/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* top - a top users display for Unix
*
* SYNOPSIS: any hp9000 running hpux version 9
*
* DESCRIPTION:
* This is the machine-dependent module for HPUX 9.
* This makes top work on (at least) the following systems:
* hp9000s800
* hp9000s700
* This may make top work on the following, but we aren't sure:
* hp9000s300
*
* LIBS:
*
* CFLAGS: -DHAVE_GETOPT
*
* AUTHOR: Kevin Schmidt <kevin@mcl.ucsb.edu>
* adapted from Christos Zoulas <christos@ee.cornell.edu>
*/
#include "config.h"
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dk.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/time.h>
#ifndef hpux
# define P_RSSIZE(p) (p)->p_rssize
# define P_TSIZE(p) (p)->p_tsize
# define P_DSIZE(p) (p)->p_dsize
# define P_SSIZE(p) (p)->p_ssize
#else
# include <sys/pstat.h>
# define __PST2P(p, field) \
((p)->p_upreg ? ((struct pst_status *) (p)->p_upreg)->field : 0)
# define P_RSSIZE(p) __PST2P(p, pst_rssize)
# define P_TSIZE(p) __PST2P(p, pst_tsize)
# define P_DSIZE(p) __PST2P(p, pst_dsize)
# define P_SSIZE(p) __PST2P(p, pst_ssize)
# ifdef __hp9000s700
# define p_percentcpu(p) ((p)->p_pctcpu)
# define p_time_exact(p) ((p)->p_time)
# else
/* The following 4 #defines are per HPUX-9.0's <sys/proc.h> */
# define PCT_NORM 9 /* log2(PCT_BASE) */
# define PCT_BASE (1<<PCT_NORM)
# define p_percentcpu(p) ((p)->p_fractioncpu/(float)(PCT_BASE*HZ))
# define p_time_exact(p) (time.tv_sec-((p)->p_swaptime))
# endif /* __hp9000s700 */
#endif /* hpux */
#include "top.h"
#include "machine.h"
#include "utils.h"
#define VMUNIX "/hp-ux"
#define KMEM "/dev/kmem"
#define MEM "/dev/mem"
#ifdef DOSWAP
#define SWAP "/dev/dmem"
#endif
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) ((p_time_exact(pp)) == 0 ? 0.0 : \
((pct) / (1.0 - exp((p_time_exact(pp)) * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) (P_TSIZE(pp) + P_DSIZE(pp) + P_SSIZE(pp))
/* definitions for indices in the nlist array */
#define X_AVENRUN 0
#define X_CCPU 1
#define X_NPROC 2
#define X_PROC 3
#define X_TOTAL 4
#define X_CP_TIME 5
#define X_MPID 6
/*
* Steinar Haug from University of Trondheim, NORWAY pointed out that
* the HP 9000 system 800 doesn't have _hz defined in the kernel. He
* provided a patch to work around this. We've improved on this patch
* here and set the constant X_HZ only when _hz is available in the
* kernel. Code in this module that uses X_HZ is surrounded with
* appropriate ifdefs.
*/
#ifndef hp9000s300
#define X_HZ 7
#endif
static struct nlist nlst[] = {
{ "_avenrun" }, /* 0 */
{ "_cexp" }, /* 1 */
{ "_nproc" }, /* 2 */
{ "_proc" }, /* 3 */
{ "_total" }, /* 4 */
{ "_cp_time" }, /* 5 */
{ "_mpid" }, /* 6 */
#ifdef X_HZ
{ "_hz" }, /* 7 */
#endif
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "sleep", "WAIT", "run\0\0\0", "start", "zomb", "stop"
};
static int kmem;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static unsigned long proc;
static int nproc;
static long hz;
static load_avg ccpu;
static int ncpu = 0;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long mpid_offset;
static unsigned long avenrun_offset;
static unsigned long total_offset;
static unsigned long cp_time_offset;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[7];
char *procstatenames[] = {
"", " sleeping, ", " ABANDONED, ", " running, ", " starting, ",
" zombie, ", " stopped, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[9];
char *cpustatenames[] = {
"usr", "nice", "sys", "idle", "", "", "", "intr", "ker",
NULL
};
/* these are for detailing the memory statistics */
long memory_stats[8];
char *memorynames[] = {
"Real: ", "K act, ", "K tot ", "Virtual: ", "K act, ",
"K tot, ", "K free", NULL
};
/* these are for keeping track of the proc array */
static int bytes;
static int pref_len;
static struct proc *pbase;
static struct proc **pref;
static struct pst_status *pst;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
extern int errno;
extern char *sys_errlist[];
long lseek();
long time();
machine_init(statics)
struct statics *statics;
{
register int i = 0;
register int pagesize;
if ((kmem = open(KMEM, O_RDONLY)) == -1) {
perror(KMEM);
return(-1);
}
#ifdef hp9000s800
/* 800 names don't have leading underscores */
for (i = 0; nlst[i].n_name; nlst[i++].n_name++)
continue;
#endif
/* get the list of symbols we want to access in the kernel */
(void) nlist(VMUNIX, nlst);
if (nlst[0].n_type == 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_PROC].n_value, (int *)(&proc), sizeof(proc),
nlst[X_PROC].n_name);
(void) getkval(nlst[X_NPROC].n_value, &nproc, sizeof(nproc),
nlst[X_NPROC].n_name);
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
#ifdef X_HZ
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
nlst[X_HZ].n_name);
#else
hz = HZ;
#endif
/* stash away certain offsets for later use */
mpid_offset = nlst[X_MPID].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
total_offset = nlst[X_TOTAL].n_value;
cp_time_offset = nlst[X_CP_TIME].n_value;
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
/* allocate space for proc structure array and array of pointers */
bytes = nproc * sizeof(struct proc);
pbase = (struct proc *)malloc(bytes);
pref = (struct proc **)malloc(nproc * sizeof(struct proc *));
pst = (struct pst_status *)malloc(nproc * sizeof(struct pst_status));
/* Just in case ... */
if (pbase == (struct proc *)NULL || pref == (struct proc **)NULL)
{
fprintf(stderr, "top: can't allocate sufficient memory\n");
return(-1);
}
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
void
get_system_info(si)
struct system_info *si;
{
load_avg avenrun[3];
long total;
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
"_cp_time");
/* get load average array */
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
"_avenrun");
/* get mpid -- process id of last process */
(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
"_mpid");
/* convert load averages to doubles */
{
register int i;
register double *infoloadp;
register load_avg *sysloadp;
infoloadp = si->load_avg;
sysloadp = avenrun;
for (i = 0; i < 3; i++)
{
*infoloadp++ = loaddouble(*sysloadp++);
}
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory statistics */
{
struct vmtotal total;
/* get total -- systemwide main memory usage structure */
(void) getkval(total_offset, (int *)(&total), sizeof(total),
"_total");
/* convert memory stats to Kbytes */
memory_stats[0] = -1;
memory_stats[1] = pagetok(total.t_arm);
memory_stats[2] = pagetok(total.t_rm);
memory_stats[3] = -1;
memory_stats[4] = pagetok(total.t_avm);
memory_stats[5] = pagetok(total.t_vm);
memory_stats[6] = pagetok(total.t_free);
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
}
static struct handle handle;
caddr_t get_process_info(si, sel, i)
struct system_info *si;
struct process_select *sel;
int i;
{
register int i;
register int total_procs;
register int active_procs;
register struct proc **prefp;
register struct proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
int show_command;
/* read all the proc structures in one fell swoop */
(void) getkval(proc, (int *)pbase, bytes, "proc array");
for (i = 0; i < nproc; ++i) {
if (pstat(PSTAT_PROC, &pst[i], sizeof(pst[i]), 0, pbase[i].p_pid) != 1)
pbase[i].p_upreg = (preg_t *) 0;
else
pbase[i].p_upreg = (preg_t *) &pst[i];
pbase[i].p_nice = pst[i].pst_nice;
pbase[i].p_cpticks = pst[i].pst_cpticks;
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with SSYS set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (pp->p_stat != 0 &&
(show_system || ((pp->p_flag & SSYS) == 0)))
{
total_procs++;
process_states[pp->p_stat]++;
/*
* idle processes can be selectively ignored: a process is
* considered idle when cpticks is zero AND it is not in the run
* state. Zombies are always ignored. We also skip over
* processes that have been excluded via a uid selection
*/
if ((pp->p_stat != SZOMB) &&
(show_idle || (pp->p_cpticks != 0) || (pp->p_stat == SRUN)) &&
(!show_uid || pp->p_uid == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct proc *), proc_compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[MAX_COLS]; /* static area where result is built */
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct proc *pp;
register long cputime;
register double pct;
int where;
struct user u;
struct handle *hp;
struct timeval time;
struct timezone timezone;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
where = getu(pp, &u);
if (where == -1)
{
(void) strcpy(u.u_comm, "<swapped>");
cputime = 0;
}
else
{
/* set u_comm for system processes */
if (u.u_comm[0] == '\0')
{
if (pp->p_pid == 0)
{
(void) strcpy(u.u_comm, "Swapper");
}
else if (pp->p_pid == 2)
{
(void) strcpy(u.u_comm, "Pager");
}
}
if (where == 1) {
/*
* Print swapped processes as <pname>
*/
char buf[sizeof(u.u_comm)];
(void) strncpy(buf, u.u_comm, sizeof(u.u_comm));
u.u_comm[0] = '<';
(void) strncpy(&u.u_comm[1], buf, sizeof(u.u_comm) - 2);
u.u_comm[sizeof(u.u_comm) - 2] = '\0';
(void) strncat(u.u_comm, ">", sizeof(u.u_comm) - 1);
u.u_comm[sizeof(u.u_comm) - 1] = '\0';
}
cputime = __PST2P(pp, pst_cptickstotal) / hz;
}
/* calculate the base for cpu percentages */
pct = pctdouble(p_percentcpu(pp));
/* get time used for calculation in weighted_cpu */
gettimeofday(&time, &timezone);
/* format this entry */
sprintf(fmt,
Proc_format,
pp->p_pid,
(*get_userid)(pp->p_uid),
pp->p_pri - PZERO,
pp->p_nice - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(P_RSSIZE(pp))),
state_abbrev[pp->p_stat],
format_time(cputime),
100.0 * weighted_cpu(pct, pp),
100.0 * pct,
printable(u.u_comm));
/* return the result */
return(fmt);
}
/*
* getu(p, u) - get the user structure for the process whose proc structure
* is pointed to by p. The user structure is put in the buffer pointed
* to by u. Return 0 if successful, -1 on failure (such as the process
* being swapped out).
*/
getu(p, u)
register struct proc *p;
struct user *u;
{
struct pst_status *ps;
char *s, *c;
int i;
if ((ps = (struct pst_status *) p->p_upreg) == NULL)
return -1;
memset(u, 0, sizeof(struct user));
c = ps->pst_cmd;
ps->pst_cmd[PST_CLEN - 1] = '\0'; /* paranoia */
s = strtok(ps->pst_cmd, "\t \n");
if (c = strrchr(s, '/'))
c++;
else
c = s;
if (*c == '-')
c++;
i = 0;
for (; i < MAXCOMLEN; i++) {
if (*c == '\0' || *c == ' ' || *c == '/')
break;
u->u_comm[i] = *c++;
}
#ifndef DOSWAP
return ((p->p_flag & SLOAD) == 0 ? 1 : 0);
#endif
return(0);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
int check_nlist(nlst)
register struct nlist *nlst;
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (lseek(kmem, (long)offset, L_SET) == -1) {
if (*refstr == '!')
refstr++;
(void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM,
refstr, strerror(errno));
quit(23);
}
if (read(kmem, (char *) ptr, size) == -1) {
if (*refstr == '!')
return(0);
else {
(void) fprintf(stderr, "%s: reading %s: %s\n", KMEM,
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routine for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
proc_compare(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct proc *p1;
register struct proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/* compare percent cpu (pctcpu) */
if ((lresult = p_percentcpu(p2) - p_percentcpu(p1)) == 0)
{
/* use cpticks to break the tie */
if ((result = p2->p_cpticks - p1->p_cpticks) == 0)
{
/* use process state to break the tie */
if ((result = sorted_state[p2->p_stat] -
sorted_state[p1->p_stat]) == 0)
{
/* use priority to break the tie */
if ((result = p2->p_pri - p1->p_pri) == 0)
{
/* use resident set size (rssize) to break the tie */
if ((result = P_RSSIZE(p2) - P_RSSIZE(p1)) == 0)
{
/* use total memory to break the tie */
result = PROCSIZE(p2) - PROCSIZE(p1);
}
}
}
}
}
else
{
result = lresult < 0 ? -1 : 1;
}
return(result);
}
void (*signal(sig, func))()
int sig;
void (*func)();
{
struct sigvec osv, sv;
/*
* XXX: we should block the signal we are playing with,
* in case we get interrupted in here.
*/
if (sigvector(sig, NULL, &osv) == -1)
return BADSIG;
sv = osv;
sv.sv_handler = func;
#ifdef SV_BSDSIG
sv.sv_flags |= SV_BSDSIG;
#endif
if (sigvector(sig, &sv, NULL) == -1)
return BADSIG;
return osv.sv_handler;
}
int getpagesize() { return 1 << PGSHIFT; }
int setpriority(a, b, c) { errno = ENOSYS; return -1; }
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int proc_owner(pid)
int pid;
{
register int cnt;
register struct proc **prefp;
register struct proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
if ((pp = *prefp++)->p_pid == (pid_t)pid)
{
return((int)pp->p_uid);
}
}
return(-1);
}