Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
/* 32 and 64-bit millicode, original author Hewlett-Packard
   adapted for gcc by Paul Bame <bame@debian.org>
   and Alan Modra <alan@linuxcare.com.au>.

   Copyright (C) 2001-2017 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#ifdef pa64
        .level  2.0w
#endif

/* Hardware General Registers.  */
r0:	.reg	%r0
r1:	.reg	%r1
r2:	.reg	%r2
r3:	.reg	%r3
r4:	.reg	%r4
r5:	.reg	%r5
r6:	.reg	%r6
r7:	.reg	%r7
r8:	.reg	%r8
r9:	.reg	%r9
r10:	.reg	%r10
r11:	.reg	%r11
r12:	.reg	%r12
r13:	.reg	%r13
r14:	.reg	%r14
r15:	.reg	%r15
r16:	.reg	%r16
r17:	.reg	%r17
r18:	.reg	%r18
r19:	.reg	%r19
r20:	.reg	%r20
r21:	.reg	%r21
r22:	.reg	%r22
r23:	.reg	%r23
r24:	.reg	%r24
r25:	.reg	%r25
r26:	.reg	%r26
r27:	.reg	%r27
r28:	.reg	%r28
r29:	.reg	%r29
r30:	.reg	%r30
r31:	.reg	%r31

/* Hardware Space Registers.  */
sr0:	.reg	%sr0
sr1:	.reg	%sr1
sr2:	.reg	%sr2
sr3:	.reg	%sr3
sr4:	.reg	%sr4
sr5:	.reg	%sr5
sr6:	.reg	%sr6
sr7:	.reg	%sr7

/* Hardware Floating Point Registers.  */
fr0:	.reg	%fr0
fr1:	.reg	%fr1
fr2:	.reg	%fr2
fr3:	.reg	%fr3
fr4:	.reg	%fr4
fr5:	.reg	%fr5
fr6:	.reg	%fr6
fr7:	.reg	%fr7
fr8:	.reg	%fr8
fr9:	.reg	%fr9
fr10:	.reg	%fr10
fr11:	.reg	%fr11
fr12:	.reg	%fr12
fr13:	.reg	%fr13
fr14:	.reg	%fr14
fr15:	.reg	%fr15

/* Hardware Control Registers.  */
cr11:	.reg	%cr11
sar:	.reg	%cr11	/* Shift Amount Register */

/* Software Architecture General Registers.  */
rp:	.reg    r2	/* return pointer */
#ifdef pa64
mrp:	.reg	r2 	/* millicode return pointer */
#else
mrp:	.reg	r31	/* millicode return pointer */
#endif
ret0:	.reg    r28	/* return value */
ret1:	.reg    r29	/* return value (high part of double) */
sp:	.reg 	r30	/* stack pointer */
dp:	.reg	r27	/* data pointer */
arg0:	.reg	r26	/* argument */
arg1:	.reg	r25	/* argument or high part of double argument */
arg2:	.reg	r24	/* argument */
arg3:	.reg	r23	/* argument or high part of double argument */

/* Software Architecture Space Registers.  */
/* 		sr0	; return link from BLE */
sret:	.reg	sr1	/* return value */
sarg:	.reg	sr1	/* argument */
/* 		sr4	; PC SPACE tracker */
/* 		sr5	; process private data */

/* Frame Offsets (millicode convention!)  Used when calling other
   millicode routines.  Stack unwinding is dependent upon these
   definitions.  */
r31_slot:	.equ	-20	/* "current RP" slot */
sr0_slot:	.equ	-16     /* "static link" slot */
#if defined(pa64)
mrp_slot:       .equ    -16	/* "current RP" slot */
psp_slot:       .equ    -8	/* "previous SP" slot */
#else
mrp_slot:	.equ	-20     /* "current RP" slot (replacing "r31_slot") */
#endif


#define DEFINE(name,value)name:	.EQU	value
#define RDEFINE(name,value)name:	.REG	value
#ifdef milliext
#define MILLI_BE(lbl)   BE    lbl(sr7,r0)
#define MILLI_BEN(lbl)  BE,n  lbl(sr7,r0)
#define MILLI_BLE(lbl)	BLE   lbl(sr7,r0)
#define MILLI_BLEN(lbl)	BLE,n lbl(sr7,r0)
#define MILLIRETN	BE,n  0(sr0,mrp)
#define MILLIRET	BE    0(sr0,mrp)
#define MILLI_RETN	BE,n  0(sr0,mrp)
#define MILLI_RET	BE    0(sr0,mrp)
#else
#define MILLI_BE(lbl)	B     lbl
#define MILLI_BEN(lbl)  B,n   lbl
#define MILLI_BLE(lbl)	BL    lbl,mrp
#define MILLI_BLEN(lbl)	BL,n  lbl,mrp
#define MILLIRETN	BV,n  0(mrp)
#define MILLIRET	BV    0(mrp)
#define MILLI_RETN	BV,n  0(mrp)
#define MILLI_RET	BV    0(mrp)
#endif

#ifdef __STDC__
#define CAT(a,b)	a##b
#else
#define CAT(a,b)	a/**/b
#endif

#ifdef ELF
#define SUBSPA_MILLI	 .section .text
#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
#define ATTR_MILLI
#define SUBSPA_DATA	 .section .data
#define ATTR_DATA
#define GLOBAL		 $global$
#define GSYM(sym) 	 !sym:
#define LSYM(sym)	 !CAT(.L,sym:)
#define LREF(sym)	 CAT(.L,sym)

#else

#ifdef coff
/* This used to be .milli but since link32 places different named
   sections in different segments millicode ends up a long ways away
   from .text (1meg?).  This way they will be a lot closer.

   The SUBSPA_MILLI_* specify locality sets for certain millicode
   modules in order to ensure that modules that call one another are
   placed close together. Without locality sets this is unlikely to
   happen because of the Dynamite linker library search algorithm. We
   want these modules close together so that short calls always reach
   (we don't want to require long calls or use long call stubs).  */

#define SUBSPA_MILLI	 .subspa .text
#define SUBSPA_MILLI_DIV .subspa .text$dv,align=16
#define SUBSPA_MILLI_MUL .subspa .text$mu,align=16
#define ATTR_MILLI	 .attr code,read,execute
#define SUBSPA_DATA	 .subspa .data
#define ATTR_DATA	 .attr init_data,read,write
#define GLOBAL		 _gp
#else
#define SUBSPA_MILLI	 .subspa $MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=8
#define SUBSPA_MILLI_DIV SUBSPA_MILLI
#define SUBSPA_MILLI_MUL SUBSPA_MILLI
#define ATTR_MILLI
#define SUBSPA_DATA	 .subspa $BSS$,quad=1,align=8,access=0x1f,sort=80,zero
#define ATTR_DATA
#define GLOBAL		 $global$
#endif
#define SPACE_DATA	 .space $PRIVATE$,spnum=1,sort=16

#define GSYM(sym)	 !sym
#define LSYM(sym)	 !CAT(L$,sym)
#define LREF(sym)	 CAT(L$,sym)
#endif

#ifdef L_dyncall
	SUBSPA_MILLI
	ATTR_DATA
GSYM($$dyncall)
	.export $$dyncall,millicode
	.proc
	.callinfo	millicode
	.entry
	bb,>=,n %r22,30,LREF(1)		; branch if not plabel address
	depi	0,31,2,%r22		; clear the two least significant bits
	ldw	4(%r22),%r19		; load new LTP value
	ldw	0(%r22),%r22		; load address of target
LSYM(1)
#ifdef LINUX
	bv	%r0(%r22)		; branch to the real target
#else
	ldsid	(%sr0,%r22),%r1		; get the "space ident" selected by r22
	mtsp	%r1,%sr0		; move that space identifier into sr0
	be	0(%sr0,%r22)		; branch to the real target
#endif
	stw	%r2,-24(%r30)		; save return address into frame marker
	.exit
	.procend
#endif

#ifdef L_divI
/* ROUTINES:	$$divI, $$divoI

   Single precision divide for signed binary integers.

   The quotient is truncated towards zero.
   The sign of the quotient is the XOR of the signs of the dividend and
   divisor.
   Divide by zero is trapped.
   Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	arg1 ==	divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:
   .		divisor is zero  (traps with ADDIT,=  0,25,0)
   .		dividend==-2**31  and divisor==-1 and routine is $$divoI
   .				 (traps with ADDO  26,25,0)
   .	Changes memory at the following places:
   .		NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Branchs to other millicode routines using BE
   .		$$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
   .
   .	For selected divisors, calls a divide by constant routine written by
   .	Karl Pettis.  Eligible divisors are 1..15 excluding 11 and 13.
   .
   .	The only overflow case is -2**31 divided by -1.
   .	Both routines return -2**31 but only $$divoI traps.  */

RDEFINE(temp,r1)
RDEFINE(retreg,ret1)	/*  r29 */
RDEFINE(temp1,arg0)
	SUBSPA_MILLI_DIV
	ATTR_MILLI
	.import $$divI_2,millicode
	.import $$divI_3,millicode
	.import $$divI_4,millicode
	.import $$divI_5,millicode
	.import $$divI_6,millicode
	.import $$divI_7,millicode
	.import $$divI_8,millicode
	.import $$divI_9,millicode
	.import $$divI_10,millicode
	.import $$divI_12,millicode
	.import $$divI_14,millicode
	.import $$divI_15,millicode
	.export $$divI,millicode
	.export	$$divoI,millicode
	.proc
	.callinfo	millicode
	.entry
GSYM($$divoI)
	comib,=,n  -1,arg1,LREF(negative1)	/*  when divisor == -1 */
GSYM($$divI)
	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
	and,<>	arg1,temp,r0		/*  if not, don't use power of 2 divide */
	addi,>	0,arg1,r0		/*  if divisor > 0, use power of 2 divide */
	b,n	LREF(neg_denom)
LSYM(pow2)
	addi,>=	0,arg0,retreg		/*  if numerator is negative, add the */
	add	arg0,temp,retreg	/*  (denominaotr -1) to correct for shifts */
	extru,=	arg1,15,16,temp		/*  test denominator with 0xffff0000 */
	extrs	retreg,15,16,retreg	/*  retreg = retreg >> 16 */
	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 16) */
	ldi	0xcc,temp1		/*  setup 0xcc in temp1 */
	extru,= arg1,23,8,temp		/*  test denominator with 0xff00 */
	extrs	retreg,23,24,retreg	/*  retreg = retreg >> 8 */
	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 8) */
	ldi	0xaa,temp		/*  setup 0xaa in temp */
	extru,= arg1,27,4,r0		/*  test denominator with 0xf0 */
	extrs	retreg,27,28,retreg	/*  retreg = retreg >> 4 */
	and,=	arg1,temp1,r0		/*  test denominator with 0xcc */
	extrs	retreg,29,30,retreg	/*  retreg = retreg >> 2 */
	and,=	arg1,temp,r0		/*  test denominator with 0xaa */
	extrs	retreg,30,31,retreg	/*  retreg = retreg >> 1 */
	MILLIRETN
LSYM(neg_denom)
	addi,<	0,arg1,r0		/*  if arg1 >= 0, it's not power of 2 */
	b,n	LREF(regular_seq)
	sub	r0,arg1,temp		/*  make denominator positive */
	comb,=,n  arg1,temp,LREF(regular_seq)	/*  test against 0x80000000 and 0 */
	ldo	-1(temp),retreg		/*  is there at most one bit set ? */
	and,=	temp,retreg,r0		/*  if so, the denominator is power of 2 */
	b,n	LREF(regular_seq)
	sub	r0,arg0,retreg		/*  negate numerator */
	comb,=,n arg0,retreg,LREF(regular_seq) /*  test against 0x80000000 */
	copy	retreg,arg0		/*  set up arg0, arg1 and temp	*/
	copy	temp,arg1		/*  before branching to pow2 */
	b	LREF(pow2)
	ldo	-1(arg1),temp
LSYM(regular_seq)
	comib,>>=,n 15,arg1,LREF(small_divisor)
	add,>=	0,arg0,retreg		/*  move dividend, if retreg < 0, */
LSYM(normal)
	subi	0,retreg,retreg		/*    make it positive */
	sub	0,arg1,temp		/*  clear carry,  */
					/*    negate the divisor */
	ds	0,temp,0		/*  set V-bit to the comple- */
					/*    ment of the divisor sign */
	add	retreg,retreg,retreg	/*  shift msb bit into carry */
	ds	r0,arg1,temp		/*  1st divide step, if no carry */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  2nd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  3rd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  4th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  5th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  6th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  7th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  8th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  9th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  10th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  11th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  12th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  13th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  14th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  15th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  16th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  17th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  18th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  19th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  20th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  21st divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  22nd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  23rd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  24th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  25th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  26th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  27th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  28th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  29th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  30th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  31st divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  32nd divide step, */
	addc	retreg,retreg,retreg	/*  shift last retreg bit into retreg */
	xor,>=	arg0,arg1,0		/*  get correct sign of quotient */
	  sub	0,retreg,retreg		/*    based on operand signs */
	MILLIRETN
	nop

LSYM(small_divisor)

#if defined(pa64)
/*  Clear the upper 32 bits of the arg1 register.  We are working with	*/
/*  small divisors (and 32-bit integers)   We must not be mislead  */
/*  by "1" bits left in the upper 32 bits.  */
	depd %r0,31,32,%r25
#endif
	blr,n	arg1,r0
	nop
/*  table for divisor == 0,1, ... ,15 */
	addit,=	0,arg1,r0	/*  trap if divisor == 0 */
	nop
	MILLIRET		/*  divisor == 1 */
	copy	arg0,retreg
	MILLI_BEN($$divI_2)	/*  divisor == 2 */
	nop
	MILLI_BEN($$divI_3)	/*  divisor == 3 */
	nop
	MILLI_BEN($$divI_4)	/*  divisor == 4 */
	nop
	MILLI_BEN($$divI_5)	/*  divisor == 5 */
	nop
	MILLI_BEN($$divI_6)	/*  divisor == 6 */
	nop
	MILLI_BEN($$divI_7)	/*  divisor == 7 */
	nop
	MILLI_BEN($$divI_8)	/*  divisor == 8 */
	nop
	MILLI_BEN($$divI_9)	/*  divisor == 9 */
	nop
	MILLI_BEN($$divI_10)	/*  divisor == 10 */
	nop
	b	LREF(normal)		/*  divisor == 11 */
	add,>=	0,arg0,retreg
	MILLI_BEN($$divI_12)	/*  divisor == 12 */
	nop
	b	LREF(normal)		/*  divisor == 13 */
	add,>=	0,arg0,retreg
	MILLI_BEN($$divI_14)	/*  divisor == 14 */
	nop
	MILLI_BEN($$divI_15)	/*  divisor == 15 */
	nop

LSYM(negative1)
	sub	0,arg0,retreg	/*  result is negation of dividend */
	MILLIRET
	addo	arg0,arg1,r0	/*  trap iff dividend==0x80000000 && divisor==-1 */
	.exit
	.procend
	.end
#endif

#ifdef L_divU
/* ROUTINE:	$$divU
   .
   .	Single precision divide for unsigned integers.
   .
   .	Quotient is truncated towards zero.
   .	Traps on divide by zero.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	arg1 ==	divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:
   .		divisor is zero
   .	Changes memory at the following places:
   .		NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Branchs to other millicode routines using BE:
   .		$$divU_# for 3,5,6,7,9,10,12,14,15
   .
   .	For selected small divisors calls the special divide by constant
   .	routines written by Karl Pettis.  These are: 3,5,6,7,9,10,12,14,15.  */

RDEFINE(temp,r1)
RDEFINE(retreg,ret1)	/* r29 */
RDEFINE(temp1,arg0)
	SUBSPA_MILLI_DIV
	ATTR_MILLI
	.export $$divU,millicode
	.import $$divU_3,millicode
	.import $$divU_5,millicode
	.import $$divU_6,millicode
	.import $$divU_7,millicode
	.import $$divU_9,millicode
	.import $$divU_10,millicode
	.import $$divU_12,millicode
	.import $$divU_14,millicode
	.import $$divU_15,millicode
	.proc
	.callinfo	millicode
	.entry
GSYM($$divU)
/* The subtract is not nullified since it does no harm and can be used
   by the two cases that branch back to "normal".  */
	ldo	-1(arg1),temp		/* is there at most one bit set ? */
	and,=	arg1,temp,r0		/* if so, denominator is power of 2 */
	b	LREF(regular_seq)
	addit,=	0,arg1,0		/* trap for zero dvr */
	copy	arg0,retreg
	extru,= arg1,15,16,temp		/* test denominator with 0xffff0000 */
	extru	retreg,15,16,retreg	/* retreg = retreg >> 16 */
	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 16) */
	ldi	0xcc,temp1		/* setup 0xcc in temp1 */
	extru,= arg1,23,8,temp		/* test denominator with 0xff00 */
	extru	retreg,23,24,retreg	/* retreg = retreg >> 8 */
	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 8) */
	ldi	0xaa,temp		/* setup 0xaa in temp */
	extru,= arg1,27,4,r0		/* test denominator with 0xf0 */
	extru	retreg,27,28,retreg	/* retreg = retreg >> 4 */
	and,=	arg1,temp1,r0		/* test denominator with 0xcc */
	extru	retreg,29,30,retreg	/* retreg = retreg >> 2 */
	and,=	arg1,temp,r0		/* test denominator with 0xaa */
	extru	retreg,30,31,retreg	/* retreg = retreg >> 1 */
	MILLIRETN
	nop	
LSYM(regular_seq)
	comib,>=  15,arg1,LREF(special_divisor)
	subi	0,arg1,temp		/* clear carry, negate the divisor */
	ds	r0,temp,r0		/* set V-bit to 1 */
LSYM(normal)
	add	arg0,arg0,retreg	/* shift msb bit into carry */
	ds	r0,arg1,temp		/* 1st divide step, if no carry */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 2nd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 3rd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 4th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 5th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 6th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 7th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 8th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 9th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 10th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 11th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 12th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 13th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 14th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 15th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 16th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 17th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 18th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 19th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 20th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 21st divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 22nd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 23rd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 24th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 25th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 26th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 27th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 28th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 29th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 30th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 31st divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 32nd divide step, */
	MILLIRET
	addc	retreg,retreg,retreg	/* shift last retreg bit into retreg */

/* Handle the cases where divisor is a small constant or has high bit on.  */
LSYM(special_divisor)
/*	blr	arg1,r0 */
/*	comib,>,n  0,arg1,LREF(big_divisor) ; nullify previous instruction */

/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
   generating such a blr, comib sequence. A problem in nullification. So I
   rewrote this code.  */

#if defined(pa64)
/* Clear the upper 32 bits of the arg1 register.  We are working with
   small divisors (and 32-bit unsigned integers)   We must not be mislead
   by "1" bits left in the upper 32 bits.  */
	depd %r0,31,32,%r25
#endif
	comib,>	0,arg1,LREF(big_divisor)
	nop
	blr	arg1,r0
	nop

LSYM(zero_divisor)	/* this label is here to provide external visibility */
	addit,=	0,arg1,0		/* trap for zero dvr */
	nop
	MILLIRET			/* divisor == 1 */
	copy	arg0,retreg
	MILLIRET			/* divisor == 2 */
	extru	arg0,30,31,retreg
	MILLI_BEN($$divU_3)		/* divisor == 3 */
	nop
	MILLIRET			/* divisor == 4 */
	extru	arg0,29,30,retreg
	MILLI_BEN($$divU_5)		/* divisor == 5 */
	nop
	MILLI_BEN($$divU_6)		/* divisor == 6 */
	nop
	MILLI_BEN($$divU_7)		/* divisor == 7 */
	nop
	MILLIRET			/* divisor == 8 */
	extru	arg0,28,29,retreg
	MILLI_BEN($$divU_9)		/* divisor == 9 */
	nop
	MILLI_BEN($$divU_10)		/* divisor == 10 */
	nop
	b	LREF(normal)		/* divisor == 11 */
	ds	r0,temp,r0		/* set V-bit to 1 */
	MILLI_BEN($$divU_12)		/* divisor == 12 */
	nop
	b	LREF(normal)		/* divisor == 13 */
	ds	r0,temp,r0		/* set V-bit to 1 */
	MILLI_BEN($$divU_14)		/* divisor == 14 */
	nop
	MILLI_BEN($$divU_15)		/* divisor == 15 */
	nop

/* Handle the case where the high bit is on in the divisor.
   Compute:	if( dividend>=divisor) quotient=1; else quotient=0;
   Note:	dividend>==divisor iff dividend-divisor does not borrow
   and		not borrow iff carry.  */
LSYM(big_divisor)
	sub	arg0,arg1,r0
	MILLIRET
	addc	r0,r0,retreg
	.exit
	.procend
	.end
#endif

#ifdef L_remI
/* ROUTINE:	$$remI

   DESCRIPTION:
   .	$$remI returns the remainder of the division of two signed 32-bit
   .	integers.  The sign of the remainder is the same as the sign of
   .	the dividend.


   INPUT REGISTERS:
   .	arg0 == dividend
   .	arg1 == divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 = destroyed
   .	arg1 = destroyed
   .	ret1 = remainder

   OTHER REGISTERS AFFECTED:
   .	r1   = undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable
   .	Does not create a stack frame
   .	Is usable for internal or external microcode

   DISCUSSION:
   .	Calls other millicode routines via mrp:  NONE
   .	Calls other millicode routines:  NONE  */

RDEFINE(tmp,r1)
RDEFINE(retreg,ret1)

	SUBSPA_MILLI
	ATTR_MILLI
	.proc
	.callinfo millicode
	.entry
GSYM($$remI)
GSYM($$remoI)
	.export $$remI,MILLICODE
	.export $$remoI,MILLICODE
	ldo		-1(arg1),tmp		/*  is there at most one bit set ? */
	and,<>		arg1,tmp,r0		/*  if not, don't use power of 2 */
	addi,>		0,arg1,r0		/*  if denominator > 0, use power */
						/*  of 2 */
	b,n		LREF(neg_denom)
LSYM(pow2)
	comb,>,n	0,arg0,LREF(neg_num)	/*  is numerator < 0 ? */
	and		arg0,tmp,retreg		/*  get the result */
	MILLIRETN
LSYM(neg_num)
	subi		0,arg0,arg0		/*  negate numerator */
	and		arg0,tmp,retreg		/*  get the result */
	subi		0,retreg,retreg		/*  negate result */
	MILLIRETN
LSYM(neg_denom)
	addi,<		0,arg1,r0		/*  if arg1 >= 0, it's not power */
						/*  of 2 */
	b,n		LREF(regular_seq)
	sub		r0,arg1,tmp		/*  make denominator positive */
	comb,=,n	arg1,tmp,LREF(regular_seq) /*  test against 0x80000000 and 0 */
	ldo		-1(tmp),retreg		/*  is there at most one bit set ? */
	and,=		tmp,retreg,r0		/*  if not, go to regular_seq */
	b,n		LREF(regular_seq)
	comb,>,n	0,arg0,LREF(neg_num_2)	/*  if arg0 < 0, negate it  */
	and		arg0,retreg,retreg
	MILLIRETN
LSYM(neg_num_2)
	subi		0,arg0,tmp		/*  test against 0x80000000 */
	and		tmp,retreg,retreg
	subi		0,retreg,retreg
	MILLIRETN
LSYM(regular_seq)
	addit,=		0,arg1,0		/*  trap if div by zero */
	add,>=		0,arg0,retreg		/*  move dividend, if retreg < 0, */
	sub		0,retreg,retreg		/*    make it positive */
	sub		0,arg1, tmp		/*  clear carry,  */
						/*    negate the divisor */
	ds		0, tmp,0		/*  set V-bit to the comple- */
						/*    ment of the divisor sign */
	or		0,0, tmp		/*  clear  tmp */
	add		retreg,retreg,retreg	/*  shift msb bit into carry */
	ds		 tmp,arg1, tmp		/*  1st divide step, if no carry */
						/*    out, msb of quotient = 0 */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
LSYM(t1)
	ds		 tmp,arg1, tmp		/*  2nd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  3rd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  4th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  5th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  6th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  7th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  8th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  9th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  10th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  11th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  12th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  13th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  14th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  15th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  16th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  17th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  18th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  19th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  20th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  21st divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  22nd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  23rd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  24th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  25th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  26th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  27th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  28th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  29th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  30th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  31st divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  32nd divide step, */
	addc		retreg,retreg,retreg	/*  shift last bit into retreg */
	movb,>=,n	 tmp,retreg,LREF(finish) /*  branch if pos.  tmp */
	add,<		arg1,0,0		/*  if arg1 > 0, add arg1 */
	add,tr		 tmp,arg1,retreg	/*    for correcting remainder tmp */
	sub		 tmp,arg1,retreg	/*  else add absolute value arg1 */
LSYM(finish)
	add,>=		arg0,0,0		/*  set sign of remainder */
	sub		0,retreg,retreg		/*    to sign of dividend */
	MILLIRET
	nop
	.exit
	.procend
#ifdef milliext
	.origin 0x00000200
#endif
	.end
#endif

#ifdef L_remU
/* ROUTINE:	$$remU
   .	Single precision divide for remainder with unsigned binary integers.
   .
   .	The remainder must be dividend-(dividend/divisor)*divisor.
   .	Divide by zero is trapped.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	arg1 == divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	remainder

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Calls other millicode routines using mrp: NONE
   .	Calls other millicode routines: NONE  */


RDEFINE(temp,r1)
RDEFINE(rmndr,ret1)	/*  r29 */
	SUBSPA_MILLI
	ATTR_MILLI
	.export $$remU,millicode
	.proc
	.callinfo	millicode
	.entry
GSYM($$remU)
	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
	and,=	arg1,temp,r0		/*  if not, don't use power of 2 */
	b	LREF(regular_seq)
	addit,=	0,arg1,r0		/*  trap on div by zero */
	and	arg0,temp,rmndr		/*  get the result for power of 2 */
	MILLIRETN
LSYM(regular_seq)
	comib,>=,n  0,arg1,LREF(special_case)
	subi	0,arg1,rmndr		/*  clear carry, negate the divisor */
	ds	r0,rmndr,r0		/*  set V-bit to 1 */
	add	arg0,arg0,temp		/*  shift msb bit into carry */
	ds	r0,arg1,rmndr		/*  1st divide step, if no carry */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  2nd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  3rd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  4th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  5th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  6th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  7th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  8th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  9th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  10th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  11th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  12th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  13th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  14th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  15th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  16th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  17th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  18th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  19th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  20th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  21st divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  22nd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  23rd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  24th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  25th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  26th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  27th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  28th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  29th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  30th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  31st divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  32nd divide step, */
	comiclr,<= 0,rmndr,r0
	  add	rmndr,arg1,rmndr	/*  correction */
	MILLIRETN
	nop

/* Putting >= on the last DS and deleting COMICLR does not work!  */
LSYM(special_case)
	sub,>>=	arg0,arg1,rmndr
	  copy	arg0,rmndr
	MILLIRETN
	nop
	.exit
	.procend
	.end
#endif

#ifdef L_div_const
/* ROUTINE:	$$divI_2
   .		$$divI_3	$$divU_3
   .		$$divI_4
   .		$$divI_5	$$divU_5
   .		$$divI_6	$$divU_6
   .		$$divI_7	$$divU_7
   .		$$divI_8
   .		$$divI_9	$$divU_9
   .		$$divI_10	$$divU_10
   .
   .		$$divI_12	$$divU_12
   .
   .		$$divI_14	$$divU_14
   .		$$divI_15	$$divU_15
   .		$$divI_16
   .		$$divI_17	$$divU_17
   .
   .	Divide by selected constants for single precision binary integers.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions: NONE
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Calls other millicode routines using mrp:  NONE
   .	Calls other millicode routines:  NONE  */


/* TRUNCATED DIVISION BY SMALL INTEGERS

   We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
   (with y fixed).

   Let a = floor(z/y), for some choice of z.  Note that z will be
   chosen so that division by z is cheap.

   Let r be the remainder(z/y).  In other words, r = z - ay.

   Now, our method is to choose a value for b such that

   q'(x) = floor((ax+b)/z)

   is equal to q(x) over as large a range of x as possible.  If the
   two are equal over a sufficiently large range, and if it is easy to
   form the product (ax), and it is easy to divide by z, then we can
   perform the division much faster than the general division algorithm.

   So, we want the following to be true:

   .	For x in the following range:
   .
   .	    ky <= x < (k+1)y
   .
   .	implies that
   .
   .	    k <= (ax+b)/z < (k+1)

   We want to determine b such that this is true for all k in the
   range {0..K} for some maximum K.

   Since (ax+b) is an increasing function of x, we can take each
   bound separately to determine the "best" value for b.

   (ax+b)/z < (k+1)	       implies

   (a((k+1)y-1)+b < (k+1)z     implies

   b < a + (k+1)(z-ay)	       implies

   b < a + (k+1)r

   This needs to be true for all k in the range {0..K}.  In
   particular, it is true for k = 0 and this leads to a maximum
   acceptable value for b.

   b < a+r   or   b <= a+r-1

   Taking the other bound, we have

   k <= (ax+b)/z	       implies

   k <= (aky+b)/z	       implies

   k(z-ay) <= b		       implies

   kr <= b

   Clearly, the largest range for k will be achieved by maximizing b,
   when r is not zero.	When r is zero, then the simplest choice for b
   is 0.  When r is not 0, set

   .	b = a+r-1

   Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
   for all x in the range:

   .	0 <= x < (K+1)y

   We need to determine what K is.  Of our two bounds,

   .	b < a+(k+1)r	is satisfied for all k >= 0, by construction.

   The other bound is

   .	kr <= b

   This is always true if r = 0.  If r is not 0 (the usual case), then
   K = floor((a+r-1)/r), is the maximum value for k.

   Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
   answer for q(x) = floor(x/y) when x is in the range

   (0,(K+1)y-1)	       K = floor((a+r-1)/r)

   To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
   the formula for q'(x) yields the correct value of q(x) for all x
   representable by a single word in HPPA.

   We are also constrained in that computing the product (ax), adding
   b, and dividing by z must all be done quickly, otherwise we will be
   better off going through the general algorithm using the DS
   instruction, which uses approximately 70 cycles.

   For each y, there is a choice of z which satisfies the constraints
   for (K+1)y >= 2**32.  We may not, however, be able to satisfy the
   timing constraints for arbitrary y.	It seems that z being equal to
   a power of 2 or a power of 2 minus 1 is as good as we can do, since
   it minimizes the time to do division by z.  We want the choice of z
   to also result in a value for (a) that minimizes the computation of
   the product (ax).  This is best achieved if (a) has a regular bit
   pattern (so the multiplication can be done with shifts and adds).
   The value of (a) also needs to be less than 2**32 so the product is
   always guaranteed to fit in 2 words.

   In actual practice, the following should be done:

   1) For negative x, you should take the absolute value and remember
   .  the fact so that the result can be negated.  This obviously does
   .  not apply in the unsigned case.
   2) For even y, you should factor out the power of 2 that divides y
   .  and divide x by it.  You can then proceed by dividing by the
   .  odd factor of y.

   Here is a table of some odd values of y, and corresponding choices
   for z which are "good".

    y	  z	  r	 a (hex)     max x (hex)

    3	2**32	  1	55555555      100000001
    5	2**32	  1	33333333      100000003
    7  2**24-1	  0	  249249     (infinite)
    9  2**24-1	  0	  1c71c7     (infinite)
   11  2**20-1	  0	   1745d     (infinite)
   13  2**24-1	  0	  13b13b     (infinite)
   15	2**32	  1	11111111      10000000d
   17	2**32	  1	 f0f0f0f      10000000f

   If r is 1, then b = a+r-1 = a.  This simplifies the computation
   of (ax+b), since you can compute (x+1)(a) instead.  If r is 0,
   then b = 0 is ok to use which simplifies (ax+b).

   The bit patterns for 55555555, 33333333, and 11111111 are obviously
   very regular.  The bit patterns for the other values of a above are:

    y	   (hex)	  (binary)

    7	  249249  001001001001001001001001  << regular >>
    9	  1c71c7  000111000111000111000111  << regular >>
   11	   1745d  000000010111010001011101  << irregular >>
   13	  13b13b  000100111011000100111011  << irregular >>

   The bit patterns for (a) corresponding to (y) of 11 and 13 may be
   too irregular to warrant using this method.

   When z is a power of 2 minus 1, then the division by z is slightly
   more complicated, involving an iterative solution.

   The code presented here solves division by 1 through 17, except for
   11 and 13. There are algorithms for both signed and unsigned
   quantities given.

   TIMINGS (cycles)

   divisor  positive  negative	unsigned

   .   1	2	   2	     2
   .   2	4	   4	     2
   .   3       19	  21	    19
   .   4	4	   4	     2
   .   5       18	  22	    19
   .   6       19	  22	    19
   .   8	4	   4	     2
   .  10       18	  19	    17
   .  12       18	  20	    18
   .  15       16	  18	    16
   .  16	4	   4	     2
   .  17       16	  18	    16

   Now, the algorithm for 7, 9, and 14 is an iterative one.  That is,
   a loop body is executed until the tentative quotient is 0.  The
   number of times the loop body is executed varies depending on the
   dividend, but is never more than two times.	If the dividend is
   less than the divisor, then the loop body is not executed at all.
   Each iteration adds 4 cycles to the timings.

   divisor  positive  negative	unsigned

   .   7       19+4n	 20+4n	   20+4n    n = number of iterations
   .   9       21+4n	 22+4n	   21+4n
   .  14       21+4n	 22+4n	   20+4n

   To give an idea of how the number of iterations varies, here is a
   table of dividend versus number of iterations when dividing by 7.

   smallest	 largest       required
   dividend	dividend      iterations

   .	0	     6		    0
   .	7	 0x6ffffff	    1
   0x1000006	0xffffffff	    2

   There is some overlap in the range of numbers requiring 1 and 2
   iterations.	*/

RDEFINE(t2,r1)
RDEFINE(x2,arg0)	/*  r26 */
RDEFINE(t1,arg1)	/*  r25 */
RDEFINE(x1,ret1)	/*  r29 */

	SUBSPA_MILLI_DIV
	ATTR_MILLI

	.proc
	.callinfo	millicode
	.entry
/* NONE of these routines require a stack frame
   ALL of these routines are unwindable from millicode	*/

GSYM($$divide_by_constant)
	.export $$divide_by_constant,millicode
/*  Provides a "nice" label for the code covered by the unwind descriptor
    for things like gprof.  */

/* DIVISION BY 2 (shift by 1) */
GSYM($$divI_2)
	.export		$$divI_2,millicode
	comclr,>=	arg0,0,0
	addi		1,arg0,arg0
	MILLIRET
	extrs		arg0,30,31,ret1


/* DIVISION BY 4 (shift by 2) */
GSYM($$divI_4)
	.export		$$divI_4,millicode
	comclr,>=	arg0,0,0
	addi		3,arg0,arg0
	MILLIRET
	extrs		arg0,29,30,ret1


/* DIVISION BY 8 (shift by 3) */
GSYM($$divI_8)
	.export		$$divI_8,millicode
	comclr,>=	arg0,0,0
	addi		7,arg0,arg0
	MILLIRET
	extrs		arg0,28,29,ret1

/* DIVISION BY 16 (shift by 4) */
GSYM($$divI_16)
	.export		$$divI_16,millicode
	comclr,>=	arg0,0,0
	addi		15,arg0,arg0
	MILLIRET
	extrs		arg0,27,28,ret1

/****************************************************************************
*
*	DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
*
*	includes 3,5,15,17 and also 6,10,12
*
****************************************************************************/

/* DIVISION BY 3 (use z = 2**32; a = 55555555) */

GSYM($$divI_3)
	.export		$$divI_3,millicode
	comb,<,N	x2,0,LREF(neg3)

	addi		1,x2,x2		/* this cannot overflow	*/
	extru		x2,1,2,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,0,x1

LSYM(neg3)
	subi		1,x2,x2		/* this cannot overflow	*/
	extru		x2,1,2,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_3)
	.export		$$divU_3,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,30,t1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,t1,x1

/* DIVISION BY 5 (use z = 2**32; a = 33333333) */

GSYM($$divI_5)
	.export		$$divI_5,millicode
	comb,<,N	x2,0,LREF(neg5)

	addi		3,x2,t1		/* this cannot overflow	*/
	sh1add		x2,t1,x2	/* multiply by 3 to get started */
	b		LREF(pos)
	addc		0,0,x1

LSYM(neg5)
	sub		0,x2,x2		/* negate x2			*/
	addi		1,x2,x2		/* this cannot overflow	*/
	shd		0,x2,31,x1	/* get top bit (can be 1)	*/
	sh1add		x2,x2,x2	/* multiply by 3 to get started */
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_5)
	.export		$$divU_5,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,31,t1	/* multiply by 3 to get started */
	sh1add		x2,x2,x2
	b		LREF(pos)
	addc		t1,x1,x1

/* DIVISION BY	6 (shift to divide by 2 then divide by 3) */
GSYM($$divI_6)
	.export		$$divI_6,millicode
	comb,<,N	x2,0,LREF(neg6)
	extru		x2,30,31,x2	/* divide by 2			*/
	addi		5,x2,t1		/* compute 5*(x2+1) = 5*x2+5	*/
	sh2add		x2,t1,x2	/* multiply by 5 to get started */
	b		LREF(pos)
	addc		0,0,x1

LSYM(neg6)
	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,30,31,x2
	shd		0,x2,30,x1
	sh2add		x2,x2,x2	/* multiply by 5 to get started */
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_6)
	.export		$$divU_6,millicode
	extru		x2,30,31,x2	/* divide by 2 */
	addi		1,x2,x2		/* cannot carry */
	shd		0,x2,30,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,0,x1

/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
GSYM($$divU_10)
	.export		$$divU_10,millicode
	extru		x2,30,31,x2	/* divide by 2 */
	addi		3,x2,t1		/* compute 3*(x2+1) = (3*x2)+3	*/
	sh1add		x2,t1,x2	/* multiply by 3 to get started */
	addc		0,0,x1
LSYM(pos)
	shd		x1,x2,28,t1	/* multiply by 0x11 */
	shd		x2,0,28,t2
	add		x2,t2,x2
	addc		x1,t1,x1
LSYM(pos_for_17)
	shd		x1,x2,24,t1	/* multiply by 0x101 */
	shd		x2,0,24,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,16,t1	/* multiply by 0x10001 */
	shd		x2,0,16,t2
	add		x2,t2,x2
	MILLIRET
	addc		x1,t1,x1

GSYM($$divI_10)
	.export		$$divI_10,millicode
	comb,<		x2,0,LREF(neg10)
	copy		0,x1
	extru		x2,30,31,x2	/* divide by 2 */
	addib,TR	1,x2,LREF(pos)	/* add 1 (cannot overflow)     */
	sh1add		x2,x2,x2	/* multiply by 3 to get started */

LSYM(neg10)
	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,30,31,x2
	sh1add		x2,x2,x2	/* multiply by 3 to get started */
LSYM(neg)
	shd		x1,x2,28,t1	/* multiply by 0x11 */
	shd		x2,0,28,t2
	add		x2,t2,x2
	addc		x1,t1,x1
LSYM(neg_for_17)
	shd		x1,x2,24,t1	/* multiply by 0x101 */
	shd		x2,0,24,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,16,t1	/* multiply by 0x10001 */
	shd		x2,0,16,t2
	add		x2,t2,x2
	addc		x1,t1,x1
	MILLIRET
	sub		0,x1,x1

/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
GSYM($$divI_12)
	.export		$$divI_12,millicode
	comb,<		x2,0,LREF(neg12)
	copy		0,x1
	extru		x2,29,30,x2	/* divide by 4			*/
	addib,tr	1,x2,LREF(pos)	/* compute 5*(x2+1) = 5*x2+5    */
	sh2add		x2,x2,x2	/* multiply by 5 to get started */

LSYM(neg12)
	subi		4,x2,x2		/* negate, divide by 4, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,29,30,x2
	b		LREF(neg)
	sh2add		x2,x2,x2	/* multiply by 5 to get started */

GSYM($$divU_12)
	.export		$$divU_12,millicode
	extru		x2,29,30,x2	/* divide by 4   */
	addi		5,x2,t1		/* cannot carry */
	sh2add		x2,t1,x2	/* multiply by 5 to get started */
	b		LREF(pos)
	addc		0,0,x1

/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
GSYM($$divI_15)
	.export		$$divI_15,millicode
	comb,<		x2,0,LREF(neg15)
	copy		0,x1
	addib,tr	1,x2,LREF(pos)+4
	shd		x1,x2,28,t1

LSYM(neg15)
	b		LREF(neg)
	subi		1,x2,x2

GSYM($$divU_15)
	.export		$$divU_15,millicode
	addi		1,x2,x2		/* this CAN overflow */
	b		LREF(pos)
	addc		0,0,x1

/* DIVISION BY 17 (use z = 2**32; a =  f0f0f0f) */
GSYM($$divI_17)
	.export		$$divI_17,millicode
	comb,<,n	x2,0,LREF(neg17)
	addi		1,x2,x2		/* this cannot overflow */
	shd		0,x2,28,t1	/* multiply by 0xf to get started */
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(pos_for_17)
	subb		t1,0,x1

LSYM(neg17)
	subi		1,x2,x2		/* this cannot overflow */
	shd		0,x2,28,t1	/* multiply by 0xf to get started */
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(neg_for_17)
	subb		t1,0,x1

GSYM($$divU_17)
	.export		$$divU_17,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,28,t1	/* multiply by 0xf to get started */
LSYM(u17)
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(pos_for_17)
	subb		t1,x1,x1


/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
   includes 7,9 and also 14


   z = 2**24-1
   r = z mod x = 0

   so choose b = 0

   Also, in order to divide by z = 2**24-1, we approximate by dividing
   by (z+1) = 2**24 (which is easy), and then correcting.

   (ax) = (z+1)q' + r
   .	= zq' + (q'+r)

   So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
   Then the true remainder of (ax)/z is (q'+r).  Repeat the process
   with this new remainder, adding the tentative quotients together,
   until a tentative quotient is 0 (and then we are done).  There is
   one last correction to be done.  It is possible that (q'+r) = z.
   If so, then (q'+r)/(z+1) = 0 and it looks like we are done.	But,
   in fact, we need to add 1 more to the quotient.  Now, it turns
   out that this happens if and only if the original value x is
   an exact multiple of y.  So, to avoid a three instruction test at
   the end, instead use 1 instruction to add 1 to x at the beginning.  */

/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
GSYM($$divI_7)
	.export		$$divI_7,millicode
	comb,<,n	x2,0,LREF(neg7)
LSYM(7)
	addi		1,x2,x2		/* cannot overflow */
	shd		0,x2,29,x1
	sh3add		x2,x2,x2
	addc		x1,0,x1
LSYM(pos7)
	shd		x1,x2,26,t1
	shd		x2,0,26,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,20,t1
	shd		x2,0,20,t2
	add		x2,t2,x2
	addc		x1,t1,t1

	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/

	copy		0,x1
	shd,=		t1,x2,24,t1	/* tentative quotient  */
LSYM(1)
	addb,tr		t1,x1,LREF(2)	/* add to previous quotient   */
	extru		x2,31,24,x2	/* new remainder (unadjusted) */

	MILLIRETN

LSYM(2)
	addb,tr		t1,x2,LREF(1)	/* adjust remainder */
	extru,=		x2,7,8,t1	/* new quotient     */

LSYM(neg7)
	subi		1,x2,x2		/* negate x2 and add 1 */
LSYM(8)
	shd		0,x2,29,x1
	sh3add		x2,x2,x2
	addc		x1,0,x1

LSYM(neg7_shift)
	shd		x1,x2,26,t1
	shd		x2,0,26,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,20,t1
	shd		x2,0,20,t2
	add		x2,t2,x2
	addc		x1,t1,t1

	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/

	copy		0,x1
	shd,=		t1,x2,24,t1	/* tentative quotient  */
LSYM(3)
	addb,tr		t1,x1,LREF(4)	/* add to previous quotient   */
	extru		x2,31,24,x2	/* new remainder (unadjusted) */

	MILLIRET
	sub		0,x1,x1		/* negate result    */

LSYM(4)
	addb,tr		t1,x2,LREF(3)	/* adjust remainder */
	extru,=		x2,7,8,t1	/* new quotient     */

GSYM($$divU_7)
	.export		$$divU_7,millicode
	addi		1,x2,x2		/* can carry */
	addc		0,0,x1
	shd		x1,x2,29,t1
	sh3add		x2,x2,x2
	b		LREF(pos7)
	addc		t1,x1,x1

/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
GSYM($$divI_9)
	.export		$$divI_9,millicode
	comb,<,n	x2,0,LREF(neg9)
	addi		1,x2,x2		/* cannot overflow */
	shd		0,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(pos7)
	subb		t1,0,x1

LSYM(neg9)
	subi		1,x2,x2		/* negate and add 1 */
	shd		0,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(neg7_shift)
	subb		t1,0,x1

GSYM($$divU_9)
	.export		$$divU_9,millicode
	addi		1,x2,x2		/* can carry */
	addc		0,0,x1
	shd		x1,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(pos7)
	subb		t1,x1,x1

/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
GSYM($$divI_14)
	.export		$$divI_14,millicode
	comb,<,n	x2,0,LREF(neg14)
GSYM($$divU_14)
	.export		$$divU_14,millicode
	b		LREF(7)		/* go to 7 case */
	extru		x2,30,31,x2	/* divide by 2  */

LSYM(neg14)
	subi		2,x2,x2		/* negate (and add 2) */
	b		LREF(8)
	extru		x2,30,31,x2	/* divide by 2	      */
	.exit
	.procend
	.end
#endif

#ifdef L_mulI
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
/******************************************************************************
This routine is used on PA2.0 processors when gcc -mno-fpregs is used

ROUTINE:	$$mulI


DESCRIPTION:	

	$$mulI multiplies two single word integers, giving a single 
	word result.  


INPUT REGISTERS:

	arg0 = Operand 1
	arg1 = Operand 2
	r31  == return pc
	sr0  == return space when called externally 


OUTPUT REGISTERS:

	arg0 = undefined
	arg1 = undefined
	ret1 = result 

OTHER REGISTERS AFFECTED:

	r1   = undefined

SIDE EFFECTS:

	Causes a trap under the following conditions:  NONE
	Changes memory at the following places:  NONE

PERMISSIBLE CONTEXT:

	Unwindable
	Does not create a stack frame
	Is usable for internal or external microcode

DISCUSSION:

	Calls other millicode routines via mrp:  NONE
	Calls other millicode routines:  NONE

***************************************************************************/


#define	a0	%arg0
#define	a1	%arg1
#define	t0	%r1
#define	r	%ret1

#define	a0__128a0	zdep	a0,24,25,a0
#define	a0__256a0	zdep	a0,23,24,a0
#define	a1_ne_0_b_l0	comb,<>	a1,0,LREF(l0)
#define	a1_ne_0_b_l1	comb,<>	a1,0,LREF(l1)
#define	a1_ne_0_b_l2	comb,<>	a1,0,LREF(l2)
#define	b_n_ret_t0	b,n	LREF(ret_t0)
#define	b_e_shift	b	LREF(e_shift)
#define	b_e_t0ma0	b	LREF(e_t0ma0)
#define	b_e_t0		b	LREF(e_t0)
#define	b_e_t0a0	b	LREF(e_t0a0)
#define	b_e_t02a0	b	LREF(e_t02a0)
#define	b_e_t04a0	b	LREF(e_t04a0)
#define	b_e_2t0		b	LREF(e_2t0)
#define	b_e_2t0a0	b	LREF(e_2t0a0)
#define	b_e_2t04a0	b	LREF(e2t04a0)
#define	b_e_3t0		b	LREF(e_3t0)
#define	b_e_4t0		b	LREF(e_4t0)
#define	b_e_4t0a0	b	LREF(e_4t0a0)
#define	b_e_4t08a0	b	LREF(e4t08a0)
#define	b_e_5t0		b	LREF(e_5t0)
#define	b_e_8t0		b	LREF(e_8t0)
#define	b_e_8t0a0	b	LREF(e_8t0a0)
#define	r__r_a0		add	r,a0,r
#define	r__r_2a0	sh1add	a0,r,r
#define	r__r_4a0	sh2add	a0,r,r
#define	r__r_8a0	sh3add	a0,r,r
#define	r__r_t0		add	r,t0,r
#define	r__r_2t0	sh1add	t0,r,r
#define	r__r_4t0	sh2add	t0,r,r
#define	r__r_8t0	sh3add	t0,r,r
#define	t0__3a0		sh1add	a0,a0,t0
#define	t0__4a0		sh2add	a0,0,t0
#define	t0__5a0		sh2add	a0,a0,t0
#define	t0__8a0		sh3add	a0,0,t0
#define	t0__9a0		sh3add	a0,a0,t0
#define	t0__16a0	zdep	a0,27,28,t0
#define	t0__32a0	zdep	a0,26,27,t0
#define	t0__64a0	zdep	a0,25,26,t0
#define	t0__128a0	zdep	a0,24,25,t0
#define	t0__t0ma0	sub	t0,a0,t0
#define	t0__t0_a0	add	t0,a0,t0
#define	t0__t0_2a0	sh1add	a0,t0,t0
#define	t0__t0_4a0	sh2add	a0,t0,t0
#define	t0__t0_8a0	sh3add	a0,t0,t0
#define	t0__2t0_a0	sh1add	t0,a0,t0
#define	t0__3t0		sh1add	t0,t0,t0
#define	t0__4t0		sh2add	t0,0,t0
#define	t0__4t0_a0	sh2add	t0,a0,t0
#define	t0__5t0		sh2add	t0,t0,t0
#define	t0__8t0		sh3add	t0,0,t0
#define	t0__8t0_a0	sh3add	t0,a0,t0
#define	t0__9t0		sh3add	t0,t0,t0
#define	t0__16t0	zdep	t0,27,28,t0
#define	t0__32t0	zdep	t0,26,27,t0
#define	t0__256a0	zdep	a0,23,24,t0


	SUBSPA_MILLI
	ATTR_MILLI
	.align 16
	.proc
	.callinfo millicode
	.export $$mulI,millicode
GSYM($$mulI)	
	combt,<<=	a1,a0,LREF(l4)	/* swap args if unsigned a1>a0 */
	copy		0,r		/* zero out the result */
	xor		a0,a1,a0	/* swap a0 & a1 using the */
	xor		a0,a1,a1	/*  old xor trick */
	xor		a0,a1,a0
LSYM(l4)
	combt,<=	0,a0,LREF(l3)		/* if a0>=0 then proceed like unsigned */
	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
	sub,>		0,a1,t0		/* otherwise negate both and */
	combt,<=,n	a0,t0,LREF(l2)	/*  swap back if |a0|<|a1| */
	sub		0,a0,a1
	movb,tr,n	t0,a0,LREF(l2)	/* 10th inst.  */

LSYM(l0)	r__r_t0				/* add in this partial product */
LSYM(l1)	a0__256a0			/* a0 <<= 8 ****************** */
LSYM(l2)	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
LSYM(l3)	blr		t0,0		/* case on these 8 bits ****** */
		extru		a1,23,24,a1	/* a1 >>= 8 ****************** */

/*16 insts before this.  */
/*			  a0 <<= 8 ************************** */
LSYM(x0)	a1_ne_0_b_l2	! a0__256a0	! MILLIRETN	! nop
LSYM(x1)	a1_ne_0_b_l1	! r__r_a0	! MILLIRETN	! nop
LSYM(x2)	a1_ne_0_b_l1	! r__r_2a0	! MILLIRETN	! nop
LSYM(x3)	a1_ne_0_b_l0	! t0__3a0	! MILLIRET	! r__r_t0
LSYM(x4)	a1_ne_0_b_l1	! r__r_4a0	! MILLIRETN	! nop
LSYM(x5)	a1_ne_0_b_l0	! t0__5a0	! MILLIRET	! r__r_t0
LSYM(x6)	t0__3a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x7)	t0__3a0		! a1_ne_0_b_l0	! r__r_4a0	! b_n_ret_t0
LSYM(x8)	a1_ne_0_b_l1	! r__r_8a0	! MILLIRETN	! nop
LSYM(x9)	a1_ne_0_b_l0	! t0__9a0	! MILLIRET	! r__r_t0
LSYM(x10)	t0__5a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x11)	t0__3a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
LSYM(x12)	t0__3a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x13)	t0__5a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
LSYM(x14)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x15)	t0__5a0		! a1_ne_0_b_l0	! t0__3t0	! b_n_ret_t0
LSYM(x16)	t0__16a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x17)	t0__9a0		! a1_ne_0_b_l0	! t0__t0_8a0	! b_n_ret_t0
LSYM(x18)	t0__9a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x19)	t0__9a0		! a1_ne_0_b_l0	! t0__2t0_a0	! b_n_ret_t0
LSYM(x20)	t0__5a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x21)	t0__5a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x22)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x23)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x24)	t0__3a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x25)	t0__5a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
LSYM(x26)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x27)	t0__3a0		! a1_ne_0_b_l0	! t0__9t0	! b_n_ret_t0
LSYM(x28)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x29)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x30)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_2t0
LSYM(x31)	t0__32a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x32)	t0__32a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x33)	t0__8a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x34)	t0__16a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x35)	t0__9a0		! t0__3t0	! b_e_t0	! t0__t0_8a0
LSYM(x36)	t0__9a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x37)	t0__9a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x38)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x39)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x40)	t0__5a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x41)	t0__5a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
LSYM(x42)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x43)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x44)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x45)	t0__9a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
LSYM(x46)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_a0
LSYM(x47)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_2a0
LSYM(x48)	t0__3a0		! a1_ne_0_b_l0	! t0__16t0	! b_n_ret_t0
LSYM(x49)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_4a0
LSYM(x50)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_2t0
LSYM(x51)	t0__9a0		! t0__t0_8a0	! b_e_t0	! t0__3t0
LSYM(x52)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x53)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x54)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_2t0
LSYM(x55)	t0__9a0		! t0__3t0	! b_e_t0	! t0__2t0_a0
LSYM(x56)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x57)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__3t0
LSYM(x58)	t0__3a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x59)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__3t0
LSYM(x60)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x61)	t0__5a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x62)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x63)	t0__64a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x64)	t0__64a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x65)	t0__8a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
LSYM(x66)	t0__32a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x67)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x68)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x69)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x70)	t0__64a0	! t0__t0_4a0	! b_e_t0	! t0__t0_2a0
LSYM(x71)	t0__9a0		! t0__8t0	! b_e_t0	! t0__t0ma0
LSYM(x72)	t0__9a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x73)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_t0
LSYM(x74)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x75)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x76)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x77)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x78)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x79)	t0__16a0	! t0__5t0	! b_e_t0	! t0__t0ma0
LSYM(x80)	t0__16a0	! t0__5t0	! b_e_shift	! r__r_t0
LSYM(x81)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_t0
LSYM(x82)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
LSYM(x83)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x84)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x85)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
LSYM(x86)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x87)	t0__9a0		! t0__9t0	! b_e_t02a0	! t0__t0_4a0
LSYM(x88)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x89)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x90)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_2t0
LSYM(x91)	t0__9a0		! t0__5t0	! b_e_t0	! t0__2t0_a0
LSYM(x92)	t0__5a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x93)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__3t0
LSYM(x94)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__t0_2a0
LSYM(x95)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
LSYM(x96)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x97)	t0__8a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x98)	t0__32a0	! t0__3t0	! b_e_t0	! t0__t0_2a0
LSYM(x99)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
LSYM(x100)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_4t0
LSYM(x101)	t0__5a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x102)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
LSYM(x103)	t0__5a0		! t0__5t0	! b_e_t02a0	! t0__4t0_a0
LSYM(x104)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
LSYM(x105)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x106)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x107)	t0__9a0		! t0__t0_4a0	! b_e_t02a0	! t0__8t0_a0
LSYM(x108)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x109)	t0__9a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x110)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__2t0_a0
LSYM(x111)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
LSYM(x112)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__16t0
LSYM(x113)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__3t0
LSYM(x114)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__3t0
LSYM(x115)	t0__9a0		! t0__2t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x116)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__4t0_a0
LSYM(x117)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
LSYM(x118)	t0__3a0		! t0__4t0_a0	! b_e_t0a0	! t0__9t0
LSYM(x119)	t0__3a0		! t0__4t0_a0	! b_e_t02a0	! t0__9t0
LSYM(x120)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x121)	t0__5a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x122)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x123)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x124)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
LSYM(x125)	t0__5a0		! t0__5t0	! b_e_t0	! t0__5t0
LSYM(x126)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x127)	t0__128a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x128)	t0__128a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x129)	t0__128a0	! a1_ne_0_b_l0	! t0__t0_a0	! b_n_ret_t0
LSYM(x130)	t0__64a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x131)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x132)	t0__8a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x133)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x134)	t0__8a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x135)	t0__9a0		! t0__5t0	! b_e_t0	! t0__3t0
LSYM(x136)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x137)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x138)	t0__8a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x139)	t0__8a0		! t0__2t0_a0	! b_e_2t0a0	! t0__4t0_a0
LSYM(x140)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__5t0
LSYM(x141)	t0__8a0		! t0__2t0_a0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x142)	t0__9a0		! t0__8t0	! b_e_2t0	! t0__t0ma0
LSYM(x143)	t0__16a0	! t0__9t0	! b_e_t0	! t0__t0ma0
LSYM(x144)	t0__9a0		! t0__8t0	! b_e_shift	! r__r_2t0
LSYM(x145)	t0__9a0		! t0__8t0	! b_e_t0	! t0__2t0_a0
LSYM(x146)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
LSYM(x147)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x148)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x149)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x150)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x151)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x152)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x153)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x154)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x155)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__5t0
LSYM(x156)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x157)	t0__32a0	! t0__t0ma0	! b_e_t02a0	! t0__5t0
LSYM(x158)	t0__16a0	! t0__5t0	! b_e_2t0	! t0__t0ma0
LSYM(x159)	t0__32a0	! t0__5t0	! b_e_t0	! t0__t0ma0
LSYM(x160)	t0__5a0		! t0__4t0	! b_e_shift	! r__r_8t0
LSYM(x161)	t0__8a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x162)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_2t0
LSYM(x163)	t0__9a0		! t0__9t0	! b_e_t0	! t0__2t0_a0
LSYM(x164)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_4t0
LSYM(x165)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x166)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x167)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x168)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
LSYM(x169)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x170)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__5t0
LSYM(x171)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__9t0
LSYM(x172)	t0__5a0		! t0__4t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x173)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__9t0
LSYM(x174)	t0__32a0	! t0__t0_2a0	! b_e_t04a0	! t0__5t0
LSYM(x175)	t0__8a0		! t0__2t0_a0	! b_e_5t0	! t0__2t0_a0
LSYM(x176)	t0__5a0		! t0__4t0_a0	! b_e_8t0	! t0__t0_a0
LSYM(x177)	t0__5a0		! t0__4t0_a0	! b_e_8t0a0	! t0__t0_a0
LSYM(x178)	t0__5a0		! t0__2t0_a0	! b_e_2t0	! t0__8t0_a0
LSYM(x179)	t0__5a0		! t0__2t0_a0	! b_e_2t0a0	! t0__8t0_a0
LSYM(x180)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_4t0
LSYM(x181)	t0__9a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x182)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__2t0_a0
LSYM(x183)	t0__9a0		! t0__5t0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x184)	t0__5a0		! t0__9t0	! b_e_4t0	! t0__t0_a0
LSYM(x185)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x186)	t0__32a0	! t0__t0ma0	! b_e_2t0	! t0__3t0
LSYM(x187)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__5t0
LSYM(x188)	t0__9a0		! t0__5t0	! b_e_4t0	! t0__t0_2a0
LSYM(x189)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
LSYM(x190)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__5t0
LSYM(x191)	t0__64a0	! t0__3t0	! b_e_t0	! t0__t0ma0
LSYM(x192)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x193)	t0__8a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x194)	t0__8a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x195)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x196)	t0__8a0		! t0__3t0	! b_e_4t0	! t0__2t0_a0
LSYM(x197)	t0__8a0		! t0__3t0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x198)	t0__64a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
LSYM(x199)	t0__8a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x200)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_8t0
LSYM(x201)	t0__5a0		! t0__5t0	! b_e_t0	! t0__8t0_a0
LSYM(x202)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__4t0_a0
LSYM(x203)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__4t0_a0
LSYM(x204)	t0__8a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
LSYM(x205)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__5t0
LSYM(x206)	t0__64a0	! t0__t0_4a0	! b_e_t02a0	! t0__3t0
LSYM(x207)	t0__8a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
LSYM(x208)	t0__5a0		! t0__5t0	! b_e_8t0	! t0__t0_a0
LSYM(x209)	t0__5a0		! t0__5t0	! b_e_8t0a0	! t0__t0_a0
LSYM(x210)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__5t0
LSYM(x211)	t0__5a0		! t0__4t0_a0	! b_e_2t0a0	! t0__5t0
LSYM(x212)	t0__3a0		! t0__4t0_a0	! b_e_4t0	! t0__4t0_a0
LSYM(x213)	t0__3a0		! t0__4t0_a0	! b_e_4t0a0	! t0__4t0_a0
LSYM(x214)	t0__9a0		! t0__t0_4a0	! b_e_2t04a0	! t0__8t0_a0
LSYM(x215)	t0__5a0		! t0__4t0_a0	! b_e_5t0	! t0__2t0_a0
LSYM(x216)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x217)	t0__9a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x218)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x219)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x220)	t0__3a0		! t0__9t0	! b_e_4t0	! t0__2t0_a0
LSYM(x221)	t0__3a0		! t0__9t0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x222)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__3t0
LSYM(x223)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x224)	t0__9a0		! t0__3t0	! b_e_8t0	! t0__t0_a0
LSYM(x225)	t0__9a0		! t0__5t0	! b_e_t0	! t0__5t0
LSYM(x226)	t0__3a0		! t0__2t0_a0	! b_e_t02a0	! t0__32t0
LSYM(x227)	t0__9a0		! t0__5t0	! b_e_t02a0	! t0__5t0
LSYM(x228)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
LSYM(x229)	t0__9a0		! t0__2t0_a0	! b_e_4t0a0	! t0__3t0
LSYM(x230)	t0__9a0		! t0__5t0	! b_e_5t0	! t0__t0_a0
LSYM(x231)	t0__9a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
LSYM(x232)	t0__3a0		! t0__2t0_a0	! b_e_8t0	! t0__4t0_a0
LSYM(x233)	t0__3a0		! t0__2t0_a0	! b_e_8t0a0	! t0__4t0_a0
LSYM(x234)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__9t0
LSYM(x235)	t0__3a0		! t0__4t0_a0	! b_e_2t0a0	! t0__9t0
LSYM(x236)	t0__9a0		! t0__2t0_a0	! b_e_4t08a0	! t0__3t0
LSYM(x237)	t0__16a0	! t0__5t0	! b_e_3t0	! t0__t0ma0
LSYM(x238)	t0__3a0		! t0__4t0_a0	! b_e_2t04a0	! t0__9t0
LSYM(x239)	t0__16a0	! t0__5t0	! b_e_t0ma0	! t0__3t0
LSYM(x240)	t0__9a0		! t0__t0_a0	! b_e_8t0	! t0__3t0
LSYM(x241)	t0__9a0		! t0__t0_a0	! b_e_8t0a0	! t0__3t0
LSYM(x242)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__8t0_a0
LSYM(x243)	t0__9a0		! t0__9t0	! b_e_t0	! t0__3t0
LSYM(x244)	t0__5a0		! t0__3t0	! b_e_4t0	! t0__4t0_a0
LSYM(x245)	t0__8a0		! t0__3t0	! b_e_5t0	! t0__2t0_a0
LSYM(x246)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__3t0
LSYM(x247)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x248)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_8t0
LSYM(x249)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__8t0_a0
LSYM(x250)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__5t0
LSYM(x251)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__5t0
LSYM(x252)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
LSYM(x253)	t0__64a0	! t0__t0ma0	! b_e_t0	! t0__4t0_a0
LSYM(x254)	t0__128a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x255)	t0__256a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
/*1040 insts before this.  */
LSYM(ret_t0)	MILLIRET
LSYM(e_t0)	r__r_t0
LSYM(e_shift)	a1_ne_0_b_l2
	a0__256a0	/* a0 <<= 8 *********** */
	MILLIRETN
LSYM(e_t0ma0)	a1_ne_0_b_l0
	t0__t0ma0
	MILLIRET
	r__r_t0
LSYM(e_t0a0)	a1_ne_0_b_l0
	t0__t0_a0
	MILLIRET
	r__r_t0
LSYM(e_t02a0)	a1_ne_0_b_l0
	t0__t0_2a0
	MILLIRET
	r__r_t0
LSYM(e_t04a0)	a1_ne_0_b_l0
	t0__t0_4a0
	MILLIRET
	r__r_t0
LSYM(e_2t0)	a1_ne_0_b_l1
	r__r_2t0
	MILLIRETN
LSYM(e_2t0a0)	a1_ne_0_b_l0
	t0__2t0_a0
	MILLIRET
	r__r_t0
LSYM(e2t04a0)	t0__t0_2a0
	a1_ne_0_b_l1
	r__r_2t0
	MILLIRETN
LSYM(e_3t0)	a1_ne_0_b_l0
	t0__3t0
	MILLIRET
	r__r_t0
LSYM(e_4t0)	a1_ne_0_b_l1
	r__r_4t0
	MILLIRETN
LSYM(e_4t0a0)	a1_ne_0_b_l0
	t0__4t0_a0
	MILLIRET
	r__r_t0
LSYM(e4t08a0)	t0__t0_2a0
	a1_ne_0_b_l1
	r__r_4t0
	MILLIRETN
LSYM(e_5t0)	a1_ne_0_b_l0
	t0__5t0
	MILLIRET
	r__r_t0
LSYM(e_8t0)	a1_ne_0_b_l1
	r__r_8t0
	MILLIRETN
LSYM(e_8t0a0)	a1_ne_0_b_l0
	t0__8t0_a0
	MILLIRET
	r__r_t0

	.procend
	.end
#endif