disk to get 50/19 tables ahead of the slower
 * disk.  There are lambda "required units" for each disk, so the fastest
 * disk can get 4*50/19 = 10 counter values ahead of the slowest.
 *
 * If numBufsToAccumulate is not 1, we need to limit the head sep further
 * because multiple bufs will be required for each stripe under recon.
 */
RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitDeclustered(RF_Raid_t *raidPtr)
{
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;

	return (info->Lambda * raidPtr->numFloatingReconBufs / info->TableDepthInPUs / rf_numBufsToAccumulate);
}
/* returns the default number of recon buffers to use.  The value
 * is somewhat arbitrary...it's intended to be large enough to allow
 * for a reasonably large head-sep limit, but small enough that you
 * don't use up all your system memory with buffers.
 */
int
rf_GetDefaultNumFloatingReconBuffersDeclustered(RF_Raid_t * raidPtr)
{
	return (100 * rf_numBufsToAccumulate);
}
/* sectors in the last fulltable of the array need to be handled
 * specially since this fulltable can be incomplete.  this function
 * changes the values of certain params to handle this.
 *
 * the idea here is that MapSector et. al. figure out which disk the
 * addressed unit lives on by computing the modulos of the unit number
 * with the number of units per fulltable, table, etc.  In the last
 * fulltable, there are fewer units per fulltable, so we need to adjust
 * the number of user data units per fulltable to reflect this.
 *
 * so, we (1) convert the fulltable size and depth parameters to
 * the size of the partial fulltable at the end, (2) compute the
 * disk sector offset where this fulltable starts, and (3) convert
 * the users stripe unit number from an offset into the array to
 * an offset into the last fulltable.
 */
void
rf_decluster_adjust_params(RF_RaidLayout_t *layoutPtr,
			   RF_StripeNum_t *SUID,
			   RF_StripeCount_t *sus_per_fulltable,
			   RF_StripeCount_t *fulltable_depth,
			   RF_StripeNum_t *base_suid)
{
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;

	if (*SUID >= info->FullTableLimitSUID) {
		/* new full table size is size of last full table on disk */
		*sus_per_fulltable = info->ExtraTablesPerDisk * info->SUsPerTable;

		/* new full table depth is corresponding depth */
		*fulltable_depth = info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;

		/* set up the new base offset */
		*base_suid = info->DiskOffsetOfLastFullTableInSUs;

		/* convert users array address to an offset into the last
		 * fulltable */
		*SUID -= info->FullTableLimitSUID;
	}
}
/*
 * map a stripe ID to a parity stripe ID.
 * See comment above RaidAddressToParityStripeID in layout.c.
 */
void
rf_MapSIDToPSIDDeclustered(RF_RaidLayout_t *layoutPtr,
			   RF_StripeNum_t stripeID,
			   RF_StripeNum_t *psID,
			   RF_ReconUnitNum_t *which_ru)
{
	RF_DeclusteredConfigInfo_t *info;

	info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;

	*psID = (stripeID / (layoutPtr->SUsPerPU * info->BlocksPerTable))
	    * info->BlocksPerTable + (stripeID % info->BlocksPerTable);
	*which_ru = (stripeID % (info->BlocksPerTable * layoutPtr->SUsPerPU))
	    / info->BlocksPerTable;
	RF_ASSERT((*which_ru) < layoutPtr->SUsPerPU / layoutPtr->SUsPerRU);
}
/*
 * Called from MapSector and MapParity to retarget an access at the spare unit.
 * Modifies the "col" and "outSU" parameters only.
 */
void
rf_remap_to_spare_space(RF_RaidLayout_t *layoutPtr,
			RF_DeclusteredConfigInfo_t *info,
			RF_StripeNum_t FullTableID,
			RF_StripeNum_t TableID,
			RF_SectorNum_t BlockID,
			RF_StripeNum_t base_suid,
			RF_StripeNum_t SpareRegion,
			RF_RowCol_t *outCol,
			RF_StripeNum_t *outSU)
{
	RF_StripeNum_t ftID, spareTableStartSU, TableInSpareRegion, lastSROffset,
	        which_ft;

	/*
         * note that FullTableID and hence SpareRegion may have gotten
         * tweaked by rf_decluster_adjust_params. We detect this by
         * noticing that base_suid is not 0.
         */
	if (base_suid == 0) {
		ftID = FullTableID;
	} else {
		/*
	         * There may be > 1.0 full tables in the last (i.e. partial)
	         * spare region.  find out which of these we're in.
	         */
		lastSROffset = info->NumCompleteSRs * info->SpareRegionDepthInSUs;
		which_ft = (info->DiskOffsetOfLastFullTableInSUs - lastSROffset) / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU);

		/* compute the actual full table ID */
		ftID = info->DiskOffsetOfLastFullTableInSUs / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU) + which_ft;
		SpareRegion = info->NumCompleteSRs;
	}
	TableInSpareRegion = (ftID * info->NumParityReps + TableID) % info->TablesPerSpareRegion;

	*outCol = info->SpareTable[TableInSpareRegion][BlockID].spareDisk;
	RF_ASSERT(*outCol != -1);

	spareTableStartSU = (SpareRegion == info->NumCompleteSRs) ?
	    info->DiskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU :
	    (SpareRegion + 1) * info->SpareRegionDepthInSUs - info->SpareSpaceDepthPerRegionInSUs;
	*outSU = spareTableStartSU + info->SpareTable[TableInSpareRegion][BlockID].spareBlockOffsetInSUs;
	if (*outSU >= layoutPtr->stripeUnitsPerDisk) {
		printf("rf_remap_to_spare_space: invalid remapped disk SU offset %ld\n", (long) *outSU);
	}
}

#endif /* (RF_INCLUDE_PARITY_DECLUSTERING > 0)  || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) */

#if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
int
rf_InstallSpareTable(RF_Raid_t *raidPtr, RF_RowCol_t fcol)
{
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
	RF_SparetWait_t *req;
	int     retcode;

	req = RF_Malloc(sizeof(*req));
	req->C = raidPtr->numCol;
	req->G = raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol;
	req->fcol = fcol;
	req->SUsPerPU = raidPtr->Layout.SUsPerPU;
	req->TablesPerSpareRegion = info->TablesPerSpareRegion;
	req->BlocksPerTable = info->BlocksPerTable;
	req->TableDepthInPUs = info->TableDepthInPUs;
	req->SpareSpaceDepthPerRegionInSUs = info->SpareSpaceDepthPerRegionInSUs;

	retcode = rf_GetSpareTableFromDaemon(req);
	RF_ASSERT(!retcode);	/* XXX -- fix this to recover gracefully --
				 * XXX */
	return (retcode);
}
#endif
#if (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0)
/*
 * Invoked via ioctl to install a spare table in the kernel.
 */
int
rf_SetSpareTable(RF_Raid_t *raidPtr, void *data)
{
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
	RF_SpareTableEntry_t **ptrs;
	int     i, retcode;

	/* what we need to copyin is a 2-d array, so first copyin the user
	 * pointers to the rows in the table */
	size_t ptrslen = info->TablesPerSpareRegion * sizeof(*ptrs);
	ptrs = RF_Malloc(ptrslen);
	retcode = copyin(data, ptrs, ptrslen);

	if (retcode)
		return (retcode);

	/* now allocate kernel space for the row pointers */
	info->SpareTable = RF_Malloc(info->TablesPerSpareRegion *
	    sizeof(*info->SpareTable));

	/* now allocate kernel space for each row in the table, and copy it in
	 * from user space */
	size_t len = info->BlocksPerTable * sizeof(**info->SpareTable);
	for (i = 0; i < info->TablesPerSpareRegion; i++) {
		info->SpareTable[i] = RF_Malloc(len);
		retcode = copyin(ptrs[i], info->SpareTable[i], len);
		if (retcode) {
			info->SpareTable = NULL;	/* blow off the memory
							 * we've allocated */
			return (retcode);
		}
	}

	/* free up the temporary array we used */
	RF_Free(ptrs, ptrslen);

	return (0);
}

RF_ReconUnitCount_t
rf_GetNumSpareRUsDeclustered(RF_Raid_t *raidPtr)
{
	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;

	return (((RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo)->TotSparePUsPerDisk);
}
#endif /* (RF_INCLUDE_PARITY_DECLUSTERING > 0)  || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) */

void
rf_FreeSpareTable(RF_Raid_t *raidPtr)
{
	long    i;
	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
	RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
	RF_SpareTableEntry_t **table = info->SpareTable;

	for (i = 0; i < info->TablesPerSpareRegion; i++) {
		RF_Free(table[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t));
	}
	RF_Free(table, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *));
	info->SpareTable = NULL;
}