Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/* Simulator for the FT32 processor

   Copyright (C) 2008-2019 Free Software Foundation, Inc.
   Contributed by FTDI <support@ftdichip.com>

   This file is part of simulators.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <stdint.h>

#include "bfd.h"
#include "gdb/callback.h"
#include "libiberty.h"
#include "gdb/remote-sim.h"

#include "sim-main.h"
#include "sim-options.h"

#include "opcode/ft32.h"

/*
 * FT32 is a Harvard architecture: RAM and code occupy
 * different address spaces.
 *
 * sim and gdb model FT32 memory by adding 0x800000 to RAM
 * addresses. This means that sim/gdb can treat all addresses
 * similarly.
 *
 * The address space looks like:
 *
 *    00000   start of code memory
 *    3ffff   end of code memory
 *   800000   start of RAM
 *   80ffff   end of RAM
 */

#define RAM_BIAS  0x800000  /* Bias added to RAM addresses.  */

static unsigned long
ft32_extract_unsigned_integer (unsigned char *addr, int len)
{
  unsigned long retval;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;

  for (p = endaddr; p > startaddr;)
    retval = (retval << 8) | * -- p;

  return retval;
}

static void
ft32_store_unsigned_integer (unsigned char *addr, int len, unsigned long val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *)addr;
  unsigned char *endaddr = startaddr + len;

  for (p = startaddr; p < endaddr; p++)
    {
      *p = val & 0xff;
      val >>= 8;
    }
}

/*
 * Align EA according to its size DW.
 * The FT32 ignores the low bit of a 16-bit addresss,
 * and the low two bits of a 32-bit address.
 */
static uint32_t ft32_align (uint32_t dw, uint32_t ea)
{
  switch (dw)
    {
    case 1:
      ea &= ~1;
      break;
    case 2:
      ea &= ~3;
      break;
    default:
      break;
    }
  return ea;
}

/* Read an item from memory address EA, sized DW.  */
static uint32_t
ft32_read_item (SIM_DESC sd, int dw, uint32_t ea)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  address_word cia = CPU_PC_GET (cpu);
  uint8_t byte[4];
  uint32_t r;

  ea = ft32_align (dw, ea);

  switch (dw) {
    case 0:
      return sim_core_read_aligned_1 (cpu, cia, read_map, ea);
    case 1:
      return sim_core_read_aligned_2 (cpu, cia, read_map, ea);
    case 2:
      return sim_core_read_aligned_4 (cpu, cia, read_map, ea);
    default:
      abort ();
  }
}

/* Write item V to memory address EA, sized DW.  */
static void
ft32_write_item (SIM_DESC sd, int dw, uint32_t ea, uint32_t v)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  address_word cia = CPU_PC_GET (cpu);
  uint8_t byte[4];

  ea = ft32_align (dw, ea);

  switch (dw) {
    case 0:
      sim_core_write_aligned_1 (cpu, cia, write_map, ea, v);
      break;
    case 1:
      sim_core_write_aligned_2 (cpu, cia, write_map, ea, v);
      break;
    case 2:
      sim_core_write_aligned_4 (cpu, cia, write_map, ea, v);
      break;
    default:
      abort ();
  }
}

#define ILLEGAL() \
  sim_engine_halt (sd, cpu, NULL, insnpc, sim_signalled, SIM_SIGILL)

static uint32_t cpu_mem_read (SIM_DESC sd, uint32_t dw, uint32_t ea)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  uint32_t insnpc = cpu->state.pc;
  uint32_t r;
  uint8_t byte[4];

  ea &= 0x1ffff;
  if (ea & ~0xffff)
    {
      /* Simulate some IO devices */
      switch (ea)
	{
	case 0x10000:
	  return getchar ();
	case 0x1fff4:
	  /* Read the simulator cycle timer.  */
	  return cpu->state.cycles / 100;
	default:
	  sim_io_eprintf (sd, "Illegal IO read address %08x, pc %#x\n",
			  ea, insnpc);
	  ILLEGAL ();
	}
    }
  return ft32_read_item (sd, dw, RAM_BIAS + ea);
}

static void cpu_mem_write (SIM_DESC sd, uint32_t dw, uint32_t ea, uint32_t d)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  ea &= 0x1ffff;
  if (ea & 0x10000)
    {
      /* Simulate some IO devices */
      switch (ea)
	{
	case 0x10000:
	  /* Console output */
	  putchar (d & 0xff);
	  break;
	case 0x1fc80:
	  /* Unlock the PM write port */
	  cpu->state.pm_unlock = (d == 0x1337f7d1);
	  break;
	case 0x1fc84:
	  /* Set the PM write address register */
	  cpu->state.pm_addr = d;
	  break;
	case 0x1fc88:
	  if (cpu->state.pm_unlock)
	    {
	      /* Write to PM.  */
	      ft32_write_item (sd, dw, cpu->state.pm_addr, d);
	      cpu->state.pm_addr += 4;
	    }
	  break;
	case 0x1fffc:
	  /* Normal exit.  */
	  sim_engine_halt (sd, cpu, NULL, cpu->state.pc, sim_exited, cpu->state.regs[0]);
	  break;
	case 0x1fff8:
	  sim_io_printf (sd, "Debug write %08x\n", d);
	  break;
	default:
	  sim_io_eprintf (sd, "Unknown IO write %08x to to %08x\n", d, ea);
	}
    }
  else
    ft32_write_item (sd, dw, RAM_BIAS + ea, d);
}

#define GET_BYTE(ea)    cpu_mem_read (sd, 0, (ea))
#define PUT_BYTE(ea, d) cpu_mem_write (sd, 0, (ea), (d))

/* LSBS (n) is a mask of the least significant N bits.  */
#define LSBS(n) ((1U << (n)) - 1)

static void ft32_push (SIM_DESC sd, uint32_t v)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  cpu->state.regs[FT32_HARD_SP] -= 4;
  cpu->state.regs[FT32_HARD_SP] &= 0xffff;
  cpu_mem_write (sd, 2, cpu->state.regs[FT32_HARD_SP], v);
}

static uint32_t ft32_pop (SIM_DESC sd)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  uint32_t r = cpu_mem_read (sd, 2, cpu->state.regs[FT32_HARD_SP]);
  cpu->state.regs[FT32_HARD_SP] += 4;
  cpu->state.regs[FT32_HARD_SP] &= 0xffff;
  return r;
}

/* Extract the low SIZ bits of N as an unsigned number.  */
static int nunsigned (int siz, int n)
{
  return n & LSBS (siz);
}

/* Extract the low SIZ bits of N as a signed number.  */
static int nsigned (int siz, int n)
{
  int shift = (sizeof (int) * 8) - siz;
  return (n << shift) >> shift;
}

/* Signed division N / D, matching hw behavior for (MIN_INT, -1).  */
static uint32_t ft32sdiv (uint32_t n, uint32_t d)
{
  if (n == 0x80000000UL && d == 0xffffffffUL)
    return 0x80000000UL;
  else
    return (uint32_t)((int)n / (int)d);
}

/* Signed modulus N % D, matching hw behavior for (MIN_INT, -1).  */
static uint32_t ft32smod (uint32_t n, uint32_t d)
{
  if (n == 0x80000000UL && d == 0xffffffffUL)
    return 0;
  else
    return (uint32_t)((int)n % (int)d);
}

/* Circular rotate right N by B bits.  */
static uint32_t ror (uint32_t n, uint32_t b)
{
  b &= 31;
  return (n >> b) | (n << (32 - b));
}

/* Implement the BINS machine instruction.
   See FT32 Programmer's Reference for details.  */
static uint32_t bins (uint32_t d, uint32_t f, uint32_t len, uint32_t pos)
{
  uint32_t bitmask = LSBS (len) << pos;
  return (d & ~bitmask) | ((f << pos) & bitmask);
}

/* Implement the FLIP machine instruction.
   See FT32 Programmer's Reference for details.  */
static uint32_t flip (uint32_t x, uint32_t b)
{
  if (b & 1)
    x = (x & 0x55555555) <<  1 | (x & 0xAAAAAAAA) >>  1;
  if (b & 2)
    x = (x & 0x33333333) <<  2 | (x & 0xCCCCCCCC) >>  2;
  if (b & 4)
    x = (x & 0x0F0F0F0F) <<  4 | (x & 0xF0F0F0F0) >>  4;
  if (b & 8)
    x = (x & 0x00FF00FF) <<  8 | (x & 0xFF00FF00) >>  8;
  if (b & 16)
    x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
  return x;
}

static void
step_once (SIM_DESC sd)
{
  sim_cpu *cpu = STATE_CPU (sd, 0);
  address_word cia = CPU_PC_GET (cpu);
  uint32_t inst;
  uint32_t dw;
  uint32_t cb;
  uint32_t r_d;
  uint32_t cr;
  uint32_t cv;
  uint32_t bt;
  uint32_t r_1;
  uint32_t rimm;
  uint32_t r_2;
  uint32_t k20;
  uint32_t pa;
  uint32_t aa;
  uint32_t k16;
  uint32_t k15;
  uint32_t al;
  uint32_t r_1v;
  uint32_t rimmv;
  uint32_t bit_pos;
  uint32_t bit_len;
  uint32_t upper;
  uint32_t insnpc;
  unsigned int sc[2];
  int isize;

  inst = ft32_read_item (sd, 2, cpu->state.pc);
  cpu->state.cycles += 1;

  if ((STATE_ARCHITECTURE (sd)->mach == bfd_mach_ft32b)
      && ft32_decode_shortcode (cpu->state.pc, inst, sc))
    {
      if ((cpu->state.pc & 3) == 0)
        inst = sc[0];
      else
        inst = sc[1];
      isize = 2;
    }
  else
    isize = 4;

  /* Handle "call 8" (which is FT32's "break" equivalent) here.  */
  if (inst == 0x00340002)
    {
      sim_engine_halt (sd, cpu, NULL,
		       cpu->state.pc,
		       sim_stopped, SIM_SIGTRAP);
      goto escape;
    }

  dw   =              (inst >> FT32_FLD_DW_BIT) & LSBS (FT32_FLD_DW_SIZ);
  cb   =              (inst >> FT32_FLD_CB_BIT) & LSBS (FT32_FLD_CB_SIZ);
  r_d  =              (inst >> FT32_FLD_R_D_BIT) & LSBS (FT32_FLD_R_D_SIZ);
  cr   =              (inst >> FT32_FLD_CR_BIT) & LSBS (FT32_FLD_CR_SIZ);
  cv   =              (inst >> FT32_FLD_CV_BIT) & LSBS (FT32_FLD_CV_SIZ);
  bt   =              (inst >> FT32_FLD_BT_BIT) & LSBS (FT32_FLD_BT_SIZ);
  r_1  =              (inst >> FT32_FLD_R_1_BIT) & LSBS (FT32_FLD_R_1_SIZ);
  rimm =              (inst >> FT32_FLD_RIMM_BIT) & LSBS (FT32_FLD_RIMM_SIZ);
  r_2  =              (inst >> FT32_FLD_R_2_BIT) & LSBS (FT32_FLD_R_2_SIZ);
  k20  = nsigned (20, (inst >> FT32_FLD_K20_BIT) & LSBS (FT32_FLD_K20_SIZ));
  pa   =              (inst >> FT32_FLD_PA_BIT) & LSBS (FT32_FLD_PA_SIZ);
  aa   =              (inst >> FT32_FLD_AA_BIT) & LSBS (FT32_FLD_AA_SIZ);
  k16  =              (inst >> FT32_FLD_K16_BIT) & LSBS (FT32_FLD_K16_SIZ);
  k15  =              (inst >> FT32_FLD_K15_BIT) & LSBS (FT32_FLD_K15_SIZ);
  if (k15 & 0x80)
    k15 ^= 0x7f00;
  if (k15 & 0x4000)
    k15 -= 0x8000;
  al   =              (inst >> FT32_FLD_AL_BIT) & LSBS (FT32_FLD_AL_SIZ);

  r_1v = cpu->state.regs[r_1];
  rimmv = (rimm & 0x400) ? nsigned (10, rimm) : cpu->state.regs[rimm & 0x1f];

  bit_pos = rimmv & 31;
  bit_len = 0xf & (rimmv >> 5);
  if (bit_len == 0)
    bit_len = 16;

  upper = (inst >> 27);

  insnpc = cpu->state.pc;
  cpu->state.pc += isize;
  switch (upper)
    {
    case FT32_PAT_TOC:
    case FT32_PAT_TOCI:
      {
	int take = (cr == 3) || ((1 & (cpu->state.regs[28 + cr] >> cb)) == cv);
	if (take)
	  {
	    cpu->state.cycles += 1;
	    if (bt)
	      ft32_push (sd, cpu->state.pc); /* this is a call.  */
	    if (upper == FT32_PAT_TOC)
	      cpu->state.pc = pa << 2;
	    else
	      cpu->state.pc = cpu->state.regs[r_2];
	    if (cpu->state.pc == 0x8)
		goto escape;
	  }
      }
      break;

    case FT32_PAT_ALUOP:
    case FT32_PAT_CMPOP:
      {
	uint32_t result;
	switch (al)
	  {
	  case 0x0: result = r_1v + rimmv; break;
	  case 0x1: result = ror (r_1v, rimmv); break;
	  case 0x2: result = r_1v - rimmv; break;
	  case 0x3: result = (r_1v << 10) | (1023 & rimmv); break;
	  case 0x4: result = r_1v & rimmv; break;
	  case 0x5: result = r_1v | rimmv; break;
	  case 0x6: result = r_1v ^ rimmv; break;
	  case 0x7: result = ~(r_1v ^ rimmv); break;
	  case 0x8: result = r_1v << rimmv; break;
	  case 0x9: result = r_1v >> rimmv; break;
	  case 0xa: result = (int32_t)r_1v >> rimmv; break;
	  case 0xb: result = bins (r_1v, rimmv >> 10, bit_len, bit_pos); break;
	  case 0xc: result = nsigned (bit_len, r_1v >> bit_pos); break;
	  case 0xd: result = nunsigned (bit_len, r_1v >> bit_pos); break;
	  case 0xe: result = flip (r_1v, rimmv); break;
	  default:
	    sim_io_eprintf (sd, "Unhandled alu %#x\n", al);
	    ILLEGAL ();
	  }
	if (upper == FT32_PAT_ALUOP)
	  cpu->state.regs[r_d] = result;
	else
	  {
	    uint32_t dwmask = 0;
	    int dwsiz = 0;
	    int zero;
	    int sign;
	    int ahi;
	    int bhi;
	    int overflow;
	    int carry;
	    int bit;
	    uint64_t ra;
	    uint64_t rb;
	    int above;
	    int greater;
	    int greatereq;

	    switch (dw)
	      {
	      case 0: dwsiz = 7;  dwmask = 0xffU; break;
	      case 1: dwsiz = 15; dwmask = 0xffffU; break;
	      case 2: dwsiz = 31; dwmask = 0xffffffffU; break;
	      }

	    zero = (0 == (result & dwmask));
	    sign = 1 & (result >> dwsiz);
	    ahi = 1 & (r_1v >> dwsiz);
	    bhi = 1 & (rimmv >> dwsiz);
	    overflow = (sign != ahi) & (ahi == !bhi);
	    bit = (dwsiz + 1);
	    ra = r_1v & dwmask;
	    rb = rimmv & dwmask;
	    switch (al)
	      {
	      case 0x0: carry = 1 & ((ra + rb) >> bit); break;
	      case 0x2: carry = 1 & ((ra - rb) >> bit); break;
	      default:  carry = 0; break;
	      }
	    above = (!carry & !zero);
	    greater = (sign == overflow) & !zero;
	    greatereq = (sign == overflow);

	    cpu->state.regs[r_d] = (
	      (above << 6) |
	      (greater << 5) |
	      (greatereq << 4) |
	      (sign << 3) |
	      (overflow << 2) |
	      (carry << 1) |
	      (zero << 0));
	  }
      }
      break;

    case FT32_PAT_LDK:
      cpu->state.regs[r_d] = k20;
      break;

    case FT32_PAT_LPM:
      cpu->state.regs[r_d] = ft32_read_item (sd, dw, pa << 2);
      cpu->state.cycles += 1;
      break;

    case FT32_PAT_LPMI:
      cpu->state.regs[r_d] = ft32_read_item (sd, dw, cpu->state.regs[r_1] + k15);
      cpu->state.cycles += 1;
      break;

    case FT32_PAT_STA:
      cpu_mem_write (sd, dw, aa, cpu->state.regs[r_d]);
      break;

    case FT32_PAT_STI:
      cpu_mem_write (sd, dw, cpu->state.regs[r_d] + k15, cpu->state.regs[r_1]);
      break;

    case FT32_PAT_LDA:
      cpu->state.regs[r_d] = cpu_mem_read (sd, dw, aa);
      cpu->state.cycles += 1;
      break;

    case FT32_PAT_LDI:
      cpu->state.regs[r_d] = cpu_mem_read (sd, dw, cpu->state.regs[r_1] + k15);
      cpu->state.cycles += 1;
      break;

    case FT32_PAT_EXA:
      {
	uint32_t tmp;
	tmp = cpu_mem_read (sd, dw, aa);
	cpu_mem_write (sd, dw, aa, cpu->state.regs[r_d]);
	cpu->state.regs[r_d] = tmp;
	cpu->state.cycles += 1;
      }
      break;

    case FT32_PAT_EXI:
      {
	uint32_t tmp;
	tmp = cpu_mem_read (sd, dw, cpu->state.regs[r_1] + k15);
	cpu_mem_write (sd, dw, cpu->state.regs[r_1] + k15, cpu->state.regs[r_d]);
	cpu->state.regs[r_d] = tmp;
	cpu->state.cycles += 1;
      }
      break;

    case FT32_PAT_PUSH:
      ft32_push (sd, r_1v);
      break;

    case FT32_PAT_LINK:
      ft32_push (sd, cpu->state.regs[r_d]);
      cpu->state.regs[r_d] = cpu->state.regs[FT32_HARD_SP];
      cpu->state.regs[FT32_HARD_SP] -= k16;
      cpu->state.regs[FT32_HARD_SP] &= 0xffff;
      break;

    case FT32_PAT_UNLINK:
      cpu->state.regs[FT32_HARD_SP] = cpu->state.regs[r_d];
      cpu->state.regs[FT32_HARD_SP] &= 0xffff;
      cpu->state.regs[r_d] = ft32_pop (sd);
      break;

    case FT32_PAT_POP:
      cpu->state.cycles += 1;
      cpu->state.regs[r_d] = ft32_pop (sd);
      break;

    case FT32_PAT_RETURN:
      cpu->state.pc = ft32_pop (sd);
      break;

    case FT32_PAT_FFUOP:
      switch (al)
	{
	case 0x0:
	  cpu->state.regs[r_d] = r_1v / rimmv;
	  break;
	case 0x1:
	  cpu->state.regs[r_d] = r_1v % rimmv;
	  break;
	case 0x2:
	  cpu->state.regs[r_d] = ft32sdiv (r_1v, rimmv);
	  break;
	case 0x3:
	  cpu->state.regs[r_d] = ft32smod (r_1v, rimmv);
	  break;

	case 0x4:
	  {
	    /* strcmp instruction.  */
	    uint32_t a = r_1v;
	    uint32_t b = rimmv;
	    uint32_t i = 0;
	    while ((GET_BYTE (a + i) != 0) &&
		   (GET_BYTE (a + i) == GET_BYTE (b + i)))
	      i++;
	    cpu->state.regs[r_d] = GET_BYTE (a + i) - GET_BYTE (b + i);
	  }
	  break;

	case 0x5:
	  {
	    /* memcpy instruction.  */
	    uint32_t src = r_1v;
	    uint32_t dst = cpu->state.regs[r_d];
	    uint32_t i;
	    for (i = 0; i < (rimmv & 0x7fff); i++)
	      PUT_BYTE (dst + i, GET_BYTE (src + i));
	  }
	  break;
	case 0x6:
	  {
	    /* strlen instruction.  */
	    uint32_t src = r_1v;
	    uint32_t i;
	    for (i = 0; GET_BYTE (src + i) != 0; i++)
	      ;
	    cpu->state.regs[r_d] = i;
	  }
	  break;
	case 0x7:
	  {
	    /* memset instruction.  */
	    uint32_t dst = cpu->state.regs[r_d];
	    uint32_t i;
	    for (i = 0; i < (rimmv & 0x7fff); i++)
	      PUT_BYTE (dst + i, r_1v);
	  }
	  break;
	case 0x8:
	  cpu->state.regs[r_d] = r_1v * rimmv;
	  break;
	case 0x9:
	  cpu->state.regs[r_d] = ((uint64_t)r_1v * (uint64_t)rimmv) >> 32;
	  break;
	case 0xa:
	  {
	    /* stpcpy instruction.  */
	    uint32_t src = r_1v;
	    uint32_t dst = cpu->state.regs[r_d];
	    uint32_t i;
	    for (i = 0; GET_BYTE (src + i) != 0; i++)
	      PUT_BYTE (dst + i, GET_BYTE (src + i));
	    PUT_BYTE (dst + i, 0);
	    cpu->state.regs[r_d] = dst + i;
	  }
	  break;
	case 0xe:
	  {
	    /* streamout instruction.  */
	    uint32_t i;
	    uint32_t src = cpu->state.regs[r_1];
	    for (i = 0; i < rimmv; i += (1 << dw))
	      {
		cpu_mem_write (sd,
			       dw,
			       cpu->state.regs[r_d],
			       cpu_mem_read (sd, dw, src));
		src += (1 << dw);
	      }
	  }
	  break;
	default:
	  sim_io_eprintf (sd, "Unhandled ffu %#x at %08x\n", al, insnpc);
	  ILLEGAL ();
	}
      break;

    default:
      sim_io_eprintf (sd, "Unhandled pattern %d at %08x\n", upper, insnpc);
      ILLEGAL ();
    }
  cpu->state.num_i++;

escape:
  ;
}

void
sim_engine_run (SIM_DESC sd,
		int next_cpu_nr,  /* ignore  */
		int nr_cpus,      /* ignore  */
		int siggnal)      /* ignore  */
{
  sim_cpu *cpu;

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  cpu = STATE_CPU (sd, 0);

  while (1)
    {
      step_once (sd);
      if (sim_events_tick (sd))
	sim_events_process (sd);
    }
}

static uint32_t *
ft32_lookup_register (SIM_CPU *cpu, int nr)
{
  /* Handle the register number translation here.
   * Sim registers are 0-31.
   * Other tools (gcc, gdb) use:
   * 0 - fp
   * 1 - sp
   * 2 - r0
   * 31 - cc
   */

  if ((nr < 0) || (nr > 32))
    {
      sim_io_eprintf (CPU_STATE (cpu), "unknown register %i\n", nr);
      abort ();
    }

  switch (nr)
    {
    case FT32_FP_REGNUM:
      return &cpu->state.regs[FT32_HARD_FP];
    case FT32_SP_REGNUM:
      return &cpu->state.regs[FT32_HARD_SP];
    case FT32_CC_REGNUM:
      return &cpu->state.regs[FT32_HARD_CC];
    case FT32_PC_REGNUM:
      return &cpu->state.pc;
    default:
      return &cpu->state.regs[nr - 2];
    }
}

static int
ft32_reg_store (SIM_CPU *cpu,
		int rn,
		unsigned char *memory,
		int length)
{
  if (0 <= rn && rn <= 32)
    {
      if (length == 4)
	*ft32_lookup_register (cpu, rn) = ft32_extract_unsigned_integer (memory, 4);

      return 4;
    }
  else
    return 0;
}

static int
ft32_reg_fetch (SIM_CPU *cpu,
		int rn,
		unsigned char *memory,
		int length)
{
  if (0 <= rn && rn <= 32)
    {
      if (length == 4)
	ft32_store_unsigned_integer (memory, 4, *ft32_lookup_register (cpu, rn));

      return 4;
    }
  else
    return 0;
}

static sim_cia
ft32_pc_get (SIM_CPU *cpu)
{
  return cpu->state.pc;
}

static void
ft32_pc_set (SIM_CPU *cpu, sim_cia newpc)
{
  cpu->state.pc = newpc;
}

/* Cover function of sim_state_free to free the cpu buffers as well.  */

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
  sim_cpu_free_all (sd);
  sim_state_free (sd);
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind,
	  host_callback *cb,
	  struct bfd *abfd,
	  char * const *argv)
{
  char c;
  size_t i;
  SIM_DESC sd = sim_state_alloc (kind, cb);

  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* The parser will print an error message for us, so we silently return.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Allocate external memory if none specified by user.
     Use address 4 here in case the user wanted address 0 unmapped.  */
  if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
    {
      sim_do_command (sd, "memory region 0x00000000,0x40000");
      sim_do_command (sd, "memory region 0x800000,0x10000");
    }

  /* Check for/establish the reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);

      CPU_REG_FETCH (cpu) = ft32_reg_fetch;
      CPU_REG_STORE (cpu) = ft32_reg_store;
      CPU_PC_FETCH (cpu) = ft32_pc_get;
      CPU_PC_STORE (cpu) = ft32_pc_set;
    }

  return sd;
}

SIM_RC
sim_create_inferior (SIM_DESC sd,
		     struct bfd *abfd,
		     char * const *argv,
		     char * const *env)
{
  uint32_t addr;
  sim_cpu *cpu = STATE_CPU (sd, 0);

  /* Set the PC.  */
  if (abfd != NULL)
    addr = bfd_get_start_address (abfd);
  else
    addr = 0;

  /* Standalone mode (i.e. `run`) will take care of the argv for us in
     sim_open() -> sim_parse_args().  But in debug mode (i.e. 'target sim'
     with `gdb`), we need to handle it because the user can change the
     argv on the fly via gdb's 'run'.  */
  if (STATE_PROG_ARGV (sd) != argv)
    {
      freeargv (STATE_PROG_ARGV (sd));
      STATE_PROG_ARGV (sd) = dupargv (argv);
    }
  cpu->state.regs[FT32_HARD_SP] = addr;
  cpu->state.num_i = 0;
  cpu->state.cycles = 0;
  cpu->state.next_tick_cycle = 100000;

  return SIM_RC_OK;
}