Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
dnl  AMD K7 mpn_sqr_basecase -- square an mpn number.

dnl  Copyright 1999-2002 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')


C K7: approx 2.3 cycles/crossproduct, or 4.55 cycles/triangular product
C     (measured on the speed difference between 25 and 50 limbs, which is
C     roughly the Karatsuba recursing range).


dnl  These are the same as mpn/x86/k6/sqr_basecase.asm, see that code for
dnl  some comments.

deflit(SQR_TOOM2_THRESHOLD_MAX, 66)

ifdef(`SQR_TOOM2_THRESHOLD_OVERRIDE',
`define(`SQR_TOOM2_THRESHOLD',SQR_TOOM2_THRESHOLD_OVERRIDE)')

m4_config_gmp_mparam(`SQR_TOOM2_THRESHOLD')
deflit(UNROLL_COUNT, eval(SQR_TOOM2_THRESHOLD-3))


C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size);
C
C With a SQR_TOOM2_THRESHOLD around 50 this code is about 1500 bytes,
C which is quite a bit, but is considered good value since squares big
C enough to use most of the code will be spending quite a few cycles in it.


defframe(PARAM_SIZE,12)
defframe(PARAM_SRC, 8)
defframe(PARAM_DST, 4)

	TEXT
	ALIGN(32)
PROLOGUE(mpn_sqr_basecase)
deflit(`FRAME',0)

	movl	PARAM_SIZE, %ecx
	movl	PARAM_SRC, %eax
	cmpl	$2, %ecx

	movl	PARAM_DST, %edx
	je	L(two_limbs)
	ja	L(three_or_more)


C------------------------------------------------------------------------------
C one limb only
	C eax	src
	C ecx	size
	C edx	dst

	movl	(%eax), %eax
	movl	%edx, %ecx

	mull	%eax

	movl	%edx, 4(%ecx)
	movl	%eax, (%ecx)
	ret


C------------------------------------------------------------------------------
C
C Using the read/modify/write "add"s seems to be faster than saving and
C restoring registers.  Perhaps the loads for the first set hide under the
C mul latency and the second gets store to load forwarding.

	ALIGN(16)
L(two_limbs):
	C eax	src
	C ebx
	C ecx	size
	C edx	dst
deflit(`FRAME',0)

	pushl	%ebx		FRAME_pushl()
	movl	%eax, %ebx	C src
	movl	(%eax), %eax

	movl	%edx, %ecx	C dst

	mull	%eax		C src[0]^2

	movl	%eax, (%ecx)	C dst[0]
	movl	4(%ebx), %eax

	movl	%edx, 4(%ecx)	C dst[1]

	mull	%eax		C src[1]^2

	movl	%eax, 8(%ecx)	C dst[2]
	movl	(%ebx), %eax

	movl	%edx, 12(%ecx)	C dst[3]

	mull	4(%ebx)		C src[0]*src[1]

	popl	%ebx

	addl	%eax, 4(%ecx)
	adcl	%edx, 8(%ecx)
	adcl	$0, 12(%ecx)
	ASSERT(nc)

	addl	%eax, 4(%ecx)
	adcl	%edx, 8(%ecx)
	adcl	$0, 12(%ecx)
	ASSERT(nc)

	ret


C------------------------------------------------------------------------------
defframe(SAVE_EBX,  -4)
defframe(SAVE_ESI,  -8)
defframe(SAVE_EDI, -12)
defframe(SAVE_EBP, -16)
deflit(STACK_SPACE, 16)

L(three_or_more):
	subl	$STACK_SPACE, %esp
	cmpl	$4, %ecx
	jae	L(four_or_more)
deflit(`FRAME',STACK_SPACE)


C------------------------------------------------------------------------------
C Three limbs
C
C Writing out the loads and stores separately at the end of this code comes
C out about 10 cycles faster than using adcls to memory.

	C eax	src
	C ecx	size
	C edx	dst

	movl	%ebx, SAVE_EBX
	movl	%eax, %ebx	C src
	movl	(%eax), %eax

	movl	%edx, %ecx	C dst
	movl	%esi, SAVE_ESI
	movl	%edi, SAVE_EDI

	mull	%eax		C src[0] ^ 2

	movl	%eax, (%ecx)
	movl	4(%ebx), %eax
	movl	%edx, 4(%ecx)

	mull	%eax		C src[1] ^ 2

	movl	%eax, 8(%ecx)
	movl	8(%ebx), %eax
	movl	%edx, 12(%ecx)

	mull	%eax		C src[2] ^ 2

	movl	%eax, 16(%ecx)
	movl	(%ebx), %eax
	movl	%edx, 20(%ecx)

	mull	4(%ebx)		C src[0] * src[1]

	movl	%eax, %esi
	movl	(%ebx), %eax
	movl	%edx, %edi

	mull	8(%ebx)		C src[0] * src[2]

	addl	%eax, %edi
	movl	%ebp, SAVE_EBP
	movl	$0, %ebp

	movl	4(%ebx), %eax
	adcl	%edx, %ebp

	mull	8(%ebx)		C src[1] * src[2]

	xorl	%ebx, %ebx
	addl	%eax, %ebp

	adcl	$0, %edx

	C eax
	C ebx	zero, will be dst[5]
	C ecx	dst
	C edx	dst[4]
	C esi	dst[1]
	C edi	dst[2]
	C ebp	dst[3]

	adcl	$0, %edx
	addl	%esi, %esi

	adcl	%edi, %edi
	movl	4(%ecx), %eax

	adcl	%ebp, %ebp

	adcl	%edx, %edx

	adcl	$0, %ebx
	addl	%eax, %esi
	movl	8(%ecx), %eax

	adcl	%eax, %edi
	movl	12(%ecx), %eax
	movl	%esi, 4(%ecx)

	adcl	%eax, %ebp
	movl	16(%ecx), %eax
	movl	%edi, 8(%ecx)

	movl	SAVE_ESI, %esi
	movl	SAVE_EDI, %edi

	adcl	%eax, %edx
	movl	20(%ecx), %eax
	movl	%ebp, 12(%ecx)

	adcl	%ebx, %eax
	ASSERT(nc)
	movl	SAVE_EBX, %ebx
	movl	SAVE_EBP, %ebp

	movl	%edx, 16(%ecx)
	movl	%eax, 20(%ecx)
	addl	$FRAME, %esp

	ret


C------------------------------------------------------------------------------
L(four_or_more):

C First multiply src[0]*src[1..size-1] and store at dst[1..size].
C Further products are added in rather than stored.

	C eax	src
	C ebx
	C ecx	size
	C edx	dst
	C esi
	C edi
	C ebp

defframe(`VAR_COUNTER',-20)
defframe(`VAR_JMP',    -24)
deflit(EXTRA_STACK_SPACE, 8)

	movl	%ebx, SAVE_EBX
	movl	%edi, SAVE_EDI
	leal	(%edx,%ecx,4), %edi	C &dst[size]

	movl	%esi, SAVE_ESI
	movl	%ebp, SAVE_EBP
	leal	(%eax,%ecx,4), %esi	C &src[size]

	movl	(%eax), %ebp		C multiplier
	movl	$0, %ebx
	decl	%ecx

	negl	%ecx
	subl	$EXTRA_STACK_SPACE, %esp
FRAME_subl_esp(EXTRA_STACK_SPACE)

L(mul_1):
	C eax	scratch
	C ebx	carry
	C ecx	counter
	C edx	scratch
	C esi	&src[size]
	C edi	&dst[size]
	C ebp	multiplier

	movl	(%esi,%ecx,4), %eax

	mull	%ebp

	addl	%ebx, %eax
	movl	%eax, (%edi,%ecx,4)
	movl	$0, %ebx

	adcl	%edx, %ebx
	incl	%ecx
	jnz	L(mul_1)


C Add products src[n]*src[n+1..size-1] at dst[2*n-1...], for each n=1..size-2.
C
C The last two products, which are the bottom right corner of the product
C triangle, are left to the end.  These are src[size-3]*src[size-2,size-1]
C and src[size-2]*src[size-1].  If size is 4 then it's only these corner
C cases that need to be done.
C
C The unrolled code is the same as in mpn_addmul_1, see that routine for
C some comments.
C
C VAR_COUNTER is the outer loop, running from -size+4 to -1, inclusive.
C
C VAR_JMP is the computed jump into the unrolled code, stepped by one code
C chunk each outer loop.
C
C K7 does branch prediction on indirect jumps, which is bad since it's a
C different target each time.  There seems no way to avoid this.

dnl  This value also hard coded in some shifts and adds
deflit(CODE_BYTES_PER_LIMB, 17)

dnl  With the unmodified &src[size] and &dst[size] pointers, the
dnl  displacements in the unrolled code fit in a byte for UNROLL_COUNT
dnl  values up to 31, but above that an offset must be added to them.

deflit(OFFSET,
ifelse(eval(UNROLL_COUNT>31),1,
eval((UNROLL_COUNT-31)*4),
0))

dnl  Because the last chunk of code is generated differently, a label placed
dnl  at the end doesn't work.  Instead calculate the implied end using the
dnl  start and how many chunks of code there are.

deflit(UNROLL_INNER_END,
`L(unroll_inner_start)+eval(UNROLL_COUNT*CODE_BYTES_PER_LIMB)')

	C eax
	C ebx	carry
	C ecx
	C edx
	C esi	&src[size]
	C edi	&dst[size]
	C ebp

	movl	PARAM_SIZE, %ecx
	movl	%ebx, (%edi)

	subl	$4, %ecx
	jz	L(corner)

	negl	%ecx
ifelse(OFFSET,0,,`subl	$OFFSET, %edi')
ifelse(OFFSET,0,,`subl	$OFFSET, %esi')

	movl	%ecx, %edx
	shll	$4, %ecx

ifdef(`PIC',`
	call	L(pic_calc)
L(here):
',`
	leal	UNROLL_INNER_END-eval(2*CODE_BYTES_PER_LIMB)(%ecx,%edx), %ecx
')


	C The calculated jump mustn't come out to before the start of the
	C code available.  This is the limit UNROLL_COUNT puts on the src
	C operand size, but checked here directly using the jump address.
	ASSERT(ae,
	`movl_text_address(L(unroll_inner_start), %eax)
	cmpl	%eax, %ecx')


C------------------------------------------------------------------------------
	ALIGN(16)
L(unroll_outer_top):
	C eax
	C ebx	high limb to store
	C ecx	VAR_JMP
	C edx	VAR_COUNTER, limbs, negative
	C esi	&src[size], constant
	C edi	dst ptr, high of last addmul
	C ebp

	movl	-12+OFFSET(%esi,%edx,4), %ebp	C next multiplier
	movl	-8+OFFSET(%esi,%edx,4), %eax	C first of multiplicand

	movl	%edx, VAR_COUNTER

	mull	%ebp

define(cmovX,`ifelse(eval(UNROLL_COUNT%2),0,`cmovz($@)',`cmovnz($@)')')

	testb	$1, %cl
	movl	%edx, %ebx	C high carry
	movl	%ecx, %edx	C jump

	movl	%eax, %ecx	C low carry
	cmovX(	%ebx, %ecx)	C high carry reverse
	cmovX(	%eax, %ebx)	C low carry reverse

	leal	CODE_BYTES_PER_LIMB(%edx), %eax
	xorl	%edx, %edx
	leal	4(%edi), %edi

	movl	%eax, VAR_JMP

	jmp	*%eax


ifdef(`PIC',`
L(pic_calc):
	addl	(%esp), %ecx
	addl	$UNROLL_INNER_END-eval(2*CODE_BYTES_PER_LIMB)-L(here), %ecx
	addl	%edx, %ecx
	ret_internal
')


	C Must be an even address to preserve the significance of the low
	C bit of the jump address indicating which way around ecx/ebx should
	C start.
	ALIGN(2)

L(unroll_inner_start):
	C eax	next limb
	C ebx	carry high
	C ecx	carry low
	C edx	scratch
	C esi	src
	C edi	dst
	C ebp	multiplier

forloop(`i', UNROLL_COUNT, 1, `
	deflit(`disp_src', eval(-i*4 + OFFSET))
	deflit(`disp_dst', eval(disp_src - 4))

	m4_assert(`disp_src>=-128 && disp_src<128')
	m4_assert(`disp_dst>=-128 && disp_dst<128')

ifelse(eval(i%2),0,`
Zdisp(	movl,	disp_src,(%esi), %eax)
	adcl	%edx, %ebx

	mull	%ebp

Zdisp(  addl,	%ecx, disp_dst,(%edi))
	movl	$0, %ecx

	adcl	%eax, %ebx

',`
	dnl  this bit comes out last
Zdisp(  movl,	disp_src,(%esi), %eax)
	adcl	%edx, %ecx

	mull	%ebp

Zdisp(	addl,	%ebx, disp_dst,(%edi))

ifelse(forloop_last,0,
`	movl	$0, %ebx')

	adcl	%eax, %ecx
')
')

	C eax	next limb
	C ebx	carry high
	C ecx	carry low
	C edx	scratch
	C esi	src
	C edi	dst
	C ebp	multiplier

	adcl	$0, %edx
	addl	%ecx, -4+OFFSET(%edi)
	movl	VAR_JMP, %ecx

	adcl	$0, %edx

	movl	%edx, m4_empty_if_zero(OFFSET) (%edi)
	movl	VAR_COUNTER, %edx

	incl	%edx
	jnz	L(unroll_outer_top)


ifelse(OFFSET,0,,`
	addl	$OFFSET, %esi
	addl	$OFFSET, %edi
')


C------------------------------------------------------------------------------
L(corner):
	C esi	&src[size]
	C edi	&dst[2*size-5]

	movl	-12(%esi), %ebp
	movl	-8(%esi), %eax
	movl	%eax, %ecx

	mull	%ebp

	addl	%eax, -4(%edi)
	movl	-4(%esi), %eax

	adcl	$0, %edx
	movl	%edx, %ebx
	movl	%eax, %esi

	mull	%ebp

	addl	%ebx, %eax

	adcl	$0, %edx
	addl	%eax, (%edi)
	movl	%esi, %eax

	adcl	$0, %edx
	movl	%edx, %ebx

	mull	%ecx

	addl	%ebx, %eax
	movl	%eax, 4(%edi)

	adcl	$0, %edx
	movl	%edx, 8(%edi)



C Left shift of dst[1..2*size-2], high bit shifted out becomes dst[2*size-1].

L(lshift_start):
	movl	PARAM_SIZE, %eax
	movl	PARAM_DST, %edi
	xorl	%ecx, %ecx		C clear carry

	leal	(%edi,%eax,8), %edi
	notl	%eax			C -size-1, preserve carry

	leal	2(%eax), %eax		C -(size-1)

L(lshift):
	C eax	counter, negative
	C ebx
	C ecx
	C edx
	C esi
	C edi	dst, pointing just after last limb
	C ebp

	rcll	-4(%edi,%eax,8)
	rcll	(%edi,%eax,8)
	incl	%eax
	jnz	L(lshift)

	setc	%al

	movl	PARAM_SRC, %esi
	movl	%eax, -4(%edi)		C dst most significant limb

	movl	PARAM_SIZE, %ecx


C Now add in the squares on the diagonal, src[0]^2, src[1]^2, ...,
C src[size-1]^2.  dst[0] hasn't yet been set at all yet, and just gets the
C low limb of src[0]^2.

	movl	(%esi), %eax		C src[0]

	mull	%eax

	leal	(%esi,%ecx,4), %esi	C src point just after last limb
	negl	%ecx

	movl	%eax, (%edi,%ecx,8)	C dst[0]
	incl	%ecx

L(diag):
	C eax	scratch
	C ebx	scratch
	C ecx	counter, negative
	C edx	carry
	C esi	src just after last limb
	C edi	dst just after last limb
	C ebp

	movl	(%esi,%ecx,4), %eax
	movl	%edx, %ebx

	mull	%eax

	addl	%ebx, -4(%edi,%ecx,8)
	adcl	%eax, (%edi,%ecx,8)
	adcl	$0, %edx

	incl	%ecx
	jnz	L(diag)


	movl	SAVE_ESI, %esi
	movl	SAVE_EBX, %ebx

	addl	%edx, -4(%edi)		C dst most significant limb
	movl	SAVE_EDI, %edi

	movl	SAVE_EBP, %ebp
	addl	$FRAME, %esp

	ret

EPILOGUE()