dnl AMD64 mpn_sqr_basecase.
dnl Contributed to the GNU project by Torbjorn Granlund.
dnl Copyright 2008, 2009, 2011, 2012 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C The inner loops of this code are the result of running a code generation and
C optimization tool suite written by David Harvey and Torbjorn Granlund.
C NOTES
C * There is a major stupidity in that we call mpn_mul_1 initially, for a
C large trip count. Instead, we should follow the generic/sqr_basecase.c
C code which uses addmul_2s from the start, conditionally leaving a 1x1
C multiply to the end. (In assembly code, one would stop invoking
C addmul_2s loops when perhaps 3x2s respectively a 2x2s remains.)
C * Another stupidity is in the sqr_diag_addlsh1 code. It does not need to
C save/restore carry, instead it can propagate into the high product word.
C * Align more labels, should shave off a few cycles.
C * We can safely use 32-bit size operations, since operands with (2^32)
C limbs will lead to non-termination in practice.
C * The jump table could probably be optimized, at least for non-pic.
C * The special code for n <= 4 was quickly written. It is probably too
C large and unnecessarily slow.
C * Consider combining small cases code so that the n=k-1 code jumps into the
C middle of the n=k code.
C * Avoid saving registers for small cases code.
C * Needed variables:
C n r11 input size
C i r8 work left, initially n
C j r9 inner loop count
C r15 unused
C v0 r13
C v1 r14
C rp rdi
C up rsi
C w0 rbx
C w1 rcx
C w2 rbp
C w3 r10
C tp r12
C lo rax
C hi rdx
C rsp
C INPUT PARAMETERS
define(`rp', `%rdi')
define(`up', `%rsi')
define(`n_param', `%rdx')
define(`n', `%r11')
define(`tp', `%r12')
define(`i', `%r8')
define(`j', `%r9')
define(`v0', `%r13')
define(`v1', `%r14')
define(`w0', `%rbx')
define(`w1', `%rcx')
define(`w2', `%rbp')
define(`w3', `%r10')
ABI_SUPPORT(DOS64)
ABI_SUPPORT(STD64)
ASM_START()
TEXT
ALIGN(16)
PROLOGUE(mpn_sqr_basecase)
FUNC_ENTRY(3)
mov R32(n_param), R32(%rcx)
mov R32(n_param), R32(n) C free original n register (rdx)
add $-40, %rsp
and $3, R32(%rcx)
cmp $4, R32(n_param)
lea 4(%rcx), %r8
mov %rbx, 32(%rsp)
mov %rbp, 24(%rsp)
mov %r12, 16(%rsp)
mov %r13, 8(%rsp)
mov %r14, (%rsp)
cmovg %r8, %rcx
lea L(tab)(%rip), %rax
ifdef(`PIC',
` movslq (%rax,%rcx,4), %r10
add %r10, %rax
jmp *%rax
',`
jmp *(%rax,%rcx,8)
')
JUMPTABSECT
ALIGN(8)
L(tab): JMPENT( L(4), L(tab))
JMPENT( L(1), L(tab))
JMPENT( L(2), L(tab))
JMPENT( L(3), L(tab))
JMPENT( L(0m4), L(tab))
JMPENT( L(1m4), L(tab))
JMPENT( L(2m4), L(tab))
JMPENT( L(3m4), L(tab))
TEXT
L(1): mov (up), %rax
mul %rax
add $40, %rsp
mov %rax, (rp)
mov %rdx, 8(rp)
FUNC_EXIT()
ret
L(2): mov (up), %rax
mov %rax, %r8
mul %rax
mov 8(up), %r11
mov %rax, (rp)
mov %r11, %rax
mov %rdx, %r9
mul %rax
add $40, %rsp
mov %rax, %r10
mov %r11, %rax
mov %rdx, %r11
mul %r8
xor %r8, %r8
add %rax, %r9
adc %rdx, %r10
adc %r8, %r11
add %rax, %r9
mov %r9, 8(rp)
adc %rdx, %r10
mov %r10, 16(rp)
adc %r8, %r11
mov %r11, 24(rp)
FUNC_EXIT()
ret
L(3): mov (up), %rax
mov %rax, %r10
mul %rax
mov 8(up), %r11
mov %rax, (rp)
mov %r11, %rax
mov %rdx, 8(rp)
mul %rax
mov 16(up), %rcx
mov %rax, 16(rp)
mov %rcx, %rax
mov %rdx, 24(rp)
mul %rax
mov %rax, 32(rp)
mov %rdx, 40(rp)
mov %r11, %rax
mul %r10
mov %rax, %r8
mov %rcx, %rax
mov %rdx, %r9
mul %r10
xor %r10, %r10
add %rax, %r9
mov %r11, %rax
mov %r10, %r11
adc %rdx, %r10
mul %rcx
add $40, %rsp
add %rax, %r10
adc %r11, %rdx
add %r8, %r8
adc %r9, %r9
adc %r10, %r10
adc %rdx, %rdx
adc %r11, %r11
add %r8, 8(rp)
adc %r9, 16(rp)
adc %r10, 24(rp)
adc %rdx, 32(rp)
adc %r11, 40(rp)
FUNC_EXIT()
ret
L(4): mov (up), %rax
mov %rax, %r11
mul %rax
mov 8(up), %rbx
mov %rax, (rp)
mov %rbx, %rax
mov %rdx, 8(rp)
mul %rax
mov %rax, 16(rp)
mov %rdx, 24(rp)
mov 16(up), %rax
mul %rax
mov %rax, 32(rp)
mov %rdx, 40(rp)
mov 24(up), %rax
mul %rax
mov %rax, 48(rp)
mov %rbx, %rax
mov %rdx, 56(rp)
mul %r11
add $32, %rsp
mov %rax, %r8
mov %rdx, %r9
mov 16(up), %rax
mul %r11
xor %r10, %r10
add %rax, %r9
adc %rdx, %r10
mov 24(up), %rax
mul %r11
xor %r11, %r11
add %rax, %r10
adc %rdx, %r11
mov 16(up), %rax
mul %rbx
xor %rcx, %rcx
add %rax, %r10
adc %rdx, %r11
adc $0, %rcx
mov 24(up), %rax
mul %rbx
pop %rbx
add %rax, %r11
adc %rdx, %rcx
mov 16(up), %rdx
mov 24(up), %rax
mul %rdx
add %rax, %rcx
adc $0, %rdx
add %r8, %r8
adc %r9, %r9
adc %r10, %r10
adc %r11, %r11
adc %rcx, %rcx
mov $0, R32(%rax)
adc %rdx, %rdx
adc %rax, %rax
add %r8, 8(rp)
adc %r9, 16(rp)
adc %r10, 24(rp)
adc %r11, 32(rp)
adc %rcx, 40(rp)
adc %rdx, 48(rp)
adc %rax, 56(rp)
FUNC_EXIT()
ret
L(0m4):
lea -16(rp,n,8), tp C point tp in middle of result operand
mov (up), v0
mov 8(up), %rax
lea (up,n,8), up C point up at end of input operand
lea -4(n), i
C Function mpn_mul_1_m3(tp, up - i, i, up[-i - 1])
xor R32(j), R32(j)
sub n, j
mul v0
xor R32(w2), R32(w2)
mov %rax, w0
mov 16(up,j,8), %rax
mov %rdx, w3
jmp L(L3)
ALIGN(16)
L(mul_1_m3_top):
add %rax, w2
mov w3, (tp,j,8)
mov (up,j,8), %rax
adc %rdx, w1
xor R32(w0), R32(w0)
mul v0
xor R32(w3), R32(w3)
mov w2, 8(tp,j,8)
add %rax, w1
adc %rdx, w0
mov 8(up,j,8), %rax
mov w1, 16(tp,j,8)
xor R32(w2), R32(w2)
mul v0
add %rax, w0
mov 16(up,j,8), %rax
adc %rdx, w3
L(L3): xor R32(w1), R32(w1)
mul v0
add %rax, w3
mov 24(up,j,8), %rax
adc %rdx, w2
mov w0, 24(tp,j,8)
mul v0
add $4, j
js L(mul_1_m3_top)
add %rax, w2
mov w3, (tp)
adc %rdx, w1
mov w2, 8(tp)
mov w1, 16(tp)
lea eval(2*8)(tp), tp C tp += 2
lea -8(up), up
jmp L(dowhile)
L(1m4):
lea 8(rp,n,8), tp C point tp in middle of result operand
mov (up), v0 C u0
mov 8(up), %rax C u1
lea 8(up,n,8), up C point up at end of input operand
lea -3(n), i
C Function mpn_mul_2s_m0(tp, up - i, i, up - i - 1)
lea -3(n), j
neg j
mov %rax, v1 C u1
mul v0 C u0 * u1
mov %rdx, w1
xor R32(w2), R32(w2)
mov %rax, 8(rp)
jmp L(m0)
ALIGN(16)
L(mul_2_m0_top):
mul v1
add %rax, w0
adc %rdx, w1
mov -24(up,j,8), %rax
mov $0, R32(w2)
mul v0
add %rax, w0
mov -24(up,j,8), %rax
adc %rdx, w1
adc $0, R32(w2)
mul v1 C v1 * u0
add %rax, w1
mov w0, -24(tp,j,8)
adc %rdx, w2
L(m0): mov -16(up,j,8), %rax C u2, u6 ...
mul v0 C u0 * u2
mov $0, R32(w3)
add %rax, w1
adc %rdx, w2
mov -16(up,j,8), %rax
adc $0, R32(w3)
mov $0, R32(w0)
mov w1, -16(tp,j,8)
mul v1
add %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
mov $0, R32(w1)
mul v0
add %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
adc $0, R32(w0)
mul v1
add %rax, w3
mov w2, -8(tp,j,8)
adc %rdx, w0
L(m2x): mov (up,j,8), %rax
mul v0
add %rax, w3
adc %rdx, w0
adc $0, R32(w1)
add $4, j
mov -32(up,j,8), %rax
mov w3, -32(tp,j,8)
js L(mul_2_m0_top)
mul v1
add %rax, w0
adc %rdx, w1
mov w0, -8(tp)
mov w1, (tp)
lea -16(up), up
lea eval(3*8-24)(tp), tp C tp += 3
jmp L(dowhile_end)
L(2m4):
lea -16(rp,n,8), tp C point tp in middle of result operand
mov (up), v0
mov 8(up), %rax
lea (up,n,8), up C point up at end of input operand
lea -4(n), i
C Function mpn_mul_1_m1(tp, up - (i - 1), i - 1, up[-i])
lea -2(n), j
neg j
mul v0
mov %rax, w2
mov (up,j,8), %rax
mov %rdx, w1
jmp L(L1)
ALIGN(16)
L(mul_1_m1_top):
add %rax, w2
mov w3, (tp,j,8)
mov (up,j,8), %rax
adc %rdx, w1
L(L1): xor R32(w0), R32(w0)
mul v0
xor R32(w3), R32(w3)
mov w2, 8(tp,j,8)
add %rax, w1
adc %rdx, w0
mov 8(up,j,8), %rax
mov w1, 16(tp,j,8)
xor R32(w2), R32(w2)
mul v0
add %rax, w0
mov 16(up,j,8), %rax
adc %rdx, w3
xor R32(w1), R32(w1)
mul v0
add %rax, w3
mov 24(up,j,8), %rax
adc %rdx, w2
mov w0, 24(tp,j,8)
mul v0
add $4, j
js L(mul_1_m1_top)
add %rax, w2
mov w3, (tp)
adc %rdx, w1
mov w2, 8(tp)
mov w1, 16(tp)
lea eval(2*8)(tp), tp C tp += 2
lea -8(up), up
jmp L(dowhile_mid)
L(3m4):
lea 8(rp,n,8), tp C point tp in middle of result operand
mov (up), v0 C u0
mov 8(up), %rax C u1
lea 8(up,n,8), up C point up at end of input operand
lea -5(n), i
C Function mpn_mul_2s_m2(tp, up - i + 1, i - 1, up - i)
lea -1(n), j
neg j
mov %rax, v1 C u1
mul v0 C u0 * u1
mov %rdx, w3
xor R32(w0), R32(w0)
xor R32(w1), R32(w1)
mov %rax, 8(rp)
jmp L(m2)
ALIGN(16)
L(mul_2_m2_top):
mul v1
add %rax, w0
adc %rdx, w1
mov -24(up,j,8), %rax
mov $0, R32(w2)
mul v0
add %rax, w0
mov -24(up,j,8), %rax
adc %rdx, w1
adc $0, R32(w2)
mul v1 C v1 * u0
add %rax, w1
mov w0, -24(tp,j,8)
adc %rdx, w2
mov -16(up,j,8), %rax
mul v0
mov $0, R32(w3)
add %rax, w1
adc %rdx, w2
mov -16(up,j,8), %rax
adc $0, R32(w3)
mov $0, R32(w0)
mov w1, -16(tp,j,8)
mul v1
add %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
mov $0, R32(w1)
mul v0
add %rax, w2
mov -8(up,j,8), %rax
adc %rdx, w3
adc $0, R32(w0)
mul v1
add %rax, w3
mov w2, -8(tp,j,8)
adc %rdx, w0
L(m2): mov (up,j,8), %rax
mul v0
add %rax, w3
adc %rdx, w0
adc $0, R32(w1)
add $4, j
mov -32(up,j,8), %rax
mov w3, -32(tp,j,8)
js L(mul_2_m2_top)
mul v1
add %rax, w0
adc %rdx, w1
mov w0, -8(tp)
mov w1, (tp)
lea -16(up), up
jmp L(dowhile_mid)
L(dowhile):
C Function mpn_addmul_2s_m2(tp, up - (i - 1), i - 1, up - i)
lea 4(i), j
neg j
mov 16(up,j,8), v0
mov 24(up,j,8), v1
mov 24(up,j,8), %rax
mul v0
xor R32(w3), R32(w3)
add %rax, 24(tp,j,8)
adc %rdx, w3
xor R32(w0), R32(w0)
xor R32(w1), R32(w1)
jmp L(am2)
ALIGN(16)
L(addmul_2_m2_top):
add w3, (tp,j,8)
adc %rax, w0
mov 8(up,j,8), %rax
adc %rdx, w1
mov $0, R32(w2)
mul v0
add %rax, w0
mov 8(up,j,8), %rax
adc %rdx, w1
adc $0, R32(w2)
mul v1 C v1 * u0
add w0, 8(tp,j,8)
adc %rax, w1
adc %rdx, w2
mov 16(up,j,8), %rax
mov $0, R32(w3)
mul v0 C v0 * u1
add %rax, w1
mov 16(up,j,8), %rax
adc %rdx, w2
adc $0, R32(w3)
mul v1 C v1 * u1
add w1, 16(tp,j,8)
adc %rax, w2
mov 24(up,j,8), %rax
adc %rdx, w3
mul v0
mov $0, R32(w0)
add %rax, w2
adc %rdx, w3
mov $0, R32(w1)
mov 24(up,j,8), %rax
adc $0, R32(w0)
mul v1
add w2, 24(tp,j,8)
adc %rax, w3
adc %rdx, w0
L(am2): mov 32(up,j,8), %rax
mul v0
add %rax, w3
mov 32(up,j,8), %rax
adc %rdx, w0
adc $0, R32(w1)
mul v1
add $4, j
js L(addmul_2_m2_top)
add w3, (tp)
adc %rax, w0
adc %rdx, w1
mov w0, 8(tp)
mov w1, 16(tp)
lea eval(2*8)(tp), tp C tp += 2
add $-2, R32(i) C i -= 2
L(dowhile_mid):
C Function mpn_addmul_2s_m0(tp, up - (i - 1), i - 1, up - i)
lea 2(i), j
neg j
mov (up,j,8), v0
mov 8(up,j,8), v1
mov 8(up,j,8), %rax
mul v0
xor R32(w1), R32(w1)
add %rax, 8(tp,j,8)
adc %rdx, w1
xor R32(w2), R32(w2)
jmp L(20)
ALIGN(16)
L(addmul_2_m0_top):
add w3, (tp,j,8)
adc %rax, w0
mov 8(up,j,8), %rax
adc %rdx, w1
mov $0, R32(w2)
mul v0
add %rax, w0
mov 8(up,j,8), %rax
adc %rdx, w1
adc $0, R32(w2)
mul v1 C v1 * u0
add w0, 8(tp,j,8)
adc %rax, w1
adc %rdx, w2
L(20): mov 16(up,j,8), %rax
mov $0, R32(w3)
mul v0 C v0 * u1
add %rax, w1
mov 16(up,j,8), %rax
adc %rdx, w2
adc $0, R32(w3)
mul v1 C v1 * u1
add w1, 16(tp,j,8)
adc %rax, w2
mov 24(up,j,8), %rax
adc %rdx, w3
mul v0
mov $0, R32(w0)
add %rax, w2
adc %rdx, w3
mov $0, R32(w1)
mov 24(up,j,8), %rax
adc $0, R32(w0)
mul v1
add w2, 24(tp,j,8)
adc %rax, w3
adc %rdx, w0
mov 32(up,j,8), %rax
mul v0
add %rax, w3
mov 32(up,j,8), %rax
adc %rdx, w0
adc $0, R32(w1)
mul v1
add $4, j
js L(addmul_2_m0_top)
add w3, (tp)
adc %rax, w0
adc %rdx, w1
mov w0, 8(tp)
mov w1, 16(tp)
lea eval(2*8)(tp), tp C tp += 2
L(dowhile_end):
add $-2, R32(i) C i -= 2
jne L(dowhile)
C Function mpn_addmul_2s_2
mov -16(up), v0
mov -8(up), v1
mov -8(up), %rax
mul v0
xor R32(w3), R32(w3)
add %rax, -8(tp)
adc %rdx, w3
xor R32(w0), R32(w0)
xor R32(w1), R32(w1)
mov (up), %rax
mul v0
add %rax, w3
mov (up), %rax
adc %rdx, w0
mul v1
add w3, (tp)
adc %rax, w0
adc %rdx, w1
mov w0, 8(tp)
mov w1, 16(tp)
C Function mpn_sqr_diag_addlsh1
lea -4(n,n), j
mov 8(rp), %r11
lea -8(up), up
lea (rp,j,8), rp
neg j
mov (up,j,4), %rax
mul %rax
test $2, R8(j)
jnz L(odd)
L(evn): add %r11, %r11
sbb R32(%rbx), R32(%rbx) C save CF
add %rdx, %r11
mov %rax, (rp,j,8)
jmp L(d0)
L(odd): add %r11, %r11
sbb R32(%rbp), R32(%rbp) C save CF
add %rdx, %r11
mov %rax, (rp,j,8)
lea -2(j), j
jmp L(d1)
ALIGN(16)
L(top): mov (up,j,4), %rax
mul %rax
add R32(%rbp), R32(%rbp) C restore carry
adc %rax, %r10
adc %rdx, %r11
mov %r10, (rp,j,8)
L(d0): mov %r11, 8(rp,j,8)
mov 16(rp,j,8), %r10
adc %r10, %r10
mov 24(rp,j,8), %r11
adc %r11, %r11
nop
sbb R32(%rbp), R32(%rbp) C save CF
mov 8(up,j,4), %rax
mul %rax
add R32(%rbx), R32(%rbx) C restore carry
adc %rax, %r10
adc %rdx, %r11
mov %r10, 16(rp,j,8)
L(d1): mov %r11, 24(rp,j,8)
mov 32(rp,j,8), %r10
adc %r10, %r10
mov 40(rp,j,8), %r11
adc %r11, %r11
sbb R32(%rbx), R32(%rbx) C save CF
add $4, j
js L(top)
mov (up), %rax
mul %rax
add R32(%rbp), R32(%rbp) C restore carry
adc %rax, %r10
adc %rdx, %r11
mov %r10, (rp)
mov %r11, 8(rp)
mov 16(rp), %r10
adc %r10, %r10
sbb R32(%rbp), R32(%rbp) C save CF
neg R32(%rbp)
mov 8(up), %rax
mul %rax
add R32(%rbx), R32(%rbx) C restore carry
adc %rax, %r10
adc %rbp, %rdx
mov %r10, 16(rp)
mov %rdx, 24(rp)
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
FUNC_EXIT()
ret
EPILOGUE()