;; Faraday FA526 Pipeline Description
;; Copyright (C) 2010-2017 Free Software Foundation, Inc.
;; Written by I-Jui Sung, based on ARM926EJ-S Pipeline Description.
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it under
;; the terms of the GNU General Public License as published by the Free
;; Software Foundation; either version 3, or (at your option) any later
;; version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
;; WARRANTY; without even the implied warranty of MERCHANTABILITY or
;; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
;; for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>. */
;; These descriptions are based on the information contained in the
;; FA526 Core Design Note, Copyright (c) 2010 Faraday Technology Corp.
;;
;; Modeled pipeline characteristics:
;; LD -> any use: latency = 3 (2 cycle penalty).
;; ALU -> any use: latency = 2 (1 cycle penalty).
;; This automaton provides a pipeline description for the Faraday
;; FA526 core.
;;
;; The model given here assumes that the condition for all conditional
;; instructions is "true", i.e., that all of the instructions are
;; actually executed.
(define_automaton "fa526")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Pipelines
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; There is a single pipeline
;;
;; The ALU pipeline has fetch, decode, execute, memory, and
;; write stages. We only need to model the execute, memory and write
;; stages.
;; S E M W
(define_cpu_unit "fa526_core" "fa526")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions require two cycles to execute, and use the ALU
;; pipeline in each of the three stages. The results are available
;; after the execute stage has finished.
;;
;; If the destination register is the PC, the pipelines are stalled
;; for several cycles. That case is not modeled here.
;; ALU operations
(define_insn_reservation "526_alu_op" 1
(and (eq_attr "tune" "fa526")
(eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
alu_sreg,alus_sreg,logic_reg,logics_reg,\
adc_imm,adcs_imm,adc_reg,adcs_reg,\
adr,bfm,rev,\
shift_imm,shift_reg,\
mov_imm,mov_reg,mvn_imm,mvn_reg,\
mrs,multiple,no_insn"))
"fa526_core")
(define_insn_reservation "526_alu_shift_op" 2
(and (eq_attr "tune" "fa526")
(eq_attr "type" "extend,\
alu_shift_imm,alus_shift_imm,\
logic_shift_imm,logics_shift_imm,\
alu_shift_reg,alus_shift_reg,\
logic_shift_reg,logics_shift_reg,\
mov_shift,mov_shift_reg,\
mvn_shift,mvn_shift_reg"))
"fa526_core")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "526_mult1" 2
(and (eq_attr "tune" "fa526")
(eq_attr "type" "smlalxy,smulxy,smlaxy,smlalxy"))
"fa526_core")
(define_insn_reservation "526_mult2" 5
(and (eq_attr "tune" "fa526")
(eq_attr "type" "mul,mla,muls,mlas,umull,umlal,smull,smlal,umulls,\
umlals,smulls,smlals,smlawx"))
"fa526_core*4")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/Store Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The models for load/store instructions do not accurately describe
;; the difference between operations with a base register writeback
;; (such as "ldm!"). These models assume that all memory references
;; hit in dcache.
(define_insn_reservation "526_load1_op" 3
(and (eq_attr "tune" "fa526")
(eq_attr "type" "load1,load_byte"))
"fa526_core")
(define_insn_reservation "526_load2_op" 4
(and (eq_attr "tune" "fa526")
(eq_attr "type" "load2"))
"fa526_core*2")
(define_insn_reservation "526_load3_op" 5
(and (eq_attr "tune" "fa526")
(eq_attr "type" "load3"))
"fa526_core*3")
(define_insn_reservation "526_load4_op" 6
(and (eq_attr "tune" "fa526")
(eq_attr "type" "load4"))
"fa526_core*4")
(define_insn_reservation "526_store1_op" 0
(and (eq_attr "tune" "fa526")
(eq_attr "type" "store1"))
"fa526_core")
(define_insn_reservation "526_store2_op" 1
(and (eq_attr "tune" "fa526")
(eq_attr "type" "store2"))
"fa526_core*2")
(define_insn_reservation "526_store3_op" 2
(and (eq_attr "tune" "fa526")
(eq_attr "type" "store3"))
"fa526_core*3")
(define_insn_reservation "526_store4_op" 3
(and (eq_attr "tune" "fa526")
(eq_attr "type" "store4"))
"fa526_core*4")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch and Call Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch instructions are difficult to model accurately. The FA526
;; core can predict most branches. If the branch is predicted
;; correctly, and predicted early enough, the branch can be completely
;; eliminated from the instruction stream. Some branches can
;; therefore appear to require zero cycle to execute. We assume that
;; all branches are predicted correctly, and that the latency is
;; therefore the minimum value.
(define_insn_reservation "526_branch_op" 0
(and (eq_attr "tune" "fa526")
(eq_attr "type" "branch"))
"fa526_core")
;; The latency for a call is actually the latency when the result is available.
;; i.e. R0 ready for int return value. For most cases, the return value is set
;; by a mov instruction, which has 1 cycle latency.
(define_insn_reservation "526_call_op" 1
(and (eq_attr "tune" "fa526")
(eq_attr "type" "call"))
"fa526_core")