Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
/*	$NetBSD: bpf_filter.c,v 1.71 2016/06/07 01:06:28 pgoyette Exp $	*/

/*-
 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from the Stanford/CMU enet packet filter,
 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
 * Berkeley Laboratory.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)bpf_filter.c	8.1 (Berkeley) 6/10/93
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bpf_filter.c,v 1.71 2016/06/07 01:06:28 pgoyette Exp $");

#if 0
#if !(defined(lint) || defined(KERNEL))
static const char rcsid[] =
    "@(#) Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp  (LBL)";
#endif
#endif

#include <sys/param.h>
#include <sys/time.h>
#include <sys/kmem.h>
#include <sys/endian.h>

#ifdef _KERNEL
#include <sys/module.h>
#endif

#define	__BPF_PRIVATE
#include <net/bpf.h>

#ifdef _KERNEL

bpf_ctx_t *
bpf_create(void)
{
	return kmem_zalloc(sizeof(bpf_ctx_t), KM_SLEEP);
}

void
bpf_destroy(bpf_ctx_t *bc)
{
	kmem_free(bc, sizeof(bpf_ctx_t));
}

int
bpf_set_cop(bpf_ctx_t *bc, const bpf_copfunc_t *funcs, size_t n)
{
	bc->copfuncs = funcs;
	bc->nfuncs = n;
	return 0;
}

int
bpf_set_extmem(bpf_ctx_t *bc, size_t nwords, bpf_memword_init_t preinited)
{
	if (nwords > BPF_MAX_MEMWORDS || (preinited >> nwords) != 0) {
		return EINVAL;
	}
	bc->extwords = nwords;
	bc->preinited = preinited;
	return 0;
}

#endif

#define EXTRACT_SHORT(p)	be16dec(p)
#define EXTRACT_LONG(p)		be32dec(p)

#ifdef _KERNEL
#include <sys/mbuf.h>
#define MINDEX(len, m, k) 		\
{					\
	len = m->m_len; 		\
	while (k >= len) { 		\
		k -= len; 		\
		m = m->m_next; 		\
		if (m == 0) 		\
			return 0; 	\
		len = m->m_len; 	\
	}				\
}

uint32_t m_xword(const struct mbuf *, uint32_t, int *);
uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);

#define xword(p, k, err) m_xword((const struct mbuf *)(p), (k), (err))
#define xhalf(p, k, err) m_xhalf((const struct mbuf *)(p), (k), (err))
#define xbyte(p, k, err) m_xbyte((const struct mbuf *)(p), (k), (err))

uint32_t
m_xword(const struct mbuf *m, uint32_t k, int *err)
{
	int len;
	u_char *cp, *np;
	struct mbuf *m0;

	*err = 1;
	MINDEX(len, m, k);
	cp = mtod(m, u_char *) + k;
	if (len - k >= 4) {
		*err = 0;
		return EXTRACT_LONG(cp);
	}
	m0 = m->m_next;
	if (m0 == 0 || (len - k) + m0->m_len < 4)
		return 0;
	*err = 0;
	np = mtod(m0, u_char *);

	switch (len - k) {
	case 1:
		return (cp[0] << 24) | (np[0] << 16) | (np[1] << 8) | np[2];
	case 2:
		return (cp[0] << 24) | (cp[1] << 16) | (np[0] << 8) | np[1];
	default:
		return (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | np[0];
	}
}

uint32_t
m_xhalf(const struct mbuf *m, uint32_t k, int *err)
{
	int len;
	u_char *cp;
	struct mbuf *m0;

	*err = 1;
	MINDEX(len, m, k);
	cp = mtod(m, u_char *) + k;
	if (len - k >= 2) {
		*err = 0;
		return EXTRACT_SHORT(cp);
	}
	m0 = m->m_next;
	if (m0 == 0)
		return 0;
	*err = 0;
	return (cp[0] << 8) | mtod(m0, u_char *)[0];
}

uint32_t
m_xbyte(const struct mbuf *m, uint32_t k, int *err)
{
	int len;

	*err = 1;
	MINDEX(len, m, k);
	*err = 0;
	return mtod(m, u_char *)[k];
}
#else /* _KERNEL */
#include <stdlib.h>
#endif /* !_KERNEL */

#include <net/bpf.h>

/*
 * Execute the filter program starting at pc on the packet p
 * wirelen is the length of the original packet
 * buflen is the amount of data present
 */
#ifdef _KERNEL

u_int
bpf_filter(const struct bpf_insn *pc, const u_char *p, u_int wirelen,
    u_int buflen)
{
	uint32_t mem[BPF_MEMWORDS];
	bpf_args_t args = {
		.pkt = p,
		.wirelen = wirelen,
		.buflen = buflen,
		.mem = mem,
		.arg = NULL
	};

	return bpf_filter_ext(NULL, pc, &args);
}

u_int
bpf_filter_ext(const bpf_ctx_t *bc, const struct bpf_insn *pc, bpf_args_t *args)
#else
u_int
bpf_filter(const struct bpf_insn *pc, const u_char *p, u_int wirelen,
    u_int buflen)
#endif
{
	uint32_t A, X, k;
#ifndef _KERNEL
	uint32_t mem[BPF_MEMWORDS];
	bpf_args_t args_store = {
		.pkt = p,
		.wirelen = wirelen,
		.buflen = buflen,
		.mem = mem,
		.arg = NULL
	};
	bpf_args_t * const args = &args_store;
#else
	const uint8_t * const p = args->pkt;
#endif
	if (pc == 0) {
		/*
		 * No filter means accept all.
		 */
		return (u_int)-1;
	}

	/*
	 * Note: safe to leave memwords uninitialised, as the validation
	 * step ensures that it will not be read, if it was not written.
	 */
	A = 0;
	X = 0;
	--pc;

	for (;;) {
		++pc;
		switch (pc->code) {

		default:
#ifdef _KERNEL
			return 0;
#else
			abort();
			/*NOTREACHED*/
#endif
		case BPF_RET|BPF_K:
			return (u_int)pc->k;

		case BPF_RET|BPF_A:
			return (u_int)A;

		case BPF_LD|BPF_W|BPF_ABS:
			k = pc->k;
			if (k > args->buflen ||
			    sizeof(int32_t) > args->buflen - k) {
#ifdef _KERNEL
				int merr;

				if (args->buflen != 0)
					return 0;
				A = xword(args->pkt, k, &merr);
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			A = EXTRACT_LONG(&p[k]);
			continue;

		case BPF_LD|BPF_H|BPF_ABS:
			k = pc->k;
			if (k > args->buflen ||
			    sizeof(int16_t) > args->buflen - k) {
#ifdef _KERNEL
				int merr;

				if (args->buflen != 0)
					return 0;
				A = xhalf(args->pkt, k, &merr);
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			A = EXTRACT_SHORT(&p[k]);
			continue;

		case BPF_LD|BPF_B|BPF_ABS:
			k = pc->k;
			if (k >= args->buflen) {
#ifdef _KERNEL
				int merr;

				if (args->buflen != 0)
					return 0;
				A = xbyte(args->pkt, k, &merr);
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			A = p[k];
			continue;

		case BPF_LD|BPF_W|BPF_LEN:
			A = args->wirelen;
			continue;

		case BPF_LDX|BPF_W|BPF_LEN:
			X = args->wirelen;
			continue;

		case BPF_LD|BPF_W|BPF_IND:
			k = X + pc->k;
			if (k < X || k >= args->buflen ||
			    sizeof(int32_t) > args->buflen - k) {
#ifdef _KERNEL
				int merr;

				if (k < X || args->buflen != 0)
					return 0;
				A = xword(args->pkt, k, &merr);
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			A = EXTRACT_LONG(&p[k]);
			continue;

		case BPF_LD|BPF_H|BPF_IND:
			k = X + pc->k;
			if (k < X || k >= args->buflen ||
			    sizeof(int16_t) > args->buflen - k) {
#ifdef _KERNEL
				int merr;

				if (k < X || args->buflen != 0)
					return 0;
				A = xhalf(args->pkt, k, &merr);
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			A = EXTRACT_SHORT(&p[k]);
			continue;

		case BPF_LD|BPF_B|BPF_IND:
			k = X + pc->k;
			if (k < X || k >= args->buflen) {
#ifdef _KERNEL
				int merr;

				if (k < X || args->buflen != 0)
					return 0;
				A = xbyte(args->pkt, k, &merr);
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			A = p[k];
			continue;

		case BPF_LDX|BPF_MSH|BPF_B:
			k = pc->k;
			if (k >= args->buflen) {
#ifdef _KERNEL
				int merr;

				if (args->buflen != 0)
					return 0;
				X = (xbyte(args->pkt, k, &merr) & 0xf) << 2;
				if (merr != 0)
					return 0;
				continue;
#else
				return 0;
#endif
			}
			X = (p[pc->k] & 0xf) << 2;
			continue;

		case BPF_LD|BPF_IMM:
			A = pc->k;
			continue;

		case BPF_LDX|BPF_IMM:
			X = pc->k;
			continue;

		case BPF_LD|BPF_MEM:
			A = args->mem[pc->k];
			continue;

		case BPF_LDX|BPF_MEM:
			X = args->mem[pc->k];
			continue;

		case BPF_ST:
			args->mem[pc->k] = A;
			continue;

		case BPF_STX:
			args->mem[pc->k] = X;
			continue;

		case BPF_JMP|BPF_JA:
			pc += pc->k;
			continue;

		case BPF_JMP|BPF_JGT|BPF_K:
			pc += (A > pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JGE|BPF_K:
			pc += (A >= pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JEQ|BPF_K:
			pc += (A == pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JSET|BPF_K:
			pc += (A & pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JGT|BPF_X:
			pc += (A > X) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JGE|BPF_X:
			pc += (A >= X) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JEQ|BPF_X:
			pc += (A == X) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JSET|BPF_X:
			pc += (A & X) ? pc->jt : pc->jf;
			continue;

		case BPF_ALU|BPF_ADD|BPF_X:
			A += X;
			continue;

		case BPF_ALU|BPF_SUB|BPF_X:
			A -= X;
			continue;

		case BPF_ALU|BPF_MUL|BPF_X:
			A *= X;
			continue;

		case BPF_ALU|BPF_DIV|BPF_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;

		case BPF_ALU|BPF_MOD|BPF_X:
			if (X == 0)
				return 0;
			A %= X;
			continue;

		case BPF_ALU|BPF_AND|BPF_X:
			A &= X;
			continue;

		case BPF_ALU|BPF_OR|BPF_X:
			A |= X;
			continue;

		case BPF_ALU|BPF_XOR|BPF_X:
			A ^= X;
			continue;

		case BPF_ALU|BPF_LSH|BPF_X:
			A <<= X;
			continue;

		case BPF_ALU|BPF_RSH|BPF_X:
			A >>= X;
			continue;

		case BPF_ALU|BPF_ADD|BPF_K:
			A += pc->k;
			continue;

		case BPF_ALU|BPF_SUB|BPF_K:
			A -= pc->k;
			continue;

		case BPF_ALU|BPF_MUL|BPF_K:
			A *= pc->k;
			continue;

		case BPF_ALU|BPF_DIV|BPF_K:
			A /= pc->k;
			continue;

		case BPF_ALU|BPF_MOD|BPF_K:
			A %= pc->k;
			continue;

		case BPF_ALU|BPF_AND|BPF_K:
			A &= pc->k;
			continue;

		case BPF_ALU|BPF_OR|BPF_K:
			A |= pc->k;
			continue;

		case BPF_ALU|BPF_XOR|BPF_K:
			A ^= pc->k;
			continue;

		case BPF_ALU|BPF_LSH|BPF_K:
			A <<= pc->k;
			continue;

		case BPF_ALU|BPF_RSH|BPF_K:
			A >>= pc->k;
			continue;

		case BPF_ALU|BPF_NEG:
			A = -A;
			continue;

		case BPF_MISC|BPF_TAX:
			X = A;
			continue;

		case BPF_MISC|BPF_TXA:
			A = X;
			continue;

		case BPF_MISC|BPF_COP:
#ifdef _KERNEL
			if (pc->k < bc->nfuncs) {
				const bpf_copfunc_t fn = bc->copfuncs[pc->k];
				A = fn(bc, args, A);
				continue;
			}
#endif
			return 0;

		case BPF_MISC|BPF_COPX:
#ifdef _KERNEL
			if (X < bc->nfuncs) {
				const bpf_copfunc_t fn = bc->copfuncs[X];
				A = fn(bc, args, A);
				continue;
			}
#endif
			return 0;
		}
	}
}

/*
 * Return true if the 'fcode' is a valid filter program.
 * The constraints are that each jump be forward and to a valid
 * code, that memory accesses are within valid ranges (to the
 * extent that this can be checked statically; loads of packet
 * data have to be, and are, also checked at run time), and that
 * the code terminates with either an accept or reject.
 *
 * The kernel needs to be able to verify an application's filter code.
 * Otherwise, a bogus program could easily crash the system.
 */

#if defined(KERNEL) || defined(_KERNEL)

int
bpf_validate(const struct bpf_insn *f, int signed_len)
{
	return bpf_validate_ext(NULL, f, signed_len);
}

int
bpf_validate_ext(const bpf_ctx_t *bc, const struct bpf_insn *f, int signed_len)
#else
int
bpf_validate(const struct bpf_insn *f, int signed_len)
#endif
{
	u_int i, from, len, ok = 0;
	const struct bpf_insn *p;
#if defined(KERNEL) || defined(_KERNEL)
	bpf_memword_init_t *mem, invalid;
	size_t size;
	const size_t extwords = bc ? bc->extwords : 0;
	const size_t memwords = extwords ? extwords : BPF_MEMWORDS;
	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
#else
	const size_t memwords = BPF_MEMWORDS;
#endif

	len = (u_int)signed_len;
	if (len < 1)
		return 0;
#if defined(KERNEL) || defined(_KERNEL)
	if (len > BPF_MAXINSNS)
		return 0;
#endif
	if (f[len - 1].code != (BPF_RET|BPF_K) &&
	    f[len - 1].code != (BPF_RET|BPF_A)) {
		return 0;
	}

#if defined(KERNEL) || defined(_KERNEL)
	/* Note: only the pre-initialised is valid on startup */
	mem = kmem_zalloc(size = sizeof(*mem) * len, KM_SLEEP);
	invalid = ~preinited;
#endif

	for (i = 0; i < len; ++i) {
#if defined(KERNEL) || defined(_KERNEL)
		/* blend in any invalid bits for current pc */
		invalid |= mem[i];
#endif
		p = &f[i];
		switch (BPF_CLASS(p->code)) {
		/*
		 * Check that memory operations use valid addresses.
		 */
		case BPF_LD:
		case BPF_LDX:
			switch (BPF_MODE(p->code)) {
			case BPF_MEM:
				/*
				 * There's no maximum packet data size
				 * in userland.  The runtime packet length
				 * check suffices.
				 */
#if defined(KERNEL) || defined(_KERNEL)
				/*
				 * More strict check with actual packet length
				 * is done runtime.
				 */
				if (p->k >= memwords)
					goto out;
				/* check for current memory invalid */
				if (invalid & BPF_MEMWORD_INIT(p->k))
					goto out;
#endif
				break;
			case BPF_ABS:
			case BPF_IND:
			case BPF_MSH:
			case BPF_IMM:
			case BPF_LEN:
				break;
			default:
				goto out;
			}
			break;
		case BPF_ST:
		case BPF_STX:
			if (p->k >= memwords)
				goto out;
#if defined(KERNEL) || defined(_KERNEL)
			/* validate the memory word */
			invalid &= ~BPF_MEMWORD_INIT(p->k);
#endif
			break;
		case BPF_ALU:
			switch (BPF_OP(p->code)) {
			case BPF_ADD:
			case BPF_SUB:
			case BPF_MUL:
			case BPF_OR:
			case BPF_XOR:
			case BPF_AND:
			case BPF_LSH:
			case BPF_RSH:
			case BPF_NEG:
				break;
			case BPF_DIV:
			case BPF_MOD:
				/*
				 * Check for constant division by 0.
				 */
				if (BPF_SRC(p->code) == BPF_K && p->k == 0)
					goto out;
				break;
			default:
				goto out;
			}
			break;
		case BPF_JMP:
			/*
			 * Check that jumps are within the code block,
			 * and that unconditional branches don't go
			 * backwards as a result of an overflow.
			 * Unconditional branches have a 32-bit offset,
			 * so they could overflow; we check to make
			 * sure they don't.  Conditional branches have
			 * an 8-bit offset, and the from address is <=
			 * BPF_MAXINSNS, and we assume that BPF_MAXINSNS
			 * is sufficiently small that adding 255 to it
			 * won't overflow.
			 *
			 * We know that len is <= BPF_MAXINSNS, and we
			 * assume that BPF_MAXINSNS is < the maximum size
			 * of a u_int, so that i + 1 doesn't overflow.
			 *
			 * For userland, we don't know that the from
			 * or len are <= BPF_MAXINSNS, but we know that
			 * from <= len, and, except on a 64-bit system,
			 * it's unlikely that len, if it truly reflects
			 * the size of the program we've been handed,
			 * will be anywhere near the maximum size of
			 * a u_int.  We also don't check for backward
			 * branches, as we currently support them in
			 * userland for the protochain operation.
			 */
			from = i + 1;
			switch (BPF_OP(p->code)) {
			case BPF_JA:
				if (from + p->k >= len)
					goto out;
#if defined(KERNEL) || defined(_KERNEL)
				if (from + p->k < from)
					goto out;
				/*
				 * mark the currently invalid bits for the
				 * destination
				 */
				mem[from + p->k] |= invalid;
				invalid = 0;
#endif
				break;
			case BPF_JEQ:
			case BPF_JGT:
			case BPF_JGE:
			case BPF_JSET:
				if (from + p->jt >= len || from + p->jf >= len)
					goto out;
#if defined(KERNEL) || defined(_KERNEL)
				/*
				 * mark the currently invalid bits for both
				 * possible jump destinations
				 */
				mem[from + p->jt] |= invalid;
				mem[from + p->jf] |= invalid;
				invalid = 0;
#endif
				break;
			default:
				goto out;
			}
			break;
		case BPF_RET:
			break;
		case BPF_MISC:
			switch (BPF_MISCOP(p->code)) {
			case BPF_COP:
			case BPF_COPX:
				/* In-kernel COP use only. */
#if defined(KERNEL) || defined(_KERNEL)
				if (bc == NULL || bc->copfuncs == NULL)
					goto out;
				if (BPF_MISCOP(p->code) == BPF_COP &&
				    p->k >= bc->nfuncs) {
					goto out;
				}
				break;
#else
				goto out;
#endif
			default:
				break;
			}
			break;
		default:
			goto out;
		}
	}
	ok = 1;
out:
#if defined(KERNEL) || defined(_KERNEL)
	kmem_free(mem, size);
#endif
	return ok;
}

/* Kernel module interface */

#ifdef _KERNEL
MODULE(MODULE_CLASS_MISC, bpf_filter, NULL);

static int
bpf_filter_modcmd(modcmd_t cmd, void *opaque) 
{
 
	switch (cmd) {
	case MODULE_CMD_INIT: 
	case MODULE_CMD_FINI:
		return 0;
	default:
		return ENOTTY;
	}
}
#endif