Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/* Profiling definitions for the FRV simulator
   Copyright (C) 1998-2019 Free Software Foundation, Inc.
   Contributed by Red Hat.

This file is part of the GNU Simulators.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#ifndef PROFILE_H
#define PROFILE_H

#include "frv-desc.h"

/* This struct defines the state of profiling.  All fields are of general
   use to all machines.  */
typedef struct
{
  long vliw_insns; /* total number of VLIW insns.  */
  long vliw_wait;  /* number of cycles that the current VLIW insn must wait.  */
  long post_wait;  /* number of cycles that post processing in the current
                      VLIW insn must wait.  */
  long vliw_cycles;/* number of cycles used by current VLIW insn.  */

  int  past_first_p; /* Not the first insns in the VLIW */

  /* Register latencies.  Must be signed since they can be temporarily
     negative.  */
  int gr_busy[64];       /* Cycles until GR is available.  */
  int fr_busy[64];       /* Cycles until FR is available.  */
  int acc_busy[64];      /* Cycles until FR is available.  */
  int ccr_busy[8];       /* Cycles until ICC/FCC is available.  */
  int spr_busy[4096];    /* Cycles until spr is available.  */
  int idiv_busy[2];      /* Cycles until integer division unit is available.  */
  int fdiv_busy[2];      /* Cycles until float division unit is available.  */
  int fsqrt_busy[2];     /* Cycles until square root unit is available.  */
  int float_busy[4];     /* Cycles until floating point unit is available.  */
  int media_busy[4];     /* Cycles until media unit is available.  */
  int branch_penalty;    /* Cycles until branch is complete.  */

  int gr_latency[64];    /* Cycles until target GR is available.  */
  int fr_latency[64];    /* Cycles until target FR is available.  */
  int acc_latency[64];   /* Cycles until target FR is available.  */
  int ccr_latency[8];    /* Cycles until target ICC/FCC is available.  */
  int spr_latency[4096]; /* Cycles until target spr is available.  */

  /* Some registers are busy for a shorter number of cycles than normal
     depending on how they are used next. the xxx_busy_adjust arrays keep track
     of how many cycles to adjust down.
  */
  int fr_busy_adjust[64];
  int acc_busy_adjust[64];

  /* Register flags.  Each bit represents one register.  */
  DI cur_gr_complex;
  DI prev_gr_complex;

  /* Keep track of the total queued post-processing time required before a
     resource is available.  This is applied to the resource's latency once all
     pending loads for the resource are completed.  */
  int fr_ptime[64];

  int branch_hint;       /* hint field from branch insn.  */
  USI branch_address;    /* Address of predicted branch.  */
  USI insn_fetch_address;/* Address of sequential insns fetched.  */
  int mclracc_acc;       /* ACC number of register cleared by mclracc.  */
  int mclracc_A;         /* A field of mclracc.  */

  /* We need to know when the first branch of a vliw insn is taken, so that
     we don't consider the remaining branches in the vliw insn.  */
  int vliw_branch_taken;

  /* Keep track of the maximum load stall for each VLIW insn.  */
  int vliw_load_stall;

  /* Need to know if all cache entries are affected by various cache
     operations.  */
  int all_cache_entries;
} FRV_PROFILE_STATE;

#define DUAL_REG(reg) ((reg) >= 0 && (reg) < 63 ? (reg) + 1 : -1)
#define DUAL_DOUBLE(reg) ((reg) >= 0 && (reg) < 61 ? (reg) + 2 : -1)

/* Return the GNER register associated with the given GR register.
   There is no GNER associated with gr0.  */
#define GNER_FOR_GR(gr) ((gr) > 63 ? -1 : \
                         (gr) > 31 ? H_SPR_GNER0 : \
                         (gr) >  0 ? H_SPR_GNER1 : \
                         -1)
/* Return the GNER register associated with the given GR register.
   There is no GNER associated with gr0.  */
#define FNER_FOR_FR(fr) ((fr) > 63 ? -1 : \
                         (fr) > 31 ? H_SPR_FNER0 : \
                         (fr) >  0 ? H_SPR_FNER1 : \
                         -1)

/* Top up the latency of the given GR by the given number of cycles.  */
void update_GR_latency (SIM_CPU *, INT, int);
void update_GRdouble_latency (SIM_CPU *, INT, int);
void update_GR_latency_for_load (SIM_CPU *, INT, int);
void update_GRdouble_latency_for_load (SIM_CPU *, INT, int);
void update_GR_latency_for_swap (SIM_CPU *, INT, int);
void update_FR_latency (SIM_CPU *, INT, int);
void update_FRdouble_latency (SIM_CPU *, INT, int);
void update_FR_latency_for_load (SIM_CPU *, INT, int);
void update_FRdouble_latency_for_load (SIM_CPU *, INT, int);
void update_FR_ptime (SIM_CPU *, INT, int);
void update_FRdouble_ptime (SIM_CPU *, INT, int);
void decrease_ACC_busy (SIM_CPU *, INT, int);
void decrease_FR_busy (SIM_CPU *, INT, int);
void decrease_GR_busy (SIM_CPU *, INT, int);
void increase_FR_busy (SIM_CPU *, INT, int);
void increase_ACC_busy (SIM_CPU *, INT, int);
void update_ACC_latency (SIM_CPU *, INT, int);
void update_CCR_latency (SIM_CPU *, INT, int);
void update_SPR_latency (SIM_CPU *, INT, int);
void update_idiv_resource_latency (SIM_CPU *, INT, int);
void update_fdiv_resource_latency (SIM_CPU *, INT, int);
void update_fsqrt_resource_latency (SIM_CPU *, INT, int);
void update_float_resource_latency (SIM_CPU *, INT, int);
void update_media_resource_latency (SIM_CPU *, INT, int);
void update_branch_penalty (SIM_CPU *, int);
void update_ACC_ptime (SIM_CPU *, INT, int);
void update_SPR_ptime (SIM_CPU *, INT, int);
void vliw_wait_for_GR (SIM_CPU *, INT);
void vliw_wait_for_GRdouble (SIM_CPU *, INT);
void vliw_wait_for_FR (SIM_CPU *, INT);
void vliw_wait_for_FRdouble (SIM_CPU *, INT);
void vliw_wait_for_CCR (SIM_CPU *, INT);
void vliw_wait_for_ACC (SIM_CPU *, INT);
void vliw_wait_for_SPR (SIM_CPU *, INT);
void vliw_wait_for_idiv_resource (SIM_CPU *, INT);
void vliw_wait_for_fdiv_resource (SIM_CPU *, INT);
void vliw_wait_for_fsqrt_resource (SIM_CPU *, INT);
void vliw_wait_for_float_resource (SIM_CPU *, INT);
void vliw_wait_for_media_resource (SIM_CPU *, INT);
void load_wait_for_GR (SIM_CPU *, INT);
void load_wait_for_FR (SIM_CPU *, INT);
void load_wait_for_GRdouble (SIM_CPU *, INT);
void load_wait_for_FRdouble (SIM_CPU *, INT);
void enforce_full_fr_latency (SIM_CPU *, INT);
void enforce_full_acc_latency (SIM_CPU *, INT);
int post_wait_for_FR (SIM_CPU *, INT);
int post_wait_for_FRdouble (SIM_CPU *, INT);
int post_wait_for_ACC (SIM_CPU *, INT);
int post_wait_for_CCR (SIM_CPU *, INT);
int post_wait_for_SPR (SIM_CPU *, INT);
int post_wait_for_fdiv (SIM_CPU *, INT);
int post_wait_for_fsqrt (SIM_CPU *, INT);
int post_wait_for_float (SIM_CPU *, INT);
int post_wait_for_media (SIM_CPU *, INT);

void trace_vliw_wait_cycles (SIM_CPU *);
void handle_resource_wait (SIM_CPU *);

void request_cache_load (SIM_CPU *, INT, int, int);
void request_cache_flush (SIM_CPU *, FRV_CACHE *, int);
void request_cache_invalidate (SIM_CPU *, FRV_CACHE *, int);
void request_cache_preload (SIM_CPU *, FRV_CACHE *, int);
void request_cache_unlock (SIM_CPU *, FRV_CACHE *, int);
int  load_pending_for_register (SIM_CPU *, int, int, int);

void set_use_is_gr_complex (SIM_CPU *, INT);
void set_use_not_gr_complex (SIM_CPU *, INT);
int  use_is_gr_complex (SIM_CPU *, INT);

typedef struct
{
  SI address;
  unsigned reqno;
} FRV_INSN_FETCH_BUFFER;

extern FRV_INSN_FETCH_BUFFER frv_insn_fetch_buffer[];

PROFILE_INFO_CPU_CALLBACK_FN frv_profile_info;

enum {
  /* Simulator specific profile bits begin here.  */
  /* Profile caches.  */
  PROFILE_CACHE_IDX = PROFILE_NEXT_IDX,
  /* Profile parallelization.  */
  PROFILE_PARALLEL_IDX
};

/* Masks so WITH_PROFILE can have symbolic values.
   The case choice here is on purpose.  The lowercase parts are args to
   --with-profile.  */
#define PROFILE_cache    (1 << PROFILE_INSN_IDX)
#define PROFILE_parallel (1 << PROFILE_INSN_IDX)

/* Preprocessor macros to simplify tests of WITH_PROFILE.  */
#define WITH_PROFILE_CACHE_P    (WITH_PROFILE & PROFILE_insn)
#define WITH_PROFILE_PARALLEL_P (WITH_PROFILE & PROFILE_insn)

#define FRV_COUNT_CYCLES(cpu, condition) \
  ((PROFILE_MODEL_P (cpu) && (condition)) || frv_interrupt_state.timer.enabled)

/* Modelling support.  */
extern int frv_save_profile_model_p;

extern enum FRV_INSN_MODELING {
  FRV_INSN_NO_MODELING = 0,
  FRV_INSN_MODEL_PASS_1,
  FRV_INSN_MODEL_PASS_2,
  FRV_INSN_MODEL_WRITEBACK
} model_insn;

void
frv_model_advance_cycles (SIM_CPU *, int);
void
frv_model_trace_wait_cycles (SIM_CPU *, int, const char *);

/* Register types for queued load requests.  */
#define REGTYPE_NONE 0
#define REGTYPE_FR   1
#define REGTYPE_ACC  2

#endif /* PROFILE_H */