dnl AMD64 mpn_copyd optimised for CPUs with fast AVX.
dnl Copyright 2003, 2005, 2007, 2011-2013, 2015 Free Software Foundation, Inc.
dnl Contributed to the GNU project by Torbjörn Granlund.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C cycles/limb cycles/limb cycles/limb good
C aligned unaligned best seen for cpu?
C AMD K8,K9 n/a
C AMD K10 n/a
C AMD bull n/a
C AMD pile 4.87 4.87 N
C AMD steam ? ?
C AMD bobcat n/a
C AMD jaguar n/a
C Intel P4 n/a
C Intel core n/a
C Intel NHM n/a
C Intel SBR 0.50 0.91 N
C Intel IBR 0.50 0.65 N
C Intel HWL 0.25 0.30 Y
C Intel BWL 0.28 0.37 Y
C Intel atom n/a
C VIA nano n/a
C We try to do as many 32-byte operations as possible. The top-most and
C bottom-most writes might need 8-byte operations. For the bulk copying, we
C write using aligned 32-byte operations, but we read with both aligned and
C unaligned 32-byte operations.
define(`rp', `%rdi')
define(`up', `%rsi')
define(`n', `%rdx')
ABI_SUPPORT(DOS64)
ABI_SUPPORT(STD64)
dnl define(`vmovdqu', vlddqu)
ASM_START()
TEXT
ALIGN(32)
PROLOGUE(mpn_copyd)
FUNC_ENTRY(3)
lea -32(rp,n,8), rp
lea -32(up,n,8), up
cmp $7, n C basecase needed for correctness
jbe L(bc)
test $8, R8(rp) C is rp 16-byte aligned?
jz L(a2) C jump if rp aligned
mov 24(up), %rax
lea -8(up), up
mov %rax, 24(rp)
lea -8(rp), rp
dec n
L(a2): test $16, R8(rp) C is rp 32-byte aligned?
jz L(a3) C jump if rp aligned
vmovdqu 16(up), %xmm0
lea -16(up), up
vmovdqa %xmm0, 16(rp)
lea -16(rp), rp
sub $2, n
L(a3): sub $16, n
jc L(sma)
ALIGN(16)
L(top): vmovdqu (up), %ymm0
vmovdqu -32(up), %ymm1
vmovdqu -64(up), %ymm2
vmovdqu -96(up), %ymm3
lea -128(up), up
vmovdqa %ymm0, (rp)
vmovdqa %ymm1, -32(rp)
vmovdqa %ymm2, -64(rp)
vmovdqa %ymm3, -96(rp)
lea -128(rp), rp
L(ali): sub $16, n
jnc L(top)
L(sma): test $8, R8(n)
jz 1f
vmovdqu (up), %ymm0
vmovdqu -32(up), %ymm1
lea -64(up), up
vmovdqa %ymm0, (rp)
vmovdqa %ymm1, -32(rp)
lea -64(rp), rp
1:
test $4, R8(n)
jz 1f
vmovdqu (up), %ymm0
lea -32(up), up
vmovdqa %ymm0, (rp)
lea -32(rp), rp
1:
test $2, R8(n)
jz 1f
vmovdqu 16(up), %xmm0
lea -16(up), up
vmovdqa %xmm0, 16(rp)
lea -16(rp), rp
1:
test $1, R8(n)
jz 1f
mov 24(up), %r8
mov %r8, 24(rp)
1:
FUNC_EXIT()
ret
ALIGN(16)
L(bc): test $4, R8(n)
jz 1f
mov 24(up), %rax
mov 16(up), %rcx
mov 8(up), %r8
mov (up), %r9
lea -32(up), up
mov %rax, 24(rp)
mov %rcx, 16(rp)
mov %r8, 8(rp)
mov %r9, (rp)
lea -32(rp), rp
1:
test $2, R8(n)
jz 1f
mov 24(up), %rax
mov 16(up), %rcx
lea -16(up), up
mov %rax, 24(rp)
mov %rcx, 16(rp)
lea -16(rp), rp
1:
test $1, R8(n)
jz 1f
mov 24(up), %rax
mov %rax, 24(rp)
1:
FUNC_EXIT()
ret
EPILOGUE()