Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
          "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
  <title>Language Compatibility</title>
  <link type="text/css" rel="stylesheet" href="menu.css">
  <link type="text/css" rel="stylesheet" href="content.css">
  <style type="text/css">
</style>
</head>
<body>

<!--#include virtual="menu.html.incl"-->

<div id="content">

<!-- ======================================================================= -->
<h1>Language Compatibility</h1>
<!-- ======================================================================= -->

<p>Clang strives to both conform to current language standards (up to C11
  and C++11) and also to implement many widely-used extensions available
  in other compilers, so that most correct code will "just work" when
  compiled with Clang. However, Clang is more strict than other
  popular compilers, and may reject incorrect code that other
  compilers allow. This page documents common compatibility and
  portability issues with Clang to help you understand and fix the
  problem in your code when Clang emits an error message.</p>
  
<ul>
  <li><a href="#c">C compatibility</a>
    <ul>
      <li><a href="#inline">C99 inline functions</a></li>
      <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
      <li><a href="#lvalue-cast">Lvalue casts</a></li>
      <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
      <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
      <li><a href="#inline-asm">Inline assembly</a></li>
    </ul>
  </li>
  <li><a href="#objective-c">Objective-C compatibility</a>
    <ul>
      <li><a href="#super-cast">Cast of super</a></li>
      <li><a href="#sizeof-interface">Size of interfaces</a></li>
      <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
      <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
    </ul>
  </li>
  <li><a href="#cxx">C++ compatibility</a>
    <ul>
      <li><a href="#vla">Variable-length arrays</a></li>
      <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
      <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
      <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
      <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
      <li><a href="#default_init_const">Default initialization of const
      variable of a class type requires user-defined default
      constructor</a></li>
      <li><a href="#param_name_lookup">Parameter name lookup</a></li>
    </ul>
  </li>
  <li><a href="#cxx11">C++11 compatibility</a>
    <ul>
      <li><a href="#deleted-special-func">Deleted special member
  functions</a></li>
    </ul>
  </li>
  <li><a href="#objective-cxx">Objective-C++ compatibility</a>
    <ul>
      <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
    </ul>
    <ul>
      <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
    </ul>
  </li>
</ul>

<!-- ======================================================================= -->
<h2 id="c">C compatibility</h2>
<!-- ======================================================================= -->

<!-- ======================================================================= -->
<h3 id="inline">C99 inline functions</h3>
<!-- ======================================================================= -->
<p>By default, Clang builds C code in GNU C11 mode, so it uses standard C99
semantics for the <code>inline</code> keyword. These semantics are different
from those in GNU C89 mode, which is the default mode in versions of GCC
prior to 5.0. For example, consider the following code:</p>
<pre>
inline int add(int i, int j) { return i + j; }

int main() {
  int i = add(4, 5);
  return i;
}
</pre>

<p>In C99, <code>inline</code> means that a function's definition is
provided only for inlining, and that there is another definition
(without <code>inline</code>) somewhere else in the program.  That
means that this program is incomplete, because if <code>add</code>
isn't inlined (for example, when compiling without optimization), then
<code>main</code> will have an unresolved reference to that other
definition.  Therefore we'll get a (correct) link-time error like this:</p>

<pre>
Undefined symbols:
  "_add", referenced from:
      _main in cc-y1jXIr.o
</pre>

<p>By contrast, GNU C89 mode (used by default in older versions of GCC) is the
C89 standard plus a lot of extensions. C89 doesn't have an <code>inline</code>
keyword, but GCC recognizes it as an extension and just treats it as a hint to
the optimizer.</p>

<p>There are several ways to fix this problem:</p>

<ul>
  <li>Change <code>add</code> to a <code>static inline</code>
  function.  This is usually the right solution if only one
  translation unit needs to use the function.  <code>static
  inline</code> functions are always resolved within the translation
  unit, so you won't have to add a non-<code>inline</code> definition
  of the function elsewhere in your program.</li>

  <li>Remove the <code>inline</code> keyword from this definition of
  <code>add</code>.  The <code>inline</code> keyword is not required
  for a function to be inlined, nor does it guarantee that it will be.
  Some compilers ignore it completely.  Clang treats it as a mild
  suggestion from the programmer.</li>

  <li>Provide an external (non-<code>inline</code>) definition
  of <code>add</code> somewhere else in your program.  The two
  definitions must be equivalent!</li>

  <li>Compile in the GNU C89 dialect by adding
  <code>-std=gnu89</code> to the set of Clang options. This option is
  only recommended if the program source cannot be changed or if the
  program also relies on additional C89-specific behavior that cannot
  be changed.</li>
</ul>

<p>All of this only applies to C code; the meaning of <code>inline</code>
in C++ is very different from its meaning in either GNU89 or C99.</p>

<!-- ======================================================================= -->
<h3 id="vector_builtins">"missing" vector __builtin functions</h3>
<!-- ======================================================================= -->

<p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
header files, which define a standardized API for accessing vector operations
on X86 CPUs.  These functions have names like <tt>_mm_xor_ps</tt> and
<tt>_mm256_addsub_pd</tt>.  Compilers have leeway to implement these functions
however they want.  Since Clang supports an excellent set of <a 
href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
the Clang headers implement these interfaces in terms of the native vector 
operations.
</p>

<p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
builtin function calls, like <tt>__builtin_ia32_paddw128</tt>.  These builtin
functions are an internal implementation detail of GCC, and are not portable to
the Intel compiler, the Microsoft compiler, or Clang.  If you get build errors
mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>

<p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
architectures respectively.  For these, make sure to use the &lt;arm_neon.h&gt;
and &lt;altivec.h&gt; headers.</p>

<p>For x86 architectures this <a href="builtins.py">script</a> should help with
the manual migration process.  It will rewrite your source files in place to
use the APIs instead of builtin function calls. Just call it like this:</p>

<pre>
  builtins.py *.c *.h
</pre>

<p>and it will rewrite all of the .c and .h files in the current directory to
use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>

<!-- ======================================================================= -->
<h3 id="lvalue-cast">Lvalue casts</h3>
<!-- ======================================================================= -->

<p>Old versions of GCC permit casting the left-hand side of an assignment to a
different type. Clang produces an error on similar code, e.g.,</p>

<pre>
<b>lvalue.c:2:3: <span class="error">error:</span> assignment to cast is illegal, lvalue casts are not supported</b>
  (int*)addr = val;
<span class="caret">  ^~~~~~~~~~ ~</span>
</pre>

<p>To fix this problem, move the cast to the right-hand side. In this
example, one could use:</p>

<pre>
  addr = (float *)val;
</pre>

<!-- ======================================================================= -->
<h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
<!-- ======================================================================= -->

<p>Clang disallows jumps into the scope of a <tt>__block</tt>
variable.  Variables marked with <tt>__block</tt> require special
runtime initialization. A jump into the scope of a <tt>__block</tt>
variable bypasses this initialization, leaving the variable's metadata
in an invalid state.  Consider the following code fragment:</p>

<pre>
int fetch_object_state(struct MyObject *c) {
  if (!c->active) goto error;

  __block int result;
  run_specially_somehow(^{ result = c->state; });
  return result;

 error:
  fprintf(stderr, "error while fetching object state");
  return -1;
}
</pre>

<p>GCC accepts this code, but it produces code that will usually crash
when <code>result</code> goes out of scope if the jump is taken.  (It's
possible for this bug to go undetected because it often won't crash if
the stack is fresh, i.e. still zeroed.)  Therefore, Clang rejects this
code with a hard error:</p>

<pre>
<b>t.c:3:5: <span class="error">error:</span> goto into protected scope</b>
    goto error;
<span class="caret">    ^</span>
<b>t.c:5:15: <span class="note">note:</note></b> jump bypasses setup of __block variable
  __block int result;
<span class="caret">              ^</span>
</pre>

<p>The fix is to rewrite the code to not require jumping into a
<tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>

<pre>
  {
    __block int result;
    run_specially_somehow(^{ result = c->state; });
    return result;
  }
</pre>

<!-- ======================================================================= -->
<h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
variables</h3>
<!-- ======================================================================= -->

<p>In the following example code, the <tt>x</tt> variable is used before it is
defined:</p>
<pre>
int f0() {
  __block int x;
  return ^(){ return x; }();
}
</pre>

<p>By an accident of implementation, GCC and llvm-gcc unintentionally always
zero initialized <tt>__block</tt> variables. However, any program which depends
on this behavior is relying on unspecified compiler behavior. Programs must
explicitly initialize all local block variables before they are used, as with
other local variables.</p>

<p>Clang does not zero initialize local block variables, and programs which rely
on such behavior will most likely break when built with Clang.</p>


<!-- ======================================================================= -->
<h3 id="inline-asm">Inline assembly</h3>
<!-- ======================================================================= -->

<p>In general, Clang is highly compatible with the GCC inline assembly
extensions, allowing the same set of constraints, modifiers and operands as GCC
inline assembly.</p>

<p>On targets that use the integrated assembler (such as most X86 targets),
inline assembly is run through the integrated assembler instead of your system
assembler (which is most commonly "gas", the GNU assembler).  The LLVM
integrated assembler is extremely compatible with GAS, but there are a couple of
minor places where it is more picky, particularly due to outright GAS bugs.</p>

<p>One specific example is that the assembler rejects ambiguous X86 instructions
that don't have suffixes.  For example:</p>

<pre>
  asm("add %al, (%rax)");
  asm("addw $4, (%rax)");
  asm("add $4, (%rax)");
</pre>

<p>Both clang and GAS accept the first instruction: because the first
instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
it is an 8-bit add.  The second instruction is accepted by both because the "w"
suffix indicates that it is a 16-bit add.  The last instruction is accepted by
GAS even though there is nothing that specifies the size of the instruction (and
the assembler randomly picks a 32-bit add).  Because it is ambiguous, Clang
rejects the instruction with this error message:
</p>

<pre>
<b>&lt;inline asm&gt;:3:1: <span class="error">error:</span> ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')</b>
add $4, (%rax)
<span class="caret">^</span>
</pre>

<p>To fix this compatibility issue, add an explicit suffix to the instruction:
this makes your code more clear and is compatible with both GCC and Clang.</p>

<!-- ======================================================================= -->
<h2 id="objective-c">Objective-C compatibility</h2>
<!-- ======================================================================= -->

<!-- ======================================================================= -->
<h3 id="super-cast">Cast of super</h3>
<!-- ======================================================================= -->

<p>GCC treats the <code>super</code> identifier as an expression that
can, among other things, be cast to a different type. Clang treats
<code>super</code> as a context-sensitive keyword, and will reject a
type-cast of <code>super</code>:</p>

<pre>
<b>super.m:11:12: <span class="error">error:</span> cannot cast 'super' (it isn't an expression)</b>
  [(Super*)super add:4];
<span class="caret">   ~~~~~~~~^</span>
</pre>

<p>To fix this problem, remove the type cast, e.g.</p>
<pre>
  [super add:4];
</pre>

<!-- ======================================================================= -->
<h3 id="sizeof-interface">Size of interfaces</h3>
<!-- ======================================================================= -->

<p>When using the "non-fragile" Objective-C ABI in use, the size of an
Objective-C class may change over time as instance variables are added
(or removed). For this reason, Clang rejects the application of the
<code>sizeof</code> operator to an Objective-C class when using this
ABI:</p>

<pre>
<b>sizeof.m:4:14: <span class="error">error:</span> invalid application of 'sizeof' to interface 'NSArray' in non-fragile ABI</b>
  int size = sizeof(NSArray);
<span class="caret">             ^     ~~~~~~~~~</span>
</pre>

<p>Code that relies on the size of an Objective-C class is likely to
be broken anyway, since that size is not actually constant. To address
this problem, use the Objective-C runtime API function
<code>class_getInstanceSize()</code>:</p>

<pre>
  class_getInstanceSize([NSArray class])
</pre>

<!-- ======================================================================= -->
<h3 id="objc_objs-cast">Internal Objective-C types</h3>
<!-- ======================================================================= -->

<p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
<tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
<tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
internal Objective-C structures as implementation detail and won't do implicit conversions:

<pre>
<b>t.mm:11:2: <span class="error">error:</span> no matching function for call to 'f'</b>
        f((struct objc_object *)p);
<span class="caret">        ^</span>
<b>t.mm:5:6: <span class="note">note:</note></b> candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
void f(id x);
<span class="caret">     ^</span>
</pre>

<p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
instead of the internal types.</p>

<!-- ======================================================================= -->
<h3 id="c_variables-class">C variables in @interface or @protocol</h3>
<!-- ======================================================================= -->

<p>GCC allows the declaration of C variables in
an <code>@interface</code> or <code>@protocol</code>
declaration. Clang does not allow variable declarations to appear
within these declarations unless they are marked <code>extern</code>.</p>

<p>Variables may still be declared in an @implementation.</p>

<pre>
@interface XX
int a;         // not allowed in clang
int b = 1;     // not allowed in clang
extern int c;  // allowed 
@end

</pre>

<!-- ======================================================================= -->
<h2 id="cxx">C++ compatibility</h2>
<!-- ======================================================================= -->

<!-- ======================================================================= -->
<h3 id="vla">Variable-length arrays</h3>
<!-- ======================================================================= -->

<p>GCC and C99 allow an array's size to be determined at run
time. This extension is not permitted in standard C++. However, Clang
supports such variable length arrays for compatibility with GNU C and
C99 programs.</p>

<p>If you would prefer not to use this extension, you can disable it with
<tt>-Werror=vla</tt>. There are several ways to fix your code:

<ol>
<li>replace the variable length array with a fixed-size array if you can
    determine a reasonable upper bound at compile time; sometimes this is as
    simple as changing <tt>int size = ...;</tt> to <tt>const int size
    = ...;</tt> (if the initializer is a compile-time constant);</li>
<li>use <tt>std::vector</tt> or some other suitable container type;
    or</li>
<li>allocate the array on the heap instead using <tt>new Type[]</tt> -
    just remember to <tt>delete[]</tt> it.</li>
</ol>

<!-- ======================================================================= -->
<h3 id="dep_lookup">Unqualified lookup in templates</h3>
<!-- ======================================================================= -->

<p>Some versions of GCC accept the following invalid code:

<pre>
template &lt;typename T&gt; T Squared(T x) {
  return Multiply(x, x);
}

int Multiply(int x, int y) {
  return x * y;
}

int main() {
  Squared(5);
}
</pre>

<p>Clang complains:

<pre>
<b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
  return Multiply(x, x);
<span class="caret">         ^</span>
<b>my_file.cpp:10:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here
  Squared(5);
<span class="caret">  ^</span>
<b>my_file.cpp:5:5: <span class="note">note:</span></b> 'Multiply' should be declared prior to the call site
int Multiply(int x, int y) {
<span class="caret">    ^</span>
</pre>

<p>The C++ standard says that unqualified names like <q>Multiply</q>
are looked up in two ways.

<p>First, the compiler does <i>unqualified lookup</i> in the scope
where the name was written.  For a template, this means the lookup is
done at the point where the template is defined, not where it's
instantiated.  Since <tt>Multiply</tt> hasn't been declared yet at
this point, unqualified lookup won't find it.

<p>Second, if the name is called like a function, then the compiler
also does <i>argument-dependent lookup</i> (ADL).  (Sometimes
unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
more information.)  In ADL, the compiler looks at the types of all the
arguments to the call.  When it finds a class type, it looks up the
name in that class's namespace; the result is all the declarations it
finds in those namespaces, plus the declarations from unqualified
lookup.  However, the compiler doesn't do ADL until it knows all the
argument types.

<p>In our example, <tt>Multiply</tt> is called with dependent
arguments, so ADL isn't done until the template is instantiated.  At
that point, the arguments both have type <tt>int</tt>, which doesn't
contain any class types, and so ADL doesn't look in any namespaces.
Since neither form of lookup found the declaration
of <tt>Multiply</tt>, the code doesn't compile.

<p>Here's another example, this time using overloaded operators,
which obey very similar rules.

<pre>#include &lt;iostream&gt;

template&lt;typename T&gt;
void Dump(const T&amp; value) {
  std::cout &lt;&lt; value &lt;&lt; "\n";
}

namespace ns {
  struct Data {};
}

std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
  return out &lt;&lt; "Some data";
}

void Use() {
  Dump(ns::Data());
}</pre>

<p>Again, Clang complains:</p>

<pre>
<b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
  std::cout &lt;&lt; value &lt;&lt; "\n";
<span class="caret">            ^</span>
<b>my_file2.cpp:17:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here
  Dump(ns::Data());
<span class="caret">  ^</span>
<b>my_file2.cpp:12:15: <span class="note">note:</span></b> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'
std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
<span class="caret">              ^</span>
</pre>

<p>Just like before, unqualified lookup didn't find any declarations
with the name <tt>operator&lt;&lt;</tt>.  Unlike before, the argument
types both contain class types: one of them is an instance of the
class template type <tt>std::basic_ostream</tt>, and the other is the
type <tt>ns::Data</tt> that we declared above.  Therefore, ADL will
look in the namespaces <tt>std</tt> and <tt>ns</tt> for
an <tt>operator&lt;&lt;</tt>.  Since one of the argument types was
still dependent during the template definition, ADL isn't done until
the template is instantiated during <tt>Use</tt>, which means that
the <tt>operator&lt;&lt;</tt> we want it to find has already been
declared.  Unfortunately, it was declared in the global namespace, not
in either of the namespaces that ADL will look in!

<p>There are two ways to fix this problem:</p>
<ol><li>Make sure the function you want to call is declared before the
template that might call it.  This is the only option if none of its
argument types contain classes.  You can do this either by moving the
template definition, or by moving the function definition, or by
adding a forward declaration of the function before the template.</li>
<li>Move the function into the same namespace as one of its arguments
so that ADL applies.</li></ol>

<p>For more information about argument-dependent lookup, see
[basic.lookup.argdep].  For more information about the ordering of
lookup in templates, see [temp.dep.candidate].

<!-- ======================================================================= -->
<h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
<!-- ======================================================================= -->

<p>Some versions of GCC accept the following invalid code:

<pre>
template &lt;typename T&gt; struct Base {
  void DoThis(T x) {}
  static void DoThat(T x) {}
};

template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
  void Work(T x) {
    DoThis(x);  // Invalid!
    DoThat(x);  // Invalid!
  }
};
</pre>

Clang correctly rejects it with the following errors
(when <tt>Derived</tt> is eventually instantiated):

<pre>
<b>my_file.cpp:8:5: <span class="error">error:</span> use of undeclared identifier 'DoThis'</b>
    DoThis(x);
<span class="caret">    ^</span>
    this-&gt;
<b>my_file.cpp:2:8: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class
  void DoThis(T x) {}
<span class="caret">       ^</span>
<b>my_file.cpp:9:5: <span class="error">error:</span> use of undeclared identifier 'DoThat'</b>
    DoThat(x);
<span class="caret">    ^</span>
    this-&gt;
<b>my_file.cpp:3:15: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class
  static void DoThat(T x) {}
</pre>

Like we said <a href="#dep_lookup">above</a>, unqualified names like
<tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
<tt>Derived</tt> is defined, not when it's instantiated.  When we look
up a name used in a class, we usually look into the base classes.
However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
because its type depends on the template argument <tt>T</tt>, so the
standard says we should just ignore it.  See [temp.dep]p3 for details.

<p>The fix, as Clang tells you, is to tell the compiler that we want a
class member by prefixing the calls with <tt>this-&gt;</tt>:

<pre>
  void Work(T x) {
    <b>this-&gt;</b>DoThis(x);
    <b>this-&gt;</b>DoThat(x);
  }
</pre>

Alternatively, you can tell the compiler exactly where to look:

<pre>
  void Work(T x) {
    <b>Base&lt;T&gt;</b>::DoThis(x);
    <b>Base&lt;T&gt;</b>::DoThat(x);
  }
</pre>

This works whether the methods are static or not, but be careful:
if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
dispatch!

<!-- ======================================================================= -->
<h3 id="undep_incomplete">Incomplete types in templates</h3>
<!-- ======================================================================= -->

<p>The following code is invalid, but compilers are allowed to accept it:

<pre>
  class IOOptions;
  template &lt;class T&gt; bool read(T &amp;value) {
    IOOptions opts;
    return read(opts, value);
  }

  class IOOptions { bool ForceReads; };
  bool read(const IOOptions &amp;opts, int &amp;x);
  template bool read&lt;&gt;(int &amp;);
</pre>

The standard says that types which don't depend on template parameters
must be complete when a template is defined if they affect the
program's behavior.  However, the standard also says that compilers
are free to not enforce this rule.  Most compilers enforce it to some
extent; for example, it would be an error in GCC to
write <tt>opts.ForceReads</tt> in the code above.  In Clang, we feel
that enforcing the rule consistently lets us provide a better
experience, but unfortunately it also means we reject some code that
other compilers accept.

<p>We've explained the rule here in very imprecise terms; see
[temp.res]p8 for details.

<!-- ======================================================================= -->
<h3 id="bad_templates">Templates with no valid instantiations</h3>
<!-- ======================================================================= -->

<p>The following code contains a typo: the programmer
meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.

<pre>
  template &lt;class T&gt; class Processor {
    ...
    void init();
    ...
  };
  ...
  template &lt;class T&gt; void process() {
    Processor&lt;T&gt; processor;
    processor.innit();       // <-- should be 'init()'
    ...
  }
</pre>

Unfortunately, we can't flag this mistake as soon as we see it: inside
a template, we're not allowed to make assumptions about "dependent
types" like <tt>Processor&lt;T&gt;</tt>.  Suppose that later on in
this file the programmer adds an explicit specialization
of <tt>Processor</tt>, like so:

<pre>
  template &lt;&gt; class Processor&lt;char*&gt; {
    void innit();
  };
</pre>

Now the program will work &mdash; as long as the programmer only ever
instantiates <tt>process()</tt> with <tt>T = char*</tt>!  This is why
it's hard, and sometimes impossible, to diagnose mistakes in a
template definition before it's instantiated.

<p>The standard says that a template with no valid instantiations is
ill-formed.  Clang tries to do as much checking as possible at
definition-time instead of instantiation-time: not only does this
produce clearer diagnostics, but it also substantially improves
compile times when using pre-compiled headers.  The downside to this
philosophy is that Clang sometimes fails to process files because they
contain broken templates that are no longer used.  The solution is
simple: since the code is unused, just remove it.

<!-- ======================================================================= -->
<h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
<!-- ======================================================================= -->

<p>If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
constructor, C++ doesn't allow you to default construct a <tt>const</tt>
instance of it like this ([dcl.init], p9):

<pre>
class Foo {
 public:
  // The compiler-supplied default constructor works fine, so we
  // don't bother with defining one.
  ...
};

void Bar() {
  const Foo foo;  // Error!
  ...
}
</pre>

To fix this, you can define a default constructor for the class:

<pre>
class Foo {
 public:
  Foo() {}
  ...
};

void Bar() {
  const Foo foo;  // Now the compiler is happy.
  ...
}
</pre>

An upcoming change to the C++ standard is expected to weaken this rule to only
apply when the compiler-supplied default constructor would leave a member
uninitialized. Clang implements the more relaxed rule in version 3.8 onwards.

<!-- ======================================================================= -->
<h3 id="param_name_lookup">Parameter name lookup</h3>
<!-- ======================================================================= -->

<p>Some versions of GCC allow the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
<blockquote>
<pre>
void f(int a, int a);
</pre>
</blockquote>
<p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>

<!-- ======================================================================= -->
<h2 id="cxx11">C++11 compatibility</h2>
<!-- ======================================================================= -->

<!-- ======================================================================= -->
<h3 id="deleted-special-func">Deleted special member functions</h3>
<!-- ======================================================================= -->

<p>In C++11, the explicit declaration of a move constructor or a move
assignment operator within a class deletes the implicit declaration
of the copy constructor and copy assignment operator. This change came
fairly late in the C++11 standardization process, so early
implementations of C++11 (including Clang before 3.0, GCC before 4.7,
and Visual Studio 2010) do not implement this rule, leading them to
accept this ill-formed code:</p>

<pre>
struct X {
  X(X&amp;&amp;); <i>// deletes implicit copy constructor:</i>
  <i>// X(const X&amp;) = delete;</i>
};

void f(X x);
void g(X x) {
  f(x); <i>// error: X has a deleted copy constructor</i>
}
</pre>

<p>This affects some early C++11 code, including Boost's popular <a
href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a>
up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is
<a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p>

<!-- ======================================================================= -->
<h2 id="objective-cxx">Objective-C++ compatibility</h2>
<!-- ======================================================================= -->

<!-- ======================================================================= -->
<h3 id="implicit-downcasts">Implicit downcasts</h3>
<!-- ======================================================================= -->

<p>Due to a bug in its implementation, GCC allows implicit downcasts
of Objective-C pointers (from a base class to a derived class) when
calling functions. Such code is inherently unsafe, since the object
might not actually be an instance of the derived class, and is
rejected by Clang. For example, given this code:</p>

<pre>
@interface Base @end
@interface Derived : Base @end

void f(Derived *p);
void g(Base *p) {
  f(p);
}
</pre>

<p>Clang produces the following error:</p>

<pre>
<b>downcast.mm:6:3: <span class="error">error:</span> no matching function for call to 'f'</b>
  f(p);
<span class="caret">  ^</span>
<b>downcast.mm:4:6: <span class="note">note:</note></b> candidate function not viable: cannot convert from
      superclass 'Base *' to subclass 'Derived *' for 1st argument
void f(Derived *p);
<span class="caret">     ^</span>
</pre>

<p>If the downcast is actually correct (e.g., because the code has
already checked that the object has the appropriate type), add an
explicit cast:</p>

<pre>
  f((Derived *)base);
</pre>

<!-- ======================================================================= -->
<h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
<!-- ======================================================================= -->

<p>In C and Objective-C, <code>class</code> is a normal identifier and
can be used to name fields, ivars, methods, and so on.  In
C++, <code>class</code> is a keyword.  For compatibility with existing
code, Clang permits <code>class</code> to be used as part of a method
selector in Objective-C++, but this does not extend to any other part
of the language.  In particular, it is impossible to use property dot
syntax in Objective-C++ with the property name <code>class</code>, so
the following code will fail to parse:</p>

<pre>
@interface I {
int cls;
}
+ (int)class;
@end

@implementation  I
- (int) Meth { return I.class; }
@end
</pre>

<p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>

</div>
</body>
</html>