Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
// Copyright 2012 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors
//   may be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "utils/text/templates.hpp"

#include <algorithm>
#include <fstream>
#include <sstream>
#include <stack>

#include "utils/format/macros.hpp"
#include "utils/noncopyable.hpp"
#include "utils/sanity.hpp"
#include "utils/text/exceptions.hpp"
#include "utils/text/operations.ipp"

namespace text = utils::text;


namespace {


/// Definition of a template statement.
///
/// A template statement is a particular line in the input file that is
/// preceeded by a template marker.  This class provides a high-level
/// representation of the contents of such statement and a mechanism to parse
/// the textual line into this high-level representation.
class statement_def {
public:
    /// Types of the known statements.
    enum statement_type {
        /// Alternative clause of a conditional.
        ///
        /// Takes no arguments.
        type_else,

        /// End of conditional marker.
        ///
        /// Takes no arguments.
        type_endif,

        /// End of loop marker.
        ///
        /// Takes no arguments.
        type_endloop,

        /// Beginning of a conditional.
        ///
        /// Takes a single argument, which denotes the name of the variable or
        /// vector to check for existence.  This is the only expression
        /// supported.
        type_if,

        /// Beginning of a loop over all the elements of a vector.
        ///
        /// Takes two arguments: the name of the vector over which to iterate
        /// and the name of the iterator to later index this vector.
        type_loop,
    };

private:
    /// Internal data describing the structure of a particular statement type.
    struct type_descriptor {
        /// The native type of the statement.
        statement_type type;

        /// The expected number of arguments.
        unsigned int n_arguments;

        /// Constructs a new type descriptor.
        ///
        /// \param type_ The native type of the statement.
        /// \param n_arguments_ The expected number of arguments.
        type_descriptor(const statement_type type_,
                        const unsigned int n_arguments_)
            : type(type_), n_arguments(n_arguments_)
        {
        }
    };

    /// Mapping of statement type names to their definitions.
    typedef std::map< std::string, type_descriptor > types_map;

    /// Description of the different statement types.
    ///
    /// This static map is initialized once and reused later for any statement
    /// lookup.  Unfortunately, we cannot perform this initialization in a
    /// static manner without C++11.
    static types_map _types;

    /// Generates a new types definition map.
    ///
    /// \return A new types definition map, to be assigned to _types.
    static types_map
    generate_types_map(void)
    {
        // If you change this, please edit the comments in the enum above.
        types_map types;
        types.insert(types_map::value_type(
            "else", type_descriptor(type_else, 0)));
        types.insert(types_map::value_type(
            "endif", type_descriptor(type_endif, 0)));
        types.insert(types_map::value_type(
            "endloop", type_descriptor(type_endloop, 0)));
        types.insert(types_map::value_type(
            "if", type_descriptor(type_if, 1)));
        types.insert(types_map::value_type(
            "loop", type_descriptor(type_loop, 2)));
        return types;
    }

public:
    /// The type of the statement.
    statement_type type;

    /// The arguments to the statement, in textual form.
    const std::vector< std::string > arguments;

    /// Creates a new statement.
    ///
    /// \param type_ The type of the statement.
    /// \param arguments_ The arguments to the statement.
    statement_def(const statement_type& type_,
                  const std::vector< std::string >& arguments_) :
        type(type_), arguments(arguments_)
    {
#if !defined(NDEBUG)
        for (types_map::const_iterator iter = _types.begin();
             iter != _types.end(); ++iter) {
            const type_descriptor& descriptor = (*iter).second;
            if (descriptor.type == type_) {
                PRE(descriptor.n_arguments == arguments_.size());
                return;
            }
        }
        UNREACHABLE;
#endif
    }

    /// Parses a statement.
    ///
    /// \param line The textual representation of the statement without any
    ///     prefix.
    ///
    /// \return The parsed statement.
    ///
    /// \throw text::syntax_error If the statement is not correctly defined.
    static statement_def
    parse(const std::string& line)
    {
        if (_types.empty())
            _types = generate_types_map();

        const std::vector< std::string > words = text::split(line, ' ');
        if (words.empty())
            throw text::syntax_error("Empty statement");

        const types_map::const_iterator iter = _types.find(words[0]);
        if (iter == _types.end())
            throw text::syntax_error(F("Unknown statement '%s'") % words[0]);
        const type_descriptor& descriptor = (*iter).second;

        if (words.size() - 1 != descriptor.n_arguments)
            throw text::syntax_error(F("Invalid number of arguments for "
                                       "statement '%s'") % words[0]);

        std::vector< std::string > new_arguments;
        new_arguments.resize(words.size() - 1);
        std::copy(words.begin() + 1, words.end(), new_arguments.begin());

        return statement_def(descriptor.type, new_arguments);
    }
};


statement_def::types_map statement_def::_types;


/// Definition of a loop.
///
/// This simple structure is used to keep track of the parameters of a loop.
struct loop_def {
    /// The name of the vector over which this loop is iterating.
    std::string vector;

    /// The name of the iterator defined by this loop.
    std::string iterator;

    /// Position in the input to which to rewind to on looping.
    ///
    /// This position points to the line after the loop statement, not the loop
    /// itself.  This is one of the reasons why we have this structure, so that
    /// we can maintain the data about the loop without having to re-process it.
    std::istream::pos_type position;

    /// Constructs a new loop definition.
    ///
    /// \param vector_ The name of the vector (first argument).
    /// \param iterator_ The name of the iterator (second argumnet).
    /// \param position_ Position of the next line after the loop statement.
    loop_def(const std::string& vector_, const std::string& iterator_,
             const std::istream::pos_type position_) :
        vector(vector_), iterator(iterator_), position(position_)
    {
    }
};


/// Stateful class to instantiate the templates in an input stream.
///
/// The goal of this parser is to scan the input once and not buffer anything in
/// memory.  The only exception are loops: loops are reinterpreted on every
/// iteration from the same input file by rewidining the stream to the
/// appropriate position.
class templates_parser : utils::noncopyable {
    /// The templates to apply.
    ///
    /// Note that this is not const because the parser has to have write access
    /// to the templates.  In particular, it needs to be able to define the
    /// iterators as regular variables.
    text::templates_def _templates;

    /// Prefix that marks a line as a statement.
    const std::string _prefix;

    /// Delimiter to surround an expression instantiation.
    const std::string _delimiter;

    /// Whether to skip incoming lines or not.
    ///
    /// The top of the stack is true whenever we encounter a conditional that
    /// evaluates to false or a loop that does not have any iterations left.
    /// Under these circumstances, we need to continue scanning the input stream
    /// until we find the matching closing endif or endloop construct.
    ///
    /// This is a stack rather than a plain boolean to allow us deal with
    /// if-else clauses.
    std::stack< bool > _skip;

    /// Current count of nested conditionals.
    unsigned int _if_level;

    /// Level of the top-most conditional that evaluated to false.
    unsigned int _exit_if_level;

    /// Current count of nested loops.
    unsigned int _loop_level;

    /// Level of the top-most loop that does not have any iterations left.
    unsigned int _exit_loop_level;

    /// Information about all the nested loops up to the current point.
    std::stack< loop_def > _loops;

    /// Checks if a line is a statement or not.
    ///
    /// \param line The line to validate.
    ///
    /// \return True if the line looks like a statement, which is determined by
    /// checking if the line starts by the predefined prefix.
    bool
    is_statement(const std::string& line)
    {
        return ((line.length() >= _prefix.length() &&
                 line.substr(0, _prefix.length()) == _prefix) &&
                (line.length() < _delimiter.length() ||
                 line.substr(0, _delimiter.length()) != _delimiter));
    }

    /// Parses a given statement line into a statement definition.
    ///
    /// \param line The line to validate; it must be a valid statement.
    ///
    /// \return The parsed statement.
    ///
    /// \throw text::syntax_error If the input is not a valid statement.
    statement_def
    parse_statement(const std::string& line)
    {
        PRE(is_statement(line));
        return statement_def::parse(line.substr(_prefix.length()));
    }

    /// Processes a line from the input when not in skip mode.
    ///
    /// \param line The line to be processed.
    /// \param input The input stream from which the line was read.  The current
    ///     position in the stream must be after the line being processed.
    /// \param output The output stream into which to write the results.
    ///
    /// \throw text::syntax_error If the input is not valid.
    void
    handle_normal(const std::string& line, std::istream& input,
                  std::ostream& output)
    {
        if (!is_statement(line)) {
            // Fast path.  Mostly to avoid an indentation level for the big
            // chunk of code below.
            output << line << '\n';
            return;
        }

        const statement_def statement = parse_statement(line);

        switch (statement.type) {
        case statement_def::type_else:
            _skip.top() = !_skip.top();
            break;

        case statement_def::type_endif:
            _if_level--;
            break;

        case statement_def::type_endloop: {
            PRE(_loops.size() == _loop_level);
            loop_def& loop = _loops.top();

            const std::size_t next_index = 1 + text::to_type< std::size_t >(
                _templates.get_variable(loop.iterator));

            if (next_index < _templates.get_vector(loop.vector).size()) {
                _templates.add_variable(loop.iterator, F("%s") % next_index);
                input.seekg(loop.position);
            } else {
                _loop_level--;
                _loops.pop();
                _templates.remove_variable(loop.iterator);
            }
        } break;

        case statement_def::type_if: {
            _if_level++;
            const std::string value = _templates.evaluate(
                statement.arguments[0]);
            if (value.empty() || value == "0" || value == "false") {
                _exit_if_level = _if_level;
                _skip.push(true);
            } else {
                _skip.push(false);
            }
        } break;

        case statement_def::type_loop: {
            _loop_level++;

            const loop_def loop(statement.arguments[0], statement.arguments[1],
                                input.tellg());
            if (_templates.get_vector(loop.vector).empty()) {
                _exit_loop_level = _loop_level;
                _skip.push(true);
            } else {
                _templates.add_variable(loop.iterator, "0");
                _loops.push(loop);
                _skip.push(false);
            }
        } break;
        }
    }

    /// Processes a line from the input when in skip mode.
    ///
    /// \param line The line to be processed.
    ///
    /// \throw text::syntax_error If the input is not valid.
    void
    handle_skip(const std::string& line)
    {
        PRE(_skip.top());

        if (!is_statement(line))
            return;

        const statement_def statement = parse_statement(line);
        switch (statement.type) {
        case statement_def::type_else:
            if (_exit_if_level == _if_level)
                _skip.top() = !_skip.top();
            break;

        case statement_def::type_endif:
            INV(_if_level >= _exit_if_level);
            if (_if_level == _exit_if_level)
                _skip.top() = false;
            _if_level--;
            _skip.pop();
            break;

        case statement_def::type_endloop:
            INV(_loop_level >= _exit_loop_level);
            if (_loop_level == _exit_loop_level)
                _skip.top() = false;
            _loop_level--;
            _skip.pop();
            break;

        case statement_def::type_if:
            _if_level++;
            _skip.push(true);
            break;

        case statement_def::type_loop:
            _loop_level++;
            _skip.push(true);
            break;

        default:
            break;
        }
    }

    /// Evaluates expressions on a given input line.
    ///
    /// An expression is surrounded by _delimiter on both sides.  We scan the
    /// string from left to right finding any expressions that may appear, yank
    /// them out and call templates_def::evaluate() to get their value.
    ///
    /// Lonely or unbalanced appearances of _delimiter on the input line are
    /// not considered an error, given that the user may actually want to supply
    /// that character sequence without being interpreted as a template.
    ///
    /// \param in_line The input line from which to evaluate expressions.
    ///
    /// \return The evaluated line.
    ///
    /// \throw text::syntax_error If the expressions in the line are malformed.
    std::string
    evaluate(const std::string& in_line)
    {
        std::string out_line;

        std::string::size_type last_pos = 0;
        while (last_pos != std::string::npos) {
            const std::string::size_type open_pos = in_line.find(
                _delimiter, last_pos);
            if (open_pos == std::string::npos) {
                out_line += in_line.substr(last_pos);
                last_pos = std::string::npos;
            } else {
                const std::string::size_type close_pos = in_line.find(
                    _delimiter, open_pos + _delimiter.length());
                if (close_pos == std::string::npos) {
                    out_line += in_line.substr(last_pos);
                    last_pos = std::string::npos;
                } else {
                    out_line += in_line.substr(last_pos, open_pos - last_pos);
                    out_line += _templates.evaluate(in_line.substr(
                        open_pos + _delimiter.length(),
                        close_pos - open_pos - _delimiter.length()));
                    last_pos = close_pos + _delimiter.length();
                }
            }
        }

        return out_line;
    }

public:
    /// Constructs a new template parser.
    ///
    /// \param templates_ The templates to apply to the processed file.
    /// \param prefix_ The prefix that identifies lines as statements.
    /// \param delimiter_ Delimiter to surround a variable instantiation.
    templates_parser(const text::templates_def& templates_,
                     const std::string& prefix_,
                     const std::string& delimiter_) :
        _templates(templates_),
        _prefix(prefix_),
        _delimiter(delimiter_),
        _if_level(0),
        _exit_if_level(0),
        _loop_level(0),
        _exit_loop_level(0)
    {
    }

    /// Applies the templates to a given input.
    ///
    /// \param input The stream to which to apply the templates.
    /// \param output The stream into which to write the results.
    ///
    /// \throw text::syntax_error If the input is not valid.  Note that the
    ///     is not guaranteed to be unmodified on exit if an error is
    ///     encountered.
    void
    instantiate(std::istream& input, std::ostream& output)
    {
        std::string line;
        while (std::getline(input, line).good()) {
            if (!_skip.empty() && _skip.top())
                handle_skip(line);
            else
                handle_normal(evaluate(line), input, output);
        }
    }
};


}  // anonymous namespace


/// Constructs an empty templates definition.
text::templates_def::templates_def(void)
{
}


/// Sets a string variable in the templates.
///
/// If the variable already exists, its value is replaced.  This behavior is
/// required to implement iterators, but client code should really not be
/// redefining variables.
///
/// \pre The variable must not already exist as a vector.
///
/// \param name The name of the variable to set.
/// \param value The value to set the given variable to.
void
text::templates_def::add_variable(const std::string& name,
                                  const std::string& value)
{
    PRE(_vectors.find(name) == _vectors.end());
    _variables[name] = value;
}


/// Unsets a string variable from the templates.
///
/// Client code has no reason to use this.  This is only required to implement
/// proper scoping of loop iterators.
///
/// \pre The variable must exist.
///
/// \param name The name of the variable to remove from the templates.
void
text::templates_def::remove_variable(const std::string& name)
{
    PRE(_variables.find(name) != _variables.end());
    _variables.erase(_variables.find(name));
}


/// Creates a new vector in the templates.
///
/// If the vector already exists, it is cleared.  Client code should really not
/// be redefining variables.
///
/// \pre The vector must not already exist as a variable.
///
/// \param name The name of the vector to set.
void
text::templates_def::add_vector(const std::string& name)
{
    PRE(_variables.find(name) == _variables.end());
    _vectors[name] = strings_vector();
}


/// Adds a value to an existing vector in the templates.
///
/// \pre name The vector must exist.
///
/// \param name The name of the vector to append the value to.
/// \param value The textual value to append to the vector.
void
text::templates_def::add_to_vector(const std::string& name,
                                   const std::string& value)
{
    PRE(_variables.find(name) == _variables.end());
    PRE(_vectors.find(name) != _vectors.end());
    _vectors[name].push_back(value);
}


/// Checks whether a given identifier exists as a variable or a vector.
///
/// This is used to implement the evaluation of conditions in if clauses.
///
/// \param name The name of the variable or vector.
///
/// \return True if the given name exists as a variable or a vector; false
/// otherwise.
bool
text::templates_def::exists(const std::string& name) const
{
    return (_variables.find(name) != _variables.end() ||
            _vectors.find(name) != _vectors.end());
}


/// Gets the value of a variable.
///
/// \param name The name of the variable.
///
/// \return The value of the requested variable.
///
/// \throw text::syntax_error If the variable does not exist.
const std::string&
text::templates_def::get_variable(const std::string& name) const
{
    const variables_map::const_iterator iter = _variables.find(name);
    if (iter == _variables.end())
        throw text::syntax_error(F("Unknown variable '%s'") % name);
    return (*iter).second;
}


/// Gets a vector.
///
/// \param name The name of the vector.
///
/// \return A reference to the requested vector.
///
/// \throw text::syntax_error If the vector does not exist.
const text::templates_def::strings_vector&
text::templates_def::get_vector(const std::string& name) const
{
    const vectors_map::const_iterator iter = _vectors.find(name);
    if (iter == _vectors.end())
        throw text::syntax_error(F("Unknown vector '%s'") % name);
    return (*iter).second;
}


/// Indexes a vector and gets the value.
///
/// \param name The name of the vector to index.
/// \param index_name The name of a variable representing the index to use.
///     This must be convertible to a natural.
///
/// \return The value of the vector at the given index.
///
/// \throw text::syntax_error If the vector does not existor if the index is out
///     of range.
const std::string&
text::templates_def::get_vector(const std::string& name,
                                const std::string& index_name) const
{
    const strings_vector& vector = get_vector(name);
    const std::string& index_str = get_variable(index_name);

    std::size_t index;
    try {
        index = text::to_type< std::size_t >(index_str);
    } catch (const text::syntax_error& e) {
        throw text::syntax_error(F("Index '%s' not an integer, value '%s'") %
                                 index_name % index_str);
    }
    if (index >= vector.size())
        throw text::syntax_error(F("Index '%s' out of range at position '%s'") %
                                 index_name % index);

    return vector[index];
}


/// Evaluates a expression using these templates.
///
/// An expression is a query on the current templates to fetch a particular
/// value.  The value is always returned as a string, as this is how templates
/// are internally stored.
///
/// \param expression The expression to evaluate.  This should not include any
///     of the delimiters used in the user input, as otherwise the expression
///     will not be evaluated properly.
///
/// \return The result of the expression evaluation as a string.
///
/// \throw text::syntax_error If there is any problem while evaluating the
///     expression.
std::string
text::templates_def::evaluate(const std::string& expression) const
{
    const std::string::size_type paren_open = expression.find('(');
    if (paren_open == std::string::npos) {
        return get_variable(expression);
    } else {
        const std::string::size_type paren_close = expression.find(
            ')', paren_open);
        if (paren_close == std::string::npos)
            throw text::syntax_error(F("Expected ')' in expression '%s')") %
                                     expression);
        if (paren_close != expression.length() - 1)
            throw text::syntax_error(F("Unexpected text found after ')' in "
                                       "expression '%s'") % expression);

        const std::string arg0 = expression.substr(0, paren_open);
        const std::string arg1 = expression.substr(
            paren_open + 1, paren_close - paren_open - 1);
        if (arg0 == "defined") {
            return exists(arg1) ? "true" : "false";
        } else if (arg0 == "length") {
            return F("%s") % get_vector(arg1).size();
        } else {
            return get_vector(arg0, arg1);
        }
    }
}


/// Applies a set of templates to an input stream.
///
/// \param templates The templates to use.
/// \param input The input to process.
/// \param output The stream to which to write the processed text.
///
/// \throw text::syntax_error If there is any problem processing the input.
void
text::instantiate(const templates_def& templates,
                  std::istream& input, std::ostream& output)
{
    templates_parser parser(templates, "%", "%%");
    parser.instantiate(input, output);
}


/// Applies a set of templates to an input file and writes an output file.
///
/// \param templates The templates to use.
/// \param input_file The path to the input to process.
/// \param output_file The path to the file into which to write the output.
///
/// \throw text::error If the input or output files cannot be opened.
/// \throw text::syntax_error If there is any problem processing the input.
void
text::instantiate(const templates_def& templates,
                  const fs::path& input_file, const fs::path& output_file)
{
    std::ifstream input(input_file.c_str());
    if (!input)
        throw text::error(F("Failed to open %s for read") % input_file);

    std::ofstream output(output_file.c_str());
    if (!output)
        throw text::error(F("Failed to open %s for write") % output_file);

    instantiate(templates, input, output);
}