Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/*	$NetBSD: layer_vnops.c,v 1.67 2017/06/04 08:05:42 hannken Exp $	*/

/*
 * Copyright (c) 1999 National Aeronautics & Space Administration
 * All rights reserved.
 *
 * This software was written by William Studenmund of the
 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the National Aeronautics & Space Administration
 *    nor the names of its contributors may be used to endorse or promote
 *    products derived from this software without specific prior written
 *    permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * John Heidemann of the UCLA Ficus project.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
 *
 * Ancestors:
 *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
 *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
 *	...and...
 *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
 */

/*
 * Generic layer vnode operations.
 *
 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
 * the core implementation of stacked file-systems.
 *
 * The layerfs duplicates a portion of the file system name space under
 * a new name.  In this respect, it is similar to the loopback file system.
 * It differs from the loopback fs in two respects: it is implemented using
 * a stackable layers technique, and it is "layerfs-nodes" stack above all
 * lower-layer vnodes, not just over directory vnodes.
 *
 * OPERATION OF LAYERFS
 *
 * The layerfs is the minimum file system layer, bypassing all possible
 * operations to the lower layer for processing there.  The majority of its
 * activity centers on the bypass routine, through which nearly all vnode
 * operations pass.
 *
 * The bypass routine accepts arbitrary vnode operations for handling by
 * the lower layer.  It begins by examining vnode operation arguments and
 * replacing any layered nodes by their lower-layer equivalents.  It then
 * invokes an operation on the lower layer.  Finally, it replaces the
 * layered nodes in the arguments and, if a vnode is returned by the
 * operation, stacks a layered node on top of the returned vnode.
 *
 * The bypass routine in this file, layer_bypass(), is suitable for use
 * by many different layered filesystems. It can be used by multiple
 * filesystems simultaneously. Alternatively, a layered fs may provide
 * its own bypass routine, in which case layer_bypass() should be used as
 * a model. For instance, the main functionality provided by umapfs, the user
 * identity mapping file system, is handled by a custom bypass routine.
 *
 * Typically a layered fs registers its selected bypass routine as the
 * default vnode operation in its vnodeopv_entry_desc table. Additionally
 * the filesystem must store the bypass entry point in the layerm_bypass
 * field of struct layer_mount. All other layer routines in this file will
 * use the layerm_bypass() routine.
 *
 * Although the bypass routine handles most operations outright, a number
 * of operations are special cased and handled by the layerfs.  For instance,
 * layer_getattr() must change the fsid being returned.  While layer_lock()
 * and layer_unlock() must handle any locking for the current vnode as well
 * as pass the lock request down.  layer_inactive() and layer_reclaim() are
 * not bypassed so that they can handle freeing layerfs-specific data.  Also,
 * certain vnode operations (create, mknod, remove, link, rename, mkdir,
 * rmdir, and symlink) change the locking state within the operation.  Ideally
 * these operations should not change the lock state, but should be changed
 * to let the caller of the function unlock them.  Otherwise, all intermediate
 * vnode layers (such as union, umapfs, etc) must catch these functions to do
 * the necessary locking at their layer.
 *
 * INSTANTIATING VNODE STACKS
 *
 * Mounting associates "layerfs-nodes" stack and lower layer, in effect
 * stacking two VFSes.  The initial mount creates a single vnode stack for
 * the root of the new layerfs.  All other vnode stacks are created as a
 * result of vnode operations on this or other layerfs vnode stacks.
 *
 * New vnode stacks come into existence as a result of an operation which
 * returns a vnode.  The bypass routine stacks a layerfs-node above the new
 * vnode before returning it to the caller.
 *
 * For example, imagine mounting a null layer with:
 *
 *	"mount_null /usr/include /dev/layer/null"
 *
 * Changing directory to /dev/layer/null will assign the root layerfs-node,
 * which was created when the null layer was mounted).  Now consider opening
 * "sys".  A layer_lookup() would be performed on the root layerfs-node.
 * This operation would bypass through to the lower layer which would return
 * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
 * layerfs-node aliasing the UFS "sys" and returns this to the caller.
 * Later operations on the layerfs-node "sys" will repeat this process when
 * constructing other vnode stacks.
 *
 * INVOKING OPERATIONS ON LOWER LAYERS
 *
 * There are two techniques to invoke operations on a lower layer when the
 * operation cannot be completely bypassed.  Each method is appropriate in
 * different situations.  In both cases, it is the responsibility of the
 * aliasing layer to make the operation arguments "correct" for the lower
 * layer by mapping any vnode arguments to the lower layer.
 *
 * The first approach is to call the aliasing layer's bypass routine.  This
 * method is most suitable when you wish to invoke the operation currently
 * being handled on the lower layer.  It has the advantage that the bypass
 * routine already must do argument mapping.  An example of this is
 * layer_getattr().
 *
 * A second approach is to directly invoke vnode operations on the lower
 * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
 * is that it is easy to invoke arbitrary operations on the lower layer.
 * The disadvantage is that vnode's arguments must be manually mapped.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.67 2017/06/04 08:05:42 hannken Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/kmem.h>
#include <sys/buf.h>
#include <sys/kauth.h>
#include <sys/fcntl.h>
#include <sys/fstrans.h>

#include <miscfs/genfs/layer.h>
#include <miscfs/genfs/layer_extern.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>

/*
 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
 *		routine by John Heidemann.
 *	The new element for this version is that the whole nullfs
 * system gained the concept of locks on the lower node.
 *    The 10-Apr-92 version was optimized for speed, throwing away some
 * safety checks.  It should still always work, but it's not as
 * robust to programmer errors.
 *
 * In general, we map all vnodes going down and unmap them on the way back.
 *
 * Also, some BSD vnode operations have the side effect of vrele'ing
 * their arguments.  With stacking, the reference counts are held
 * by the upper node, not the lower one, so we must handle these
 * side-effects here.  This is not of concern in Sun-derived systems
 * since there are no such side-effects.
 *
 * New for the 08-June-99 version: we also handle operations which unlock
 * the passed-in node (typically they vput the node).
 *
 * This makes the following assumptions:
 * - only one returned vpp
 * - no INOUT vpp's (Sun's vop_open has one of these)
 * - the vnode operation vector of the first vnode should be used
 *   to determine what implementation of the op should be invoked
 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
 *   problems on rmdir'ing mount points and renaming?)
 */
int
layer_bypass(void *v)
{
	struct vop_generic_args /* {
		struct vnodeop_desc *a_desc;
		<other random data follows, presumably>
	} */ *ap = v;
	int (**our_vnodeop_p)(void *);
	struct vnode **this_vp_p;
	int error;
	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
	struct vnode **vps_p[VDESC_MAX_VPS];
	struct vnode ***vppp;
	struct mount *mp;
	struct vnodeop_desc *descp = ap->a_desc;
	int reles, i, flags;

#ifdef DIAGNOSTIC
	/*
	 * We require at least one vp.
	 */
	if (descp->vdesc_vp_offsets == NULL ||
	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
		panic("%s: no vp's in map.\n", __func__);
#endif

	vps_p[0] =
	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
	vp0 = *vps_p[0];
	mp = vp0->v_mount;
	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
	our_vnodeop_p = vp0->v_op;

	if (flags & LAYERFS_MBYPASSDEBUG)
		printf("%s: %s\n", __func__, descp->vdesc_name);

	/*
	 * Map the vnodes going in.
	 * Later, we'll invoke the operation based on
	 * the first mapped vnode's operation vector.
	 */
	reles = descp->vdesc_flags;
	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
			break;   /* bail out at end of list */
		vps_p[i] = this_vp_p =
		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
		    ap);
		/*
		 * We're not guaranteed that any but the first vnode
		 * are of our type.  Check for and don't map any
		 * that aren't.  (We must always map first vp or vclean fails.)
		 */
		if (i && (*this_vp_p == NULL ||
		    (*this_vp_p)->v_op != our_vnodeop_p)) {
			old_vps[i] = NULL;
		} else {
			old_vps[i] = *this_vp_p;
			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
			/*
			 * XXX - Several operations have the side effect
			 * of vrele'ing their vp's.  We must account for
			 * that.  (This should go away in the future.)
			 */
			if (reles & VDESC_VP0_WILLRELE)
				vref(*this_vp_p);
		}
	}

	/*
	 * Call the operation on the lower layer
	 * with the modified argument structure.
	 */
	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);

	/*
	 * Maintain the illusion of call-by-value
	 * by restoring vnodes in the argument structure
	 * to their original value.
	 */
	reles = descp->vdesc_flags;
	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
			break;   /* bail out at end of list */
		if (old_vps[i]) {
			*(vps_p[i]) = old_vps[i];
			if (reles & VDESC_VP0_WILLRELE)
				vrele(*(vps_p[i]));
		}
	}

	/*
	 * Map the possible out-going vpp
	 * (Assumes that the lower layer always returns
	 * a VREF'ed vpp unless it gets an error.)
	 */
	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
		vppp = VOPARG_OFFSETTO(struct vnode***,
				 descp->vdesc_vpp_offset, ap);
		/*
		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
		 * as a lookup on "." would generate a locking error.
		 * So all the calls which get us here have a unlocked vpp. :-)
		 */
		error = layer_node_create(mp, **vppp, *vppp);
		if (error) {
			vrele(**vppp);
			**vppp = NULL;
		}
	}
	return error;
}

/*
 * We have to carry on the locking protocol on the layer vnodes
 * as we progress through the tree. We also have to enforce read-only
 * if this layer is mounted read-only.
 */
int
layer_lookup(void *v)
{
	struct vop_lookup_v2_args /* {
		struct vnodeop_desc *a_desc;
		struct vnode * a_dvp;
		struct vnode ** a_vpp;
		struct componentname * a_cnp;
	} */ *ap = v;
	struct componentname *cnp = ap->a_cnp;
	struct vnode *dvp, *lvp, *ldvp;
	int error, flags = cnp->cn_flags;

	dvp = ap->a_dvp;

	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
		*ap->a_vpp = NULL;
		return EROFS;
	}

	ldvp = LAYERVPTOLOWERVP(dvp);
	ap->a_dvp = ldvp;
	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
	lvp = *ap->a_vpp;
	*ap->a_vpp = NULL;

	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
		error = EROFS;

	/*
	 * We must do the same locking and unlocking at this layer as
	 * is done in the layers below us.
	 */
	if (ldvp == lvp) {
		/*
		 * Got the same object back, because we looked up ".",
		 * or ".." in the root node of a mount point.
		 * So we make another reference to dvp and return it.
		 */
		vref(dvp);
		*ap->a_vpp = dvp;
		vrele(lvp);
	} else if (lvp != NULL) {
		/* Note: dvp and ldvp are both locked. */
		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
		if (error) {
			vrele(lvp);
		}
	}
	return error;
}

/*
 * Setattr call. Disallow write attempts if the layer is mounted read-only.
 */
int
layer_setattr(void *v)
{
	struct vop_setattr_args /* {
		struct vnodeop_desc *a_desc;
		struct vnode *a_vp;
		struct vattr *a_vap;
		kauth_cred_t a_cred;
		struct lwp *a_l;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	struct vattr *vap = ap->a_vap;

  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
	    (vp->v_mount->mnt_flag & MNT_RDONLY))
		return EROFS;
	if (vap->va_size != VNOVAL) {
 		switch (vp->v_type) {
 		case VDIR:
 			return EISDIR;
 		case VCHR:
 		case VBLK:
 		case VSOCK:
 		case VFIFO:
			return 0;
		case VREG:
		case VLNK:
 		default:
			/*
			 * Disallow write attempts if the filesystem is
			 * mounted read-only.
			 */
			if (vp->v_mount->mnt_flag & MNT_RDONLY)
				return EROFS;
		}
	}
	return LAYERFS_DO_BYPASS(vp, ap);
}

/*
 *  We handle getattr only to change the fsid.
 */
int
layer_getattr(void *v)
{
	struct vop_getattr_args /* {
		struct vnode *a_vp;
		struct vattr *a_vap;
		kauth_cred_t a_cred;
		struct lwp *a_l;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	int error;

	error = LAYERFS_DO_BYPASS(vp, ap);
	if (error) {
		return error;
	}
	/* Requires that arguments be restored. */
	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
	return 0;
}

int
layer_access(void *v)
{
	struct vop_access_args /* {
		struct vnode *a_vp;
		int  a_mode;
		kauth_cred_t a_cred;
		struct lwp *a_l;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	mode_t mode = ap->a_mode;

	/*
	 * Disallow write attempts on read-only layers;
	 * unless the file is a socket, fifo, or a block or
	 * character device resident on the file system.
	 */
	if (mode & VWRITE) {
		switch (vp->v_type) {
		case VDIR:
		case VLNK:
		case VREG:
			if (vp->v_mount->mnt_flag & MNT_RDONLY)
				return EROFS;
			break;
		default:
			break;
		}
	}
	return LAYERFS_DO_BYPASS(vp, ap);
}

/*
 * We must handle open to be able to catch MNT_NODEV and friends
 * and increment the lower v_writecount.
 */
int
layer_open(void *v)
{
	struct vop_open_args /* {
		const struct vnodeop_desc *a_desc;
		struct vnode *a_vp;
		int a_mode;
		kauth_cred_t a_cred;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
	int error;

	if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
	    (vp->v_mount->mnt_flag & MNT_NODEV))
		return ENXIO;

	error = LAYERFS_DO_BYPASS(vp, ap);
	if (error == 0 && (ap->a_mode & FWRITE)) {
		mutex_enter(lvp->v_interlock);
		lvp->v_writecount++;
		mutex_exit(lvp->v_interlock);
	}
	return error;
}

/*
 * We must handle close to decrement the lower v_writecount.
 */
int
layer_close(void *v)
{
	struct vop_close_args /* {
		const struct vnodeop_desc *a_desc;
		struct vnode *a_vp;
		int a_fflag;
		kauth_cred_t a_cred;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	struct vnode *lvp = LAYERVPTOLOWERVP(vp);

	if ((ap->a_fflag & FWRITE)) {
		mutex_enter(lvp->v_interlock);
		KASSERT(lvp->v_writecount > 0);
		lvp->v_writecount--;
		mutex_exit(lvp->v_interlock);
	}
	return LAYERFS_DO_BYPASS(vp, ap);
}

/*
 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
 * syncing the underlying vnodes, since they'll be fsync'ed when
 * reclaimed; otherwise, pass it through to the underlying layer.
 *
 * XXX Do we still need to worry about shallow fsync?
 */
int
layer_fsync(void *v)
{
	struct vop_fsync_args /* {
		struct vnode *a_vp;
		kauth_cred_t a_cred;
		int  a_flags;
		off_t offlo;
		off_t offhi;
		struct lwp *a_l;
	} */ *ap = v;
	int error;

	if (ap->a_flags & FSYNC_RECLAIM) {
		return 0;
	}
	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
		error = spec_fsync(v);
		if (error)
			return error;
	}
	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
}

int
layer_inactive(void *v)
{
	struct vop_inactive_v2_args /* {
		struct vnode *a_vp;
		bool *a_recycle;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;

	/*
	 * If we did a remove, don't cache the node.
	 */
	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);

	/*
	 * Do nothing (and _don't_ bypass).
	 * Wait to vrele lowervp until reclaim,
	 * so that until then our layer_node is in the
	 * cache and reusable.
	 *
	 * NEEDSWORK: Someday, consider inactive'ing
	 * the lowervp and then trying to reactivate it
	 * with capabilities (v_id)
	 * like they do in the name lookup cache code.
	 * That's too much work for now.
	 */

	return 0;
}

int
layer_remove(void *v)
{
	struct vop_remove_v2_args /* {
		struct vnode		*a_dvp;
		struct vnode		*a_vp;
		struct componentname	*a_cnp;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	int error;

	vref(vp);
	error = LAYERFS_DO_BYPASS(vp, ap);
	if (error == 0) {
		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
	}
	vrele(vp);

	return error;
}

int
layer_rename(void *v)
{
	struct vop_rename_args  /* {
		struct vnode		*a_fdvp;
		struct vnode		*a_fvp;
		struct componentname	*a_fcnp;
		struct vnode		*a_tdvp;
		struct vnode		*a_tvp;
		struct componentname	*a_tcnp;
	} */ *ap = v;
	struct vnode *fdvp = ap->a_fdvp, *tvp;
	int error;

	tvp = ap->a_tvp;
	if (tvp) {
		if (tvp->v_mount != fdvp->v_mount)
			tvp = NULL;
		else
			vref(tvp);
	}
	error = LAYERFS_DO_BYPASS(fdvp, ap);
	if (tvp) {
		if (error == 0)
			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
		vrele(tvp);
	}
	return error;
}

int
layer_rmdir(void *v)
{
	struct vop_rmdir_v2_args /* {
		struct vnode		*a_dvp;
		struct vnode		*a_vp;
		struct componentname	*a_cnp;
	} */ *ap = v;
	int		error;
	struct vnode	*vp = ap->a_vp;

	vref(vp);
	error = LAYERFS_DO_BYPASS(vp, ap);
	if (error == 0) {
		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
	}
	vrele(vp);

	return error;
}

int
layer_revoke(void *v)
{
        struct vop_revoke_args /* {
		struct vnode *a_vp;
		int a_flags;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
	int error;

	/*
	 * We will most likely end up in vclean which uses the v_usecount
	 * to determine if a vnode is active.  Take an extra reference on
	 * the lower vnode so it will always close and inactivate.
	 */
	vref(lvp);
	error = LAYERFS_DO_BYPASS(vp, ap);
	vrele(lvp);

	return error;
}

int
layer_reclaim(void *v)
{
	struct vop_reclaim_v2_args /* {
		struct vnode *a_vp;
		struct lwp *a_l;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
	struct layer_node *xp = VTOLAYER(vp);
	struct vnode *lowervp = xp->layer_lowervp;

	VOP_UNLOCK(vp);

	/*
	 * Note: in vop_reclaim, the node's struct lock has been
	 * decomissioned, so we have to be careful about calling
	 * VOP's on ourself.  We must be careful as VXLOCK is set.
	 */
	if (vp == lmp->layerm_rootvp) {
		/*
		 * Oops! We no longer have a root node. Most likely reason is
		 * that someone forcably unmunted the underlying fs.
		 *
		 * Now getting the root vnode will fail. We're dead. :-(
		 */
		lmp->layerm_rootvp = NULL;
	}

	mutex_enter(vp->v_interlock);
	KASSERT(vp->v_interlock == lowervp->v_interlock);
	lowervp->v_writecount -= vp->v_writecount;
	mutex_exit(vp->v_interlock);

	/* After this assignment, this node will not be re-used. */
	xp->layer_lowervp = NULL;
	kmem_free(vp->v_data, lmp->layerm_size);
	vp->v_data = NULL;
	vrele(lowervp);

	return 0;
}

/*
 * We just feed the returned vnode up to the caller - there's no need
 * to build a layer node on top of the node on which we're going to do
 * i/o. :-)
 */
int
layer_bmap(void *v)
{
	struct vop_bmap_args /* {
		struct vnode *a_vp;
		daddr_t  a_bn;
		struct vnode **a_vpp;
		daddr_t *a_bnp;
		int *a_runp;
	} */ *ap = v;
	struct vnode *vp;

	vp = LAYERVPTOLOWERVP(ap->a_vp);
	ap->a_vp = vp;

	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
}

int
layer_print(void *v)
{
	struct vop_print_args /* {
		struct vnode *a_vp;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
	return 0;
}

int
layer_getpages(void *v)
{
	struct vop_getpages_args /* {
		struct vnode *a_vp;
		voff_t a_offset;
		struct vm_page **a_m;
		int *a_count;
		int a_centeridx;
		vm_prot_t a_access_type;
		int a_advice;
		int a_flags;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;
	struct mount *mp = vp->v_mount;
	int error;

	KASSERT(mutex_owned(vp->v_interlock));

	if (ap->a_flags & PGO_LOCKED) {
		return EBUSY;
	}
	ap->a_vp = LAYERVPTOLOWERVP(vp);
	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);

	/* Just pass the request on to the underlying layer. */
	mutex_exit(vp->v_interlock);
	fstrans_start(mp);
	mutex_enter(vp->v_interlock);
	if (mp == vp->v_mount) {
		/* Will release the interlock. */
		error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
	} else {
		mutex_exit(vp->v_interlock);
		error = ENOENT;
	}
	fstrans_done(mp);

	return error;
}

int
layer_putpages(void *v)
{
	struct vop_putpages_args /* {
		struct vnode *a_vp;
		voff_t a_offlo;
		voff_t a_offhi;
		int a_flags;
	} */ *ap = v;
	struct vnode *vp = ap->a_vp;

	KASSERT(mutex_owned(vp->v_interlock));

	ap->a_vp = LAYERVPTOLOWERVP(vp);
	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);

	if (ap->a_flags & PGO_RECLAIM) {
		mutex_exit(vp->v_interlock);
		return 0;
	}

	/* Just pass the request on to the underlying layer. */
	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
}