Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* mpfr_sqr -- Floating-point square

Copyright 2004-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

#if !defined(MPFR_GENERIC_ABI) && (GMP_NUMB_BITS == 32 || GMP_NUMB_BITS == 64)

/* Special code for prec(a) < GMP_NUMB_BITS and prec(b) <= GMP_NUMB_BITS.
   Note: this function was copied from mpfr_mul_1 in file mul.c, thus any change
   here should be done also in mpfr_mul_1. */
static int
mpfr_sqr_1 (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode, mpfr_prec_t p)
{
  mp_limb_t a0;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mp_limb_t b0 = MPFR_MANT(b)[0];
  mpfr_exp_t ax;
  mpfr_prec_t sh = GMP_NUMB_BITS - p;
  mp_limb_t rb, sb, mask = MPFR_LIMB_MASK(sh);

  /* When prec(b) <= GMP_NUMB_BITS / 2, we could replace umul_ppmm
     by a limb multiplication as follows, but we assume umul_ppmm is as fast
     as a limb multiplication on modern processors:
      a0 = (b0 >> (GMP_NUMB_BITS / 2)) * (b0 >> (GMP_NUMB_BITS / 2));
      sb = 0;
  */
  ax = MPFR_GET_EXP(b) * 2;
  umul_ppmm (a0, sb, b0, b0);
  if (a0 < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
    }
  rb = a0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= (a0 & mask) ^ rb;
  ap[0] = a0 & ~mask;

  MPFR_SIGN(a) = MPFR_SIGN_POS;

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      /* Note: for emin=2*k+1, a >= 0.111...111*2^(emin-1) is not possible,
         i.e., a >= (1 - 2^(-p))*2^(2k), since we need a = b^2 with EXP(b)=k,
         and the largest such b is (1 - 2^(-p))*2^k satisfies
         b^2 < (1 - 2^(-p))*2^(2k).
         For emin=2*k, it is only possible for some values of p: it is not
         possible for p=53, because the largest significand is 6369051672525772
         but its square has only 52 leading ones. For p=24 it is possible,
         with b = 11863283, whose square has 24 leading ones. */
      if ((ax == __gmpfr_emin - 1) && (ap[0] == ~mask) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* For RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either ax < emin - 1
         (b) or ax = emin - 1 and ap[0] = 1000....000 and rb = sb = 0 */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 || (ap[0] == MPFR_LIMB_HIGHBIT && (rb | sb) == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN_POS);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE << sh;
      if (ap[0] == 0)
        {
          ap[0] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN_POS);
    }
}

/* special code for PREC(a) = GMP_NUMB_BITS */
static int
mpfr_sqr_1n (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode)
{
  mp_limb_t a0;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mp_limb_t b0 = MPFR_MANT(b)[0];
  mpfr_exp_t ax;
  mp_limb_t rb, sb;

  ax = MPFR_GET_EXP(b) * 2;
  umul_ppmm (a0, sb, b0, b0);
  if (a0 < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
    }
  rb = sb & MPFR_LIMB_HIGHBIT;
  sb = sb & ~MPFR_LIMB_HIGHBIT;
  ap[0] = a0;

  MPFR_SIGN(a) = MPFR_SIGN_POS;

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      /* As seen in mpfr_mul_1, we cannot have a0 = 111...111 here if there
         was not exponent decrease (ax--) above.
         In the case of an exponent decrease, it is not possible for
         GMP_NUMB_BITS=32 since the largest b0 such that b0^2 < 2^(2*32-1)
         is b0=3037000499, but its square has only 30 leading ones.
         For GMP_NUMB_BITS=64 it is possible: the largest b0 is
         13043817825332782212, and its square has 64 leading ones. */
      if ((ax == __gmpfr_emin - 1) && (ap[0] == ~MPFR_LIMB_HIGHBIT) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* For RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either ax < emin - 1
         (b) or ax = emin - 1 and ap[0] = 1000....000 and rb = sb = 0 */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 || (ap[0] == MPFR_LIMB_HIGHBIT && (rb | sb) == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & MPFR_LIMB_ONE) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN_POS);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE;
      if (ap[0] == 0)
        {
          ap[0] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN_POS);
    }
}

/* Special code for GMP_NUMB_BITS < prec(a) < 2*GMP_NUMB_BITS and
   GMP_NUMB_BITS < prec(b) <= 2*GMP_NUMB_BITS.
   Note: this function was copied and optimized from mpfr_mul_2 in file mul.c,
   thus any change here should be done also in mpfr_mul_2, if applicable. */
static int
mpfr_sqr_2 (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode, mpfr_prec_t p)
{
  mp_limb_t h, l, u, v;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mpfr_exp_t ax = 2 * MPFR_GET_EXP(b);
  mpfr_prec_t sh = 2 * GMP_NUMB_BITS - p;
  mp_limb_t rb, sb, sb2, mask = MPFR_LIMB_MASK(sh);
  mp_limb_t *bp = MPFR_MANT(b);

  /* we store the 4-limb product in h=ap[1], l=ap[0], sb=ap[-1], sb2=ap[-2] */
  umul_ppmm (h, l, bp[1], bp[1]);
  umul_ppmm (u, v, bp[1], bp[0]);
  l += u << 1;
  h += (l < (u << 1)) + (u >> (GMP_NUMB_BITS - 1));

  /* now the full square is {h, l, 2*v + high(b0*c0), low(b0*c0)},
     where the lower part contributes to less than 3 ulps to {h, l} */

  /* If h has its most significant bit set and the low sh-1 bits of l are not
     000...000 nor 111...111 nor 111...110, then we can round correctly;
     if h has zero as most significant bit, we have to shift left h and l,
     thus if the low sh-2 bits are not 000...000 nor 111...111 nor 111...110,
     then we can round correctly. To avoid an extra test we consider the latter
     case (if we can round, we can also round in the former case).
     For sh <= 3, we have mask <= 7, thus (mask>>2) <= 1, and the approximation
     cannot be enough. */
  if (MPFR_LIKELY(((l + 2) & (mask >> 2)) > 2))
    sb = sb2 = 1; /* result cannot be exact in that case */
  else
    {
      mp_limb_t carry1, carry2;

      umul_ppmm (sb, sb2, bp[0], bp[0]);
      /* the full product is {h, l, sb + v + w, sb2} */
      ADD_LIMB (sb, v, carry1);
      ADD_LIMB (l, carry1, carry2);
      h += carry2;
      ADD_LIMB (sb, v, carry1);
      ADD_LIMB (l, carry1, carry2);
      h += carry2;
    }
  if (h < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      h = (h << 1) | (l >> (GMP_NUMB_BITS - 1));
      l = (l << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
      /* no need to shift sb2 since we only want to know if it is zero or not */
    }
  ap[1] = h;
  rb = l & (MPFR_LIMB_ONE << (sh - 1));
  sb |= ((l & mask) ^ rb) | sb2;
  ap[0] = l & ~mask;

  MPFR_SIGN(a) = MPFR_SIGN_POS;

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      /* Note: like for mpfr_sqr_2, the case
         0.111...111*2^(emin-1) < a < 2^(emin-1) is not possible when emin is
         odd, since (modulo a shift) this would imply 1-2^(-p) < a = b^2 < 1,
         and this is not possible with 1-2^(-p) <= b < 1.
         For emin even, it is possible for some values of p, for example for
         p=69 with b=417402170410649030795*2^k. */
      if ((ax == __gmpfr_emin - 1) &&
          (ap[1] == MPFR_LIMB_MAX) &&
          (ap[0] == ~mask) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* for RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 ||
           (ap[1] == MPFR_LIMB_HIGHBIT && ap[0] == 0 && (rb | sb) == 0)))
            rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN_POS);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE << sh;
      ap[1] += (ap[0] == 0);
      if (ap[1] == 0)
        {
          ap[1] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN_POS);
    }
}

/* Special code for 2*GMP_NUMB_BITS < prec(a) < 3*GMP_NUMB_BITS and
   2*GMP_NUMB_BITS < prec(b) <= 3*GMP_NUMB_BITS. */
static int
mpfr_sqr_3 (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode, mpfr_prec_t p)
{
  mp_limb_t a0, a1, a2, h, l;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mpfr_exp_t ax = 2 * MPFR_GET_EXP(b);
  mpfr_prec_t sh = 3 * GMP_NUMB_BITS - p;
  mp_limb_t rb, sb, sb2, mask = MPFR_LIMB_MASK(sh);
  mp_limb_t *bp = MPFR_MANT(b);

  /* we store the upper 3-limb product in a2, a1, a0:
     b2^2, 2*b2*b1, 2*b2*b0+b1^2 */

  /* first compute b2*b1 and b2*b0, which will be shifted by 1 */
  umul_ppmm (a1, a0, bp[2], bp[1]);
  umul_ppmm (h, l, bp[2], bp[0]);
  a0 += h;
  a1 += (a0 < h);
  /* now a1, a0 contains b2*b1 + floor(b2*b0/B): there can be no overflow
     since b2*b1*B + b2*b0 <= b2*(b1*B+b0) <= b2*(B^2-1) < B^3 */

  /* multiply a2, a1, a0 by 2 */
  a2 = a1 >> (GMP_NUMB_BITS - 1);
  a1 = (a1 << 1) | (a0 >> (GMP_NUMB_BITS - 1));
  a0 = (a0 << 1);

  /* add b2^2 */
  umul_ppmm (h, l, bp[2], bp[2]);
  a1 += l;
  a2 += h + (a1 < l);

  /* add b1^2 */
  umul_ppmm (h, l, bp[1], bp[1]);
  a0 += h;
  a1 += (a0 < h);
  a2 += (a1 == 0 && a0 < h);

  /* Now the approximate product {a2, a1, a0} has an error of less than
     5 ulps (3 ulps for the ignored low limbs of 2*b2*b0+b1^2,
     plus 2 ulps for the ignored 2*b1*b0 (plus b0^2).
     Since we might shift by 1 bit, we make sure the low sh-2 bits of a0
     are not 0, -1, -2, -3 or -4. */

  if (MPFR_LIKELY(((a0 + 4) & (mask >> 2)) > 4))
    sb = sb2 = 1; /* result cannot be exact in that case */
  else
    {
      mp_limb_t p[6];
      mpn_sqr (p, bp, 3);
      a2 = p[5];
      a1 = p[4];
      a0 = p[3];
      sb = p[2];
      sb2 = p[1] | p[0];
    }
  if (a2 < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      a2 = (a2 << 1) | (a1 >> (GMP_NUMB_BITS - 1));
      a1 = (a1 << 1) | (a0 >> (GMP_NUMB_BITS - 1));
      a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
      /* no need to shift sb2: we only need to know if it is zero or not */
    }
  ap[2] = a2;
  ap[1] = a1;
  rb = a0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= ((a0 & mask) ^ rb) | sb2;
  ap[0] = a0 & ~mask;

  MPFR_SIGN(a) = MPFR_SIGN_POS;

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      if ((ax == __gmpfr_emin - 1) &&
          (ap[2] == MPFR_LIMB_MAX) &&
          (ap[1] == MPFR_LIMB_MAX) &&
          (ap[0] == ~mask) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* for RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 ||
           (ap[2] == MPFR_LIMB_HIGHBIT && ap[1] == 0 && ap[0] == 0
            && (rb | sb) == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN_POS);
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE << sh;
      ap[1] += (ap[0] == 0);
      ap[2] += (ap[1] == 0) && (ap[0] == 0);
      if (ap[2] == 0)
        {
          ap[2] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN_POS);
    }
}

#endif /* !defined(MPFR_GENERIC_ABI) && ... */

/* Note: mpfr_sqr will call mpfr_mul if bn > MPFR_SQR_THRESHOLD,
   in order to use Mulders' mulhigh, which is handled only here
   to avoid partial code duplication. There is some overhead due
   to the additional tests, but slowdown should not be noticeable
   as this code is not executed in very small precisions. */

int
mpfr_sqr (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode)
{
  int cc, inexact;
  mpfr_exp_t ax;
  mp_limb_t *tmp;
  mp_limb_t b1;
  mpfr_prec_t aq, bq;
  mp_size_t bn, tn;
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (b), mpfr_log_prec, b, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (a), mpfr_log_prec, a, inexact));

  /* deal with special cases */
  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
    {
      if (MPFR_IS_NAN(b))
        {
          MPFR_SET_NAN(a);
          MPFR_RET_NAN;
        }
      MPFR_SET_POS (a);
      if (MPFR_IS_INF(b))
        MPFR_SET_INF(a);
      else
        ( MPFR_ASSERTD(MPFR_IS_ZERO(b)), MPFR_SET_ZERO(a) );
      MPFR_RET(0);
    }
  aq = MPFR_GET_PREC(a);
  bq = MPFR_GET_PREC(b);

#if !defined(MPFR_GENERIC_ABI) && (GMP_NUMB_BITS == 32 || GMP_NUMB_BITS == 64)
  if (aq < GMP_NUMB_BITS && bq <= GMP_NUMB_BITS)
    return mpfr_sqr_1 (a, b, rnd_mode, aq);

  if (GMP_NUMB_BITS < aq && aq < 2 * GMP_NUMB_BITS
      && GMP_NUMB_BITS < bq && bq <= 2 * GMP_NUMB_BITS)
    return mpfr_sqr_2 (a, b, rnd_mode, aq);

  if (aq == GMP_NUMB_BITS && bq <= GMP_NUMB_BITS)
    return mpfr_sqr_1n (a, b, rnd_mode);

  if (2 * GMP_NUMB_BITS < aq && aq < 3 * GMP_NUMB_BITS
      && 2 * GMP_NUMB_BITS < bq && bq <= 3 * GMP_NUMB_BITS)
    return mpfr_sqr_3 (a, b, rnd_mode, aq);
#endif

  ax = 2 * MPFR_GET_EXP (b);
  MPFR_ASSERTN (2 * (mpfr_uprec_t) bq <= MPFR_PREC_MAX);

  bn = MPFR_LIMB_SIZE (b); /* number of limbs of b */
  tn = MPFR_PREC2LIMBS (2 * bq); /* number of limbs of square,
                                    2*bn or 2*bn-1 */

  if (MPFR_UNLIKELY(bn > MPFR_SQR_THRESHOLD))
    return mpfr_mul (a, b, b, rnd_mode);

  MPFR_TMP_MARK(marker);
  tmp = MPFR_TMP_LIMBS_ALLOC (2 * bn);

  /* Multiplies the mantissa in temporary allocated space */
  mpn_sqr (tmp, MPFR_MANT(b), bn);
  b1 = tmp[2 * bn - 1];

  /* now tmp[0]..tmp[2*bn-1] contains the product of both mantissa,
     with tmp[2*bn-1]>=2^(GMP_NUMB_BITS-2) */
  b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */

  /* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
     then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
     and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
  tmp += 2 * bn - tn; /* +0 or +1 */
  if (MPFR_UNLIKELY(b1 == 0))
    mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */

  cc = mpfr_round_raw (MPFR_MANT (a), tmp, 2 * bq, 0, aq, rnd_mode, &inexact);
  /* cc = 1 ==> result is a power of two */
  if (MPFR_UNLIKELY(cc))
    MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;

  MPFR_TMP_FREE(marker);
  {
    mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
    if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
      return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
    if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
      {
        /* In the rounding to the nearest mode, if the exponent of the exact
           result (i.e. before rounding, i.e. without taking cc into account)
           is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
           both arguments are powers of 2), then round to zero. */
        if (rnd_mode == MPFR_RNDN &&
            (ax + (mpfr_exp_t) b1 < __gmpfr_emin || mpfr_powerof2_raw (b)))
          rnd_mode = MPFR_RNDZ;
        return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
      }
    MPFR_SET_EXP (a, ax2);
    MPFR_SET_POS (a);
  }
  MPFR_RET (inexact);
}