Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/*
 * Copyright (c) 1984 through 2008, William LeFebvre
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 * 
 *     * Neither the name of William LeFebvre nor the names of other
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * top - a top users display for Unix
 *
 * SYNOPSIS:  OSF/1, Digital Unix 4.0, Compaq Tru64 5.0
 *
 * DESCRIPTION:
 * This is the machine-dependent module for DEC OSF/1 and its descendents
 * It is known to work on OSF/1 1.2, 1.3, 2.0-T3, 3.0, Digital Unix V4.0,
 * Digital Unix 5.0, and Tru64 5.0.
 * WARNING: if you use optimization with the standard "cc" compiler that
 * .        comes with V3.0 the resulting executable may core dump.  If
 * .        this happens, recompile without optimization.
 *
 * LIBS: -lmld -lmach
 *
 * CFLAGS: -DHAVE_GETOPT -DORDER
 *
 * AUTHOR:  Anthony Baxter, <anthony@aaii.oz.au>
 * Derived originally from m_ultrix, by David S. Comay <dsc@seismo.css.gov>, 
 * although by now there is hardly any of the code from m_ultrix left.
 * Helped a lot by having the source for syd(1), by Claus Kalle, and
 * from several people at DEC who helped with providing information on
 * some of the less-documented bits of the kernel interface.
 *
 * Modified: 31-Oct-94, Pat Welch, tpw@physics.orst.edu
 *	changed _mpid to pidtab for compatibility with OSF/1 version 3.0
 *
 * Modified: 13-Dec-94, William LeFebvre, lefebvre@dis.anl.gov
 *	removed used of pidtab (that was bogus) and changed things to
 *	automatically detect the absence of _mpid in the nlist and
 *	recover gracefully---this appears to be the only difference
 *	with 3.0.
 *
 * Modified: 3-Mar-00, Rainer Orth <ro@TechFak.Uni-Bielefeld.DE>
 *	added support for sort ordering.
 */
/* 
 * Theory of operation: 
 * 
 * Use Mach calls to build up a structure that contains all the sorts
 * of stuff normally found in a struct proc in a BSD system. Then
 * everything else uses this structure. This has major performance wins,
 * and also should work for future versions of the O/S.
 */

#include "config.h"

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>

#include <string.h>
#include <sys/user.h>
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dk.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/time.h>
/* #include <machine/pte.h> */
/* forward declarations, needed by <net/if.h> included from <sys/table.h> */
struct rtentry;
struct mbuf;
#include <sys/table.h>
#include <mach.h>
#include <mach/mach_types.h>
#include <mach/vm_statistics.h>
#include <sys/syscall.h> /* for SYS_setpriority, in setpriority(), below */


#include "top.h"
#include "machine.h"
#include "utils.h"

extern int errno, sys_nerr;
extern char *sys_errlist[];
#define strerror(e) (((e) >= 0 && (e) < sys_nerr) ? sys_errlist[(e)] : "Unknown error")

#define VMUNIX	"/vmunix"
#define KMEM	"/dev/kmem"
#define MEM	"/dev/mem"

/* get_process_info passes back a handle.  This is what it looks like: */

struct handle
{
    struct osf1_top_proc **next_proc;	/* points to next valid proc pointer */
    int remaining;		/* number of pointers remaining */
};

/* declarations for load_avg */
#include "loadavg.h"

/* definitions for indices in the nlist array */
#define X_MPID		0

static struct nlist nlst[] = {
    { "_mpid" },		/* 0 */
    { 0 }
};

/* Some versions of OSF/1 don't support reporting of the last PID.
   This flag indicates whether or not we are reporting the last PID. */
static int do_last_pid = 1;

/*
 *  These definitions control the format of the per-process area
 */

static char header[] =
  "   PID X        PRI NICE  SIZE   RES STATE   TIME    CPU COMMAND";
/* 01234567   -- field to fill in starts at header+7 */
#define UNAME_START 7

#define Proc_format \
	"%6d %-8.8s %3d %4d %5s %5s %-5s %-6s %5.2f%% %s"


/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
 * the processor number when needed. Although OSF/1 doesnt support
 * multiple processors yet, (and this module _certainly_ doesnt
 * support it, either, we may as well plan for the future. :-)
 */

char *state_abbrev[] =
{
    "", "run\0\0\0", "WAIT", "sleep", "sleep", "stop", "halt", "???", "zomb"
};


static int kmem, mem;

/* values that we stash away in _init and use in later routines */

static double logcpu;

/* these are retrieved from the kernel in _init */

static unsigned long proc;
static          int  nproc;
static load_avg  ccpu;

typedef long mtime_t;

/* these are offsets obtained via nlist and used in the get_ functions */

static unsigned long mpid_offset;

/* these are for detailing the process states */

int process_states[9];
char *procstatenames[] = {
    "", " running, ", " waiting, ", " sleeping, ", " idle, ",
    " stopped, ", " halted, ", "", " zombie",
    NULL
};

/* these are for detailing the cpu states */

int cpu_states[5];
char *cpustatenames[] = {
    "user", "nice", "system", "wio", "idle", NULL
};

long old_cpu_ticks[5];

/* these are for detailing the memory statistics */

long memory_stats[5];
char *memorynames[] = {
    "K active, ", "K inactive, ", "K total, ", "K free", NULL
};

long swap_stats[3];
char *swapnames[] = {
    "K in use, ", "K total", NULL
};

/* these are names given to allowed sorting orders -- first is default */
char *ordernames[] = {
    "cpu", "size", "res", "time", NULL
};

/* forward definitions for comparison functions */
int compare_cpu();
int compare_size();
int compare_res();
int compare_time();

int (*proc_compares[])() = {
    compare_cpu,
    compare_size,
    compare_res,
    compare_time,
    NULL
};

/* these are for getting the memory statistics */

static int pageshift;		/* log base 2 of the pagesize */

/* define pagetok in terms of pageshift */

#define pagetok(size) ((size) << pageshift)

/* take a process, make it a mach task, and grab all the info out */
void do_threads_calculations();

/*
 * Because I dont feel like repeatedly grunging through the kernel with
 * Mach calls, and I also dont want the horrid performance hit this
 * would give, I read the stuff I need out, and put in into my own
 * structure, for later use.
 */

struct osf1_top_proc {
    size_t p_mach_virt_size;
    char p_mach_state;
    int p_flag;
    fixpt_t p_mach_pct_cpu; /* aka p_pctcpu */
    int used_ticks;
    size_t process_size;
    pid_t p_pid;
    uid_t p_ruid;
    char p_pri;
    char p_nice;
    size_t p_rssize;
    char u_comm[PI_COMLEN + 1];
} ;

/* these are for keeping track of the proc array */

static int bytes;
static int pref_len;
static struct osf1_top_proc *pbase;
static struct osf1_top_proc **pref;

/* useful externals */
extern int errno;
extern char *sys_errlist[];

long percentages();

machine_init(statics)
struct statics *statics;
{
    register int i = 0;
    register int pagesize;
    struct tbl_sysinfo sibuf;

    if ((kmem = open(KMEM, O_RDONLY)) == -1) {
	perror(KMEM);
	return(-1);
    }
    if ((mem = open(MEM, O_RDONLY)) == -1) {
	perror(MEM);
	return(-1);
    }

    /* get the list of symbols we want to access in the kernel */
    if (nlist(VMUNIX, nlst) == -1)
    {
	perror("TOP(nlist)");
	return (-1);
    }

    if (nlst[X_MPID].n_type == 0)
    {
	/* this kernel has no _mpid, so go without */
	do_last_pid = 0;
    }
    else
    {
	/* stash away mpid pointer for later use */
	mpid_offset = nlst[X_MPID].n_value;
    }

    /* get the symbol values out of kmem */
    nproc  = table(TBL_PROCINFO, 0, (struct tbl_procinfo *)NULL, INT_MAX, 0);

    /* allocate space for proc structure array and array of pointers */
    bytes = nproc * sizeof(struct osf1_top_proc);
    pbase = (struct osf1_top_proc *)malloc(bytes);
    pref  = (struct osf1_top_proc **)malloc(nproc * 
                                              sizeof(struct osf1_top_proc *));

    /* Just in case ... */
    if (pbase == (struct osf1_top_proc *)NULL || 
                                  pref == (struct osf1_top_proc **)NULL)
    {
	fprintf(stderr, "top: cannot allocate sufficient memory\n");
	return(-1);
    }

    /* get the page size with "getpagesize" and calculate pageshift from it */
    pagesize = getpagesize();
    pageshift = 0;
    while (pagesize > 1)
    {
	pageshift++;
	pagesize >>= 1;
    }

    /* we only need the amount of log(2)1024 for our conversion */
    pageshift -= LOG1024;

    /* fill in the statics information */
    statics->procstate_names = procstatenames;
    statics->cpustate_names = cpustatenames;
    statics->memory_names = memorynames;
    statics->order_names = ordernames;
    statics->swap_names = swapnames;

    /* initialise this, for calculating cpu time */
    if (table(TBL_SYSINFO,0,&sibuf,1,sizeof(struct tbl_sysinfo))<0) {
	perror("TBL_SYSINFO");
	return(-1);
    }
    old_cpu_ticks[0] = sibuf.si_user;
    old_cpu_ticks[1] = sibuf.si_nice;
    old_cpu_ticks[2] = sibuf.si_sys;
    old_cpu_ticks[3] = sibuf.wait;
    old_cpu_ticks[4] = sibuf.si_idle;

    /* all done! */
    return(0);
}

char *format_header(uname_field)
register char *uname_field;
{
    register char *ptr;

    ptr = header + UNAME_START;
    while (*uname_field != '\0')
    {
	*ptr++ = *uname_field++;
    }

    return(header);
}

void get_system_info(si)
struct system_info *si;
{
    struct tbl_loadavg labuf;
    struct tbl_sysinfo sibuf;
    struct tbl_swapinfo swbuf;
    vm_statistics_data_t vmstats;
    int swap_pages=0,swap_free=0,i;
    long new_ticks[5],diff_ticks[5];
    long delta_ticks;

    if (do_last_pid)
    {
	/* last pid assigned */
	(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid), 
		       "_mpid");
    }
    else
    {
	si->last_pid = -1;
    }

    /* get load averages */
    if (table(TBL_LOADAVG,0,&labuf,1,sizeof(struct tbl_loadavg))<0) {
	perror("TBL_LOADAVG");
	return;
    }
    if (labuf.tl_lscale)   /* scaled */
	for(i=0;i<3;i++) 
	    si->load_avg[i] = ((double)labuf.tl_avenrun.l[i] / 
                                            (double)labuf.tl_lscale );
    else                   /* not scaled */
	for(i=0;i<3;i++) 
	    si->load_avg[i] = labuf.tl_avenrun.d[i];

    /* array of cpu state counters */
    if (table(TBL_SYSINFO,0,&sibuf,1,sizeof(struct tbl_sysinfo))<0) {
	perror("TBL_SYSINFO");
	return;
    }
    new_ticks[0] = sibuf.si_user ; new_ticks[1] = sibuf.si_nice;
    new_ticks[2] = sibuf.si_sys  ; new_ticks[3] = sibuf.wait;
    new_ticks[4] = sibuf.si_idle;
    delta_ticks=0;
    for(i=0;i<5;i++) {
	diff_ticks[i] = new_ticks[i] - old_cpu_ticks[i];
	delta_ticks += diff_ticks[i];
	old_cpu_ticks[i] = new_ticks[i];
    }
    si->cpustates = cpu_states;
    if(delta_ticks)
	for(i=0;i<5;i++) 
	    si->cpustates[i] = (int)( ( (double)diff_ticks[i] / 
                                           (double)delta_ticks ) * 1000 );
    
    /* memory information */
    /* this is possibly bogus - we work out total # pages by */
    /* adding up the free, active, inactive, wired down, and */
    /* zero filled. Anyone who knows a better way, TELL ME!  */
    /* Change: dont use zero filled. */
    (void) vm_statistics(task_self(),&vmstats);

    /* thanks DEC for the table() command. No thanks at all for   */
    /* omitting the man page for it from OSF/1 1.2, and failing   */
    /* to document SWAPINFO in the 1.3 man page. Lets hear it for */
    /* include files. */
    i=0;
    while(table(TBL_SWAPINFO,i,&swbuf,1,sizeof(struct tbl_swapinfo))>0) {
	swap_pages += swbuf.size;
	swap_free  += swbuf.free;
	i++;
    }
    memory_stats[0] = pagetok(vmstats.active_count);
    memory_stats[1] = pagetok(vmstats.inactive_count);
    memory_stats[2] = pagetok((vmstats.free_count + vmstats.active_count +
	vmstats.inactive_count + vmstats.wire_count));
    memory_stats[3] = pagetok(vmstats.free_count);
    swap_stats[0] = pagetok(swap_pages - swap_free);
    swap_stats[1] = pagetok(swap_pages);
    si->memory = memory_stats;
    si->swap = swap_stats;
}

static struct handle handle;

caddr_t get_process_info(si, sel, compare_index)
struct system_info *si;
struct process_select *sel;
int compare_index;
{
    register int i;
    register int total_procs;
    register int active_procs;
    register struct osf1_top_proc **prefp;
    register struct osf1_top_proc *pp;
    struct tbl_procinfo p_i[8];
    int j,k,r;

    /* these are copied out of sel for speed */
    int show_idle;
    int show_uid;
    int show_command;

    /* get a pointer to the states summary array */
    si->procstates = process_states;

    /* set up flags which define what we are going to select */
    show_idle = sel->idle;
    show_uid = sel->uid != -1;
    show_command = sel->command != NULL;

    /* count up process states and get pointers to interesting procs */
    total_procs = 0;
    active_procs = 0;
    memset((char *)process_states, 0, sizeof(process_states));
    prefp = pref;
    pp=pbase;
    for (j=0; j<nproc; j += 8) 
    {
	r = table(TBL_PROCINFO, j, (struct tbl_procinfo *)p_i, 8, 
                                               sizeof(struct tbl_procinfo));
	for (k=0; k < r; k++ , pp++) 
	{
	    if(p_i[k].pi_pid == 0) 
	    {
		pp->p_pid = 0;
	    }
	    else
	    {
		pp->p_pid = p_i[k].pi_pid;
		pp->p_ruid = p_i[k].pi_ruid;
		pp->p_flag = p_i[k].pi_flag;
		pp->p_nice = getpriority(PRIO_PROCESS,p_i[k].pi_pid);
		/* Load useful values into the proc structure */
		do_threads_calculations(pp);
		/*
		 *  Place pointers to each valid proc structure in pref[].
		 *  Process slots that are actually in use have a non-zero
		 *  status field.  
		 */
#ifdef DEBUG
		/*
		 *  Emit debug info about all processes before selection.
		 */
		fprintf(stderr, "pid = %d ruid = %d comm = %s p_mach_state = %d p_stat = %d p_flag = 0x%x\n",
			pp->p_pid, pp->p_ruid, p_i[k].pi_comm,
			pp->p_mach_state, p_i[k].pi_status, pp->p_flag);
#endif
		if (pp->p_mach_state != 0)
		{
		    total_procs++;
		    process_states[pp->p_mach_state]++;
		    if ((pp->p_mach_state != 8) &&
			(show_idle || (pp->p_mach_pct_cpu != 0) || 
			 (pp->p_mach_state == 1)) &&
			(!show_uid || pp->p_ruid == (uid_t)sel->uid)) {
			*prefp++ = pp;
			active_procs++;
		    }
		}
	    }
	}
    }

    /* if requested, sort the "interesting" processes */
    if (proc_compares[compare_index] != NULL)
    {
	qsort((char *)pref, active_procs, sizeof(struct osf1_top_proc *), 
	      proc_compares[compare_index]);
    }

    /* remember active and total counts */
    si->p_total = total_procs;
    si->p_active = pref_len = active_procs;

    /* pass back a handle */
    handle.next_proc = pref;
    handle.remaining = active_procs;
    return((caddr_t)&handle);
}

char fmt[MAX_COLS];		/* static area where result is built */

char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
    register struct osf1_top_proc *pp;
    register long cputime;
    register double pct;
    struct user u;
    struct handle *hp;

    /* find and remember the next proc structure */
    hp = (struct handle *)handle;
    pp = *(hp->next_proc++);
    hp->remaining--;

    /* get the process's user struct and set cputime */
    
    if (table(TBL_UAREA,pp->p_pid,&u,1,sizeof(struct user))<0) {
    /* whoops, it must have died between the read of the proc area
     * and now. Oh well, lets just dump some meaningless thing out
     * to keep the rest of the program happy
     */
	sprintf(fmt,
		Proc_format,
		pp->p_pid,
		(*get_userid)(pp->p_ruid),
		0,
		0,
		"",
		"",
		"dead",
		"",
		0.0,
		"<dead>");
	    return(fmt);
    }

    /* set u_comm for system processes */
    if (u.u_comm[0] == '\0')
    {
	if (pp->p_pid == 0)
	{
	    (void) strcpy(u.u_comm, "[idle]");
	}
	else if (pp->p_pid == 2)
	{
	    (void) strcpy(u.u_comm, "[execpt.hndlr]");
	}
    }

    /* Check if process is in core */
    if (!(pp->p_flag & SLOAD)) {
	/*
	 * Print swapped processes as <pname>
	 */
	char buf[sizeof(u.u_comm)];
	(void) strncpy(buf, u.u_comm, sizeof(u.u_comm));
	u.u_comm[0] = '<';
	(void) strncpy(&u.u_comm[1], buf, sizeof(u.u_comm) - 2);
	u.u_comm[sizeof(u.u_comm) - 2] = '\0';
	(void) strncat(u.u_comm, ">", sizeof(u.u_comm) - 1);
	u.u_comm[sizeof(u.u_comm) - 1] = '\0';
    }

    cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec;

    /* calculate the base for cpu percentages */
    pct = pctdouble(pp->p_mach_pct_cpu);

    /* format this entry */
    sprintf(fmt,
	    Proc_format,
	    pp->p_pid,
	    (*get_userid)(pp->p_ruid),
	    pp->p_pri,
	    pp->p_nice,
            format_k(pp->p_mach_virt_size/1024),
            format_k(pp->p_rssize/1000),
	    state_abbrev[pp->p_mach_state],
	    format_time(cputime),
	    100.0 * ((double)pp->p_mach_pct_cpu / 10000.0),
	    printable(u.u_comm));

    /* return the result */
    return(fmt);
}

/*
 *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
 *	"offset" is the byte offset into the kernel for the desired value,
 *  	"ptr" points to a buffer into which the value is retrieved,
 *  	"size" is the size of the buffer (and the object to retrieve),
 *  	"refstr" is a reference string used when printing error meessages,
 *	    if "refstr" starts with a '!', then a failure on read will not
 *  	    be fatal (this may seem like a silly way to do things, but I
 *  	    really didn't want the overhead of another argument).
 *  	
 */

getkval(offset, ptr, size, refstr)

unsigned long offset;
int *ptr;
int size;
char *refstr;

{
    if (lseek(kmem, (long)offset, L_SET) == -1) {
        if (*refstr == '!')
            refstr++;
        (void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM, 
		       refstr, strerror(errno));
        quit(23);
    }
    if (read(kmem, (char *) ptr, size) == -1) {
        if (*refstr == '!') 
            return(0);
        else {
            (void) fprintf(stderr, "%s: reading %s: %s\n", KMEM, 
			   refstr, strerror(errno));
            quit(23);
        }
    }
    return(1);
}
    
/* comparison routines for qsort */

/*
 * There are currently four possible comparison routines.  main selects
 * one of these by indexing in to the array proc_compares.
 *
 * Possible keys are defined as macros below.  Currently these keys are
 * defined:  percent cpu, cpu ticks, process state, resident set size,
 * total virtual memory usage.  The process states are ordered as follows
 * (from least to most important):  WAIT, zomb, ???, halt, idle, sleep,
 * stop, run.  The array declaration below maps a process state index into
 * a number that reflects this ordering.
 */

/* First, the possible comparison keys.  These are defined in such a way
   that they can be merely listed in the source code to define the actual
   desired ordering.
 */

#define ORDERKEY_PCTCPU  if (lresult = p2->p_mach_pct_cpu - p1->p_mach_pct_cpu,\
                           (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS if ((result = p2->used_ticks - p1->used_ticks) == 0)
#define ORDERKEY_STATE   if ((result = sorted_state[p2->p_mach_state] - \
                            sorted_state[p1->p_mach_state])  == 0)
#define ORDERKEY_PRIO    if ((result = p2->p_pri - p1->p_pri) == 0)
#define ORDERKEY_RSSIZE  if ((result = p2->p_rssize - p1->p_rssize) == 0)
#define ORDERKEY_MEM     if ((result = p2->p_mach_virt_size - p1->p_mach_virt_size) == 0)

/* Now the array that maps process state to a weight */

static unsigned char sorted_state[] =
{
   0, /*""*/
   8, /*"run"*/
   1, /*"WAIT"*/
   6, /*"sleep"*/
   5, /*"idle"*/
   7, /*"stop"*/
   4, /*"halt"*/
   3, /*"???"*/
   2, /*"zomb"*/
};
 
/* compare_cpu - the comparison function for sorting by cpu percentage */

compare_cpu(pp1, pp2)

struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;

{
    register struct osf1_top_proc *p1;
    register struct osf1_top_proc *p2;
    register long result;
    register pctcpu lresult;

    /* remove one level of indirection */
    p1 = *pp1;
    p2 = *pp2;

    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ORDERKEY_RSSIZE
    ORDERKEY_MEM
    ;

    return(result);
}

/* compare_size - the comparison function for sorting by total memory usage */

compare_size(pp1, pp2)

struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;

{
    register struct osf1_top_proc *p1;
    register struct osf1_top_proc *p2;
    register long result;
    register pctcpu lresult;

    /* remove one level of indirection */
    p1 = *pp1;
    p2 = *pp2;

    ORDERKEY_MEM
    ORDERKEY_RSSIZE
    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ;

    return(result);
}

/* compare_res - the comparison function for sorting by resident set size */

compare_res(pp1, pp2)

struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;

{
    register struct osf1_top_proc *p1;
    register struct osf1_top_proc *p2;
    register long result;
    register pctcpu lresult;

    /* remove one level of indirection */
    p1 = *pp1;
    p2 = *pp2;

    ORDERKEY_RSSIZE
    ORDERKEY_MEM
    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ;

    return(result);
}

/* compare_time - the comparison function for sorting by total cpu time */

compare_time(pp1, pp2)

struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;

{
    register struct osf1_top_proc *p1;
    register struct osf1_top_proc *p2;
    register long result;
    register pctcpu lresult;

    /* remove one level of indirection */
    p1 = *pp1;
    p2 = *pp2;

    ORDERKEY_CPTICKS
    ORDERKEY_PCTCPU
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ORDERKEY_RSSIZE
    ORDERKEY_MEM
    ;
  
    return(result);
}

/*
 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
 *		the process does not exist.
 *		It is EXTREMLY IMPORTANT that this function work correctly.
 *		If top runs setuid root (as in SVR4), then this function
 *		is the only thing that stands in the way of a serious
 *		security problem.  It validates requests for the "kill"
 *		and "renice" commands.
 */

int proc_owner(pid)

int pid;

{
    register int cnt;
    register struct osf1_top_proc **prefp;
    register struct osf1_top_proc *pp;

    prefp = pref;
    cnt = pref_len;
    while (--cnt >= 0)
    {
	if ((pp = *prefp++)->p_pid == (pid_t)pid)
	{
	    return((int)pp->p_ruid);
	}
    }
    return(-1);
}


/*
 * We use the Mach interface, as well as the table(UAREA,,,) call to
 * get some more information, then put it into unused fields in our
 * copy of the proc structure, to make it faster and easier to get at
 * later.
 */
void do_threads_calculations(thisproc)
struct osf1_top_proc *thisproc; 
{
  int j;
  task_t  thistask;
  task_basic_info_data_t   taskinfo;
  unsigned int taskinfo_l;
  thread_array_t    threadarr;
  unsigned int threadarr_l;
  thread_basic_info_t     threadinfo;
  thread_basic_info_data_t threadinfodata;
  unsigned int threadinfo_l;
  int task_tot_cpu=0;  /* total cpu usage of threads in a task */
  struct user u;

  thisproc->p_pri=0; 
  thisproc->p_rssize=0; 
  thisproc->p_mach_virt_size=0; 
  thisproc->p_mach_state=0; 
  thisproc->p_mach_pct_cpu=0;

  if(task_by_unix_pid(task_self(), thisproc->p_pid, &thistask) 
                                                != KERN_SUCCESS){
      thisproc->p_mach_state=8; /* (zombie) */
  } else {
    taskinfo_l=TASK_BASIC_INFO_COUNT;
    if(task_info(thistask, TASK_BASIC_INFO, (task_info_t) &taskinfo, 
                                      &taskinfo_l)
       != KERN_SUCCESS) {
      thisproc->p_mach_state=8; /* (zombie) */
    } else {
      int minim_state=99,mcurp=1000,mbasp=1000,mslpt=999;

      thisproc->p_rssize=taskinfo.resident_size;
      thisproc->p_mach_virt_size=taskinfo.virtual_size;

      if (task_threads(thistask, &threadarr, &threadarr_l) != KERN_SUCCESS)
	  return;
      threadinfo= &threadinfodata;
      for(j=0; j < threadarr_l; j++) {
	threadinfo_l=THREAD_BASIC_INFO_COUNT;
	if(thread_info(threadarr[j],THREAD_BASIC_INFO,
	       (thread_info_t) threadinfo, &threadinfo_l) == KERN_SUCCESS) {
	    
	  task_tot_cpu += threadinfo->cpu_usage;
	  if(minim_state>threadinfo->run_state) 
              minim_state=threadinfo->run_state;
	  if(mcurp>threadinfo->cur_priority) 
              mcurp=threadinfo->cur_priority;
	  if(mbasp>threadinfo->base_priority) 
              mbasp=threadinfo->base_priority;
	  if(mslpt>threadinfo->sleep_time) 
              mslpt=threadinfo->sleep_time;
	}
      }
      switch (minim_state) {
      case TH_STATE_RUNNING:      
	    thisproc->p_mach_state=1;  break;
      case TH_STATE_UNINTERRUPTIBLE: 
	    thisproc->p_mach_state=2; break;
      case TH_STATE_WAITING:      
	    thisproc->p_mach_state=(threadinfo->sleep_time > 20) ? 4 : 3; break;
      case TH_STATE_STOPPED:      
	    thisproc->p_mach_state=5; break;
      case TH_STATE_HALTED:       
	    thisproc->p_mach_state=6; break;
      default:                    
	    thisproc->p_mach_state=7; break;
      }

      thisproc->p_pri=mcurp;
      thisproc->p_mach_pct_cpu=(fixpt_t)(task_tot_cpu*10);
      vm_deallocate(task_self(),(vm_address_t)threadarr,threadarr_l);
    }
  }
  if (table(TBL_UAREA,thisproc->p_pid,&u,1,sizeof(struct user))>=0) {
    thisproc->used_ticks=(u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec);
    thisproc->process_size=u.u_tsize + u.u_dsize + u.u_ssize;
  }
}

/* The reason for this function is that the system call will let
 * someone lower their own processes priority (because top is setuid :-(
 * Yes, using syscall() is a hack, if you can come up with something 
 * better, then I'd be thrilled to hear it. I'm not holding my breath,
 * though.  
 *             Anthony.
 */
int setpriority(int dummy, int procnum, int niceval)
{

    int uid, curprio;

    uid=getuid();
    if ( (curprio=getpriority(PRIO_PROCESS,procnum) ) == -1) 
    {
	return(-1); /* errno goes back to renice_process() */
    }
    /* check for not-root - if so, dont allow users to decrease priority */
    else if ( uid && (niceval<curprio) )
    {
	errno=EACCES;
	return(-1);
    }
    return(syscall(SYS_setpriority,PRIO_PROCESS,procnum,niceval));
}