dnl AMD64 mpn_mullo_basecase.
dnl Contributed to the GNU project by Torbjorn Granlund.
dnl Copyright 2008, 2009, 2011, 2012 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C The inner loops of this code are the result of running a code generation and
C optimisation tool suite written by David Harvey and Torbjorn Granlund.
C NOTES
C * There is a major stupidity in that we call mpn_mul_1 initially, for a
C large trip count. Instead, we should start with mul_2 for any operand
C size congruence class.
C * Stop iterating addmul_2 earlier, falling into straight-line triangle code
C for the last 2-3 iterations.
C * Perhaps implement n=4 special code.
C * The reload of the outer loop jump address hurts branch prediction.
C * The addmul_2 loop ends with an MUL whose high part is not used upon loop
C exit.
C INPUT PARAMETERS
define(`rp', `%rdi')
define(`up', `%rsi')
define(`vp_param', `%rdx')
define(`n', `%rcx')
define(`vp', `%r11')
define(`outer_addr', `%r8')
define(`j', `%r9')
define(`v0', `%r13')
define(`v1', `%r14')
define(`w0', `%rbx')
define(`w1', `%r15')
define(`w2', `%rbp')
define(`w3', `%r10')
ABI_SUPPORT(DOS64)
ABI_SUPPORT(STD64)
ASM_START()
TEXT
ALIGN(16)
PROLOGUE(mpn_mullo_basecase)
FUNC_ENTRY(4)
cmp $4, n
jge L(gen)
mov (up), %rax C u0
mov (vp_param), %r8 C v0
lea L(tab)(%rip), %r9
ifdef(`PIC',
` movslq (%r9,%rcx,4), %r10
add %r10, %r9
jmp *%r9
',`
jmp *(%r9,n,8)
')
JUMPTABSECT
ALIGN(8)
L(tab): JMPENT( L(tab), L(tab)) C not allowed
JMPENT( L(1), L(tab)) C 1
JMPENT( L(2), L(tab)) C 2
JMPENT( L(3), L(tab)) C 3
dnl JMPENT( L(0m4), L(tab)) C 4
dnl JMPENT( L(1m4), L(tab)) C 5
dnl JMPENT( L(2m4), L(tab)) C 6
dnl JMPENT( L(3m4), L(tab)) C 7
dnl JMPENT( L(0m4), L(tab)) C 8
dnl JMPENT( L(1m4), L(tab)) C 9
dnl JMPENT( L(2m4), L(tab)) C 10
dnl JMPENT( L(3m4), L(tab)) C 11
TEXT
L(1): imul %r8, %rax
mov %rax, (rp)
FUNC_EXIT()
ret
L(2): mov 8(vp_param), %r11
imul %rax, %r11 C u0 x v1
mul %r8 C u0 x v0
mov %rax, (rp)
imul 8(up), %r8 C u1 x v0
lea (%r11, %rdx), %rax
add %r8, %rax
mov %rax, 8(rp)
FUNC_EXIT()
ret
L(3): mov 8(vp_param), %r9 C v1
mov 16(vp_param), %r11
mul %r8 C u0 x v0 -> <r1,r0>
mov %rax, (rp) C r0
mov (up), %rax C u0
mov %rdx, %rcx C r1
mul %r9 C u0 x v1 -> <r2,r1>
imul 8(up), %r9 C u1 x v1 -> r2
mov 16(up), %r10
imul %r8, %r10 C u2 x v0 -> r2
add %rax, %rcx
adc %rdx, %r9
add %r10, %r9
mov 8(up), %rax C u1
mul %r8 C u1 x v0 -> <r2,r1>
add %rax, %rcx
adc %rdx, %r9
mov %r11, %rax
imul (up), %rax C u0 x v2 -> r2
add %rax, %r9
mov %rcx, 8(rp)
mov %r9, 16(rp)
FUNC_EXIT()
ret
L(0m4):
L(1m4):
L(2m4):
L(3m4):
L(gen): push %rbx
push %rbp
push %r13
push %r14
push %r15
mov (up), %rax
mov (vp_param), v0
mov vp_param, vp
lea (rp,n,8), rp
lea (up,n,8), up
neg n
mul v0
test $1, R8(n)
jz L(mul_2)
L(mul_1):
lea -8(rp), rp
lea -8(up), up
test $2, R8(n)
jnz L(mul_1_prologue_3)
L(mul_1_prologue_2): C n = 7, 11, 15, ...
lea -1(n), j
lea L(addmul_outer_1)(%rip), outer_addr
mov %rax, w0
mov %rdx, w1
xor R32(w2), R32(w2)
xor R32(w3), R32(w3)
mov 16(up,n,8), %rax
jmp L(mul_1_entry_2)
L(mul_1_prologue_3): C n = 5, 9, 13, ...
lea 1(n), j
lea L(addmul_outer_3)(%rip), outer_addr
mov %rax, w2
mov %rdx, w3
xor R32(w0), R32(w0)
jmp L(mul_1_entry_0)
ALIGN(16)
L(mul_1_top):
mov w0, -16(rp,j,8)
add %rax, w1
mov (up,j,8), %rax
adc %rdx, w2
xor R32(w0), R32(w0)
mul v0
mov w1, -8(rp,j,8)
add %rax, w2
adc %rdx, w3
L(mul_1_entry_0):
mov 8(up,j,8), %rax
mul v0
mov w2, (rp,j,8)
add %rax, w3
adc %rdx, w0
mov 16(up,j,8), %rax
mul v0
mov w3, 8(rp,j,8)
xor R32(w2), R32(w2) C zero
mov w2, w3 C zero
add %rax, w0
mov 24(up,j,8), %rax
mov w2, w1 C zero
adc %rdx, w1
L(mul_1_entry_2):
mul v0
add $4, j
js L(mul_1_top)
mov w0, -16(rp)
add %rax, w1
mov w1, -8(rp)
adc %rdx, w2
imul (up), v0
add v0, w2
mov w2, (rp)
add $1, n
jz L(ret)
mov 8(vp), v0
mov 16(vp), v1
lea 16(up), up
lea 8(vp), vp
lea 24(rp), rp
jmp *outer_addr
L(mul_2):
mov 8(vp), v1
test $2, R8(n)
jz L(mul_2_prologue_3)
ALIGN(16)
L(mul_2_prologue_1):
lea 0(n), j
mov %rax, w3
mov %rdx, w0
xor R32(w1), R32(w1)
mov (up,n,8), %rax
lea L(addmul_outer_3)(%rip), outer_addr
jmp L(mul_2_entry_1)
ALIGN(16)
L(mul_2_prologue_3):
lea 2(n), j
mov $0, R32(w3)
mov %rax, w1
mov (up,n,8), %rax
mov %rdx, w2
lea L(addmul_outer_1)(%rip), outer_addr
jmp L(mul_2_entry_3)
ALIGN(16)
L(mul_2_top):
mov -32(up,j,8), %rax
mul v1
add %rax, w0
adc %rdx, w1
mov -24(up,j,8), %rax
xor R32(w2), R32(w2)
mul v0
add %rax, w0
mov -24(up,j,8), %rax
adc %rdx, w1
adc $0, R32(w2)
mul v1
add %rax, w1
mov w0, -24(rp,j,8)
adc %rdx, w2
mov -16(up,j,8), %rax
mul v0
mov $0, R32(w3)
add %rax, w1
adc %rdx, w2
mov -16(up,j,8), %rax
adc $0, R32(w3)
L(mul_2_entry_3):
mov $0, R32(w0)
mov w1, -16(rp,j,8)
mul v1
add %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
mov $0, R32(w1)
mul v0
add %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
adc R32(w1), R32(w0)
mul v1
add %rax, w3
mov w2, -8(rp,j,8)
adc %rdx, w0
mov (up,j,8), %rax
mul v0
add %rax, w3
adc %rdx, w0
adc $0, R32(w1)
L(mul_2_entry_1):
add $4, j
mov w3, -32(rp,j,8)
js L(mul_2_top)
imul -16(up), v1
add v1, w0
imul -8(up), v0
add v0, w0
mov w0, -8(rp)
add $2, n
jz L(ret)
mov 16(vp), v0
mov 24(vp), v1
lea 16(vp), vp
lea 16(rp), rp
jmp *outer_addr
L(addmul_outer_1):
lea -2(n), j
mov -16(up,n,8), %rax
mul v0
mov %rax, w3
mov -16(up,n,8), %rax
mov %rdx, w0
xor R32(w1), R32(w1)
lea L(addmul_outer_3)(%rip), outer_addr
jmp L(addmul_entry_1)
L(addmul_outer_3):
lea 0(n), j
mov -16(up,n,8), %rax
xor R32(w3), R32(w3)
mul v0
mov %rax, w1
mov -16(up,n,8), %rax
mov %rdx, w2
lea L(addmul_outer_1)(%rip), outer_addr
jmp L(addmul_entry_3)
ALIGN(16)
L(addmul_top):
add w3, -32(rp,j,8)
adc %rax, w0
mov -24(up,j,8), %rax
adc %rdx, w1
xor R32(w2), R32(w2)
mul v0
add %rax, w0
mov -24(up,j,8), %rax
adc %rdx, w1
adc R32(w2), R32(w2)
mul v1
xor R32(w3), R32(w3)
add w0, -24(rp,j,8)
adc %rax, w1
mov -16(up,j,8), %rax
adc %rdx, w2
mul v0
add %rax, w1
mov -16(up,j,8), %rax
adc %rdx, w2
adc $0, R32(w3)
L(addmul_entry_3):
mul v1
add w1, -16(rp,j,8)
adc %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
mul v0
xor R32(w0), R32(w0)
add %rax, w2
adc %rdx, w3
mov $0, R32(w1)
mov -8(up,j,8), %rax
adc R32(w1), R32(w0)
mul v1
add w2, -8(rp,j,8)
adc %rax, w3
adc %rdx, w0
mov (up,j,8), %rax
mul v0
add %rax, w3
mov (up,j,8), %rax
adc %rdx, w0
adc $0, R32(w1)
L(addmul_entry_1):
mul v1
add $4, j
js L(addmul_top)
add w3, -32(rp)
adc %rax, w0
imul -24(up), v0
add v0, w0
add w0, -24(rp)
add $2, n
jns L(ret)
lea 16(vp), vp
mov (vp), v0
mov 8(vp), v1
lea -16(up), up
jmp *outer_addr
L(ret): pop %r15
pop %r14
pop %r13
pop %rbp
pop %rbx
FUNC_EXIT()
ret
EPILOGUE()