/* $NetBSD: compat_ldexp_ieee754.c,v 1.7.16.1 2020/05/25 15:26:05 martin Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: compat_ldexp_ieee754.c,v 1.7.16.1 2020/05/25 15:26:05 martin Exp $");
#endif /* LIBC_SCCS and not lint */
#include <sys/types.h>
#include <machine/ieee.h>
#include <errno.h>
#include <float.h>
#include <math.h>
static volatile const double tiny = DBL_MIN, huge = DBL_MAX;
static double
underflow(double val)
{
errno = ERANGE;
return (val < 0 ? -tiny*tiny : tiny*tiny);
}
static double
overflow(double val)
{
errno = ERANGE;
return (val < 0 ? -huge*huge : huge*huge);
}
/*
* Multiply the given value by 2^expon.
*/
double
ldexp(double val, int expon)
{
int oldexp, newexp;
union ieee_double_u u, mul;
u.dblu_d = val;
oldexp = u.dblu_dbl.dbl_exp;
/*
* If input is zero, Inf or NaN, just return it, but raise
* invalid exception if it is a signalling NaN: adding any of
* these inputs to itself gives itself as output; arithmetic on
* a signalling NaN additionally raises invalid-operation.
*/
if (u.dblu_d == 0.0 || oldexp == DBL_EXP_INFNAN)
return (val + val);
if (oldexp == 0) {
/*
* u.v is denormal. We must adjust it so that the exponent
* arithmetic below will work.
*/
if (expon <= DBL_EXP_BIAS) {
/*
* Optimization: if the scaling can be done in a single
* multiply, or underflows, just do it now.
*/
if (expon <= -DBL_FRACBITS)
return underflow(val);
mul.dblu_d = 0.0;
mul.dblu_dbl.dbl_exp = expon + DBL_EXP_BIAS;
u.dblu_d *= mul.dblu_d;
if (u.dblu_d == 0.0)
return underflow(val);
return (u.dblu_d);
} else {
/*
* We know that expon is very large, and therefore the
* result cannot be denormal (though it may be Inf).
* Shift u.v by just enough to make it normal.
*/
mul.dblu_d = 0.0;
mul.dblu_dbl.dbl_exp = DBL_FRACBITS + DBL_EXP_BIAS;
u.dblu_d *= mul.dblu_d;
expon -= DBL_FRACBITS;
oldexp = u.dblu_dbl.dbl_exp;
}
}
/*
* u.v is now normalized and oldexp has been adjusted if necessary.
* Calculate the new exponent and check for underflow and overflow.
*/
newexp = oldexp + expon;
if (newexp >= DBL_EXP_INFNAN ||
(oldexp >= 0 && expon >= DBL_EXP_INFNAN)) {
/*
* The result overflowed; return +/-Inf.
*/
return overflow(val);
} else if (newexp <= 0) {
/*
* The output number is either denormal or underflows (see
* comments in machine/ieee.h).
*/
if (newexp <= -DBL_FRACBITS)
return underflow(val);
/*
* Denormalize the result. We do this with a multiply. If
* expon is very large, it won't fit in a double, so we have
* to adjust the exponent first. This is safe because we know
* that u.v is normal at this point.
*/
if (expon <= -DBL_EXP_BIAS) {
u.dblu_dbl.dbl_exp = 1;
expon += oldexp - 1;
}
mul.dblu_d = 0.0;
mul.dblu_dbl.dbl_exp = expon + DBL_EXP_BIAS;
u.dblu_d *= mul.dblu_d;
return (u.dblu_d);
} else {
/*
* The result is normal; just replace the old exponent with the
* new one.
*/
u.dblu_dbl.dbl_exp = newexp;
return (u.dblu_d);
}
}