/*-
* Copyright (c) 2007 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#if 0
__FBSDID("$FreeBSD: head/lib/msun/src/e_sqrtl.c 176720 2008-03-02 01:47:58Z das $");
#endif
__RCSID("$NetBSD: e_sqrtl.c,v 1.6 2017/05/06 18:02:52 christos Exp $");
#include "namespace.h"
#include <machine/ieee.h>
#include <float.h>
#include "math.h"
#include "math_private.h"
#ifdef __HAVE_LONG_DOUBLE
#define __TEST_FENV
#include <fenv.h>
#ifdef LDBL_IMPLICIT_NBIT
#define LDBL_NBIT 0
#endif
#ifdef __HAVE_FENV
/* Return (x + ulp) for normal positive x. Assumes no overflow. */
static inline long double
inc(long double x)
{
union ieee_ext_u ux = { .extu_ld = x, };
if (++ux.extu_fracl == 0) {
if (++ux.extu_frach == 0) {
ux.extu_exp++;
ux.extu_frach |= LDBL_NBIT;
}
}
return (ux.extu_ld);
}
/* Return (x - ulp) for normal positive x. Assumes no underflow. */
static inline long double
dec(long double x)
{
union ieee_ext_u ux = { .extu_ld = x, };
if (ux.extu_fracl-- == 0) {
if (ux.extu_frach-- == LDBL_NBIT) {
ux.extu_exp--;
ux.extu_frach |= LDBL_NBIT;
}
}
return (ux.extu_ld);
}
/*
* This is slow, but simple and portable. You should use hardware sqrt
* if possible.
*/
long double
__ieee754_sqrtl(long double x)
{
union ieee_ext_u ux = { .extu_ld = x, };
int k, r;
long double lo, xn;
fenv_t env;
/* If x = NaN, then sqrt(x) = NaN. */
/* If x = Inf, then sqrt(x) = Inf. */
/* If x = -Inf, then sqrt(x) = NaN. */
if (ux.extu_exp == LDBL_MAX_EXP * 2 - 1)
return (x * x + x);
/* If x = +-0, then sqrt(x) = +-0. */
if ((ux.extu_frach | ux.extu_fracl | ux.extu_exp) == 0)
return (x);
/* If x < 0, then raise invalid and return NaN */
if (ux.extu_sign)
return ((x - x) / (x - x));
feholdexcept(&env);
if (ux.extu_exp == 0) {
/* Adjust subnormal numbers. */
ux.extu_ld *= 0x1.0p514;
k = -514;
} else {
k = 0;
}
/*
* ux.extu_ld is a normal number, so break it into ux.extu_ld = e*2^n where
* ux.extu_ld = (2*e)*2^2k for odd n and ux.extu_ld = (4*e)*2^2k for even n.
*/
if ((ux.extu_exp - EXT_EXP_BIAS) & 1) { /* n is even. */
k += ux.extu_exp - EXT_EXP_BIAS - 1; /* 2k = n - 2. */
ux.extu_exp = EXT_EXP_BIAS + 1; /* ux.extu_ld in [2,4). */
} else {
k += ux.extu_exp - EXT_EXP_BIAS; /* 2k = n - 1. */
ux.extu_exp = EXT_EXP_BIAS; /* ux.extu_ld in [1,2). */
}
/*
* Newton's iteration.
* Split ux.extu_ld into a high and low part to achieve additional precision.
*/
xn = sqrt(ux.extu_ld); /* 53-bit estimate of sqrtl(x). */
#if LDBL_MANT_DIG > 100
xn = (xn + (ux.extu_ld / xn)) * 0.5; /* 106-bit estimate. */
#endif
lo = ux.extu_ld;
ux.extu_fracl = 0; /* Zero out lower bits. */
lo = (lo - ux.extu_ld) / xn; /* Low bits divided by xn. */
xn = xn + (ux.extu_ld / xn); /* High portion of estimate. */
ux.extu_ld = xn + lo; /* Combine everything. */
ux.extu_exp += (k >> 1) - 1;
feclearexcept(FE_INEXACT);
r = fegetround();
fesetround(FE_TOWARDZERO); /* Set to round-toward-zero. */
xn = x / ux.extu_ld; /* Chopped quotient (inexact?). */
if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
if (xn == ux.extu_ld) {
fesetenv(&env);
return (ux.extu_ld);
}
/* Round correctly for inputs like x = y**2 - ulp. */
xn = dec(xn); /* xn = xn - ulp. */
}
if (r == FE_TONEAREST) {
xn = inc(xn); /* xn = xn + ulp. */
} else if (r == FE_UPWARD) {
ux.extu_ld = inc(ux.extu_ld); /* ux.extu_ld = ux.extu_ld + ulp. */
xn = inc(xn); /* xn = xn + ulp. */
}
ux.extu_ld = ux.extu_ld + xn; /* Chopped sum. */
feupdateenv(&env); /* Restore env and raise inexact */
ux.extu_exp--;
return (ux.extu_ld);
}
#else /* !__HAVE_FENV */
/*
* No fenv support:
* poor man's version: just use double
*/
long double
__ieee754_sqrtl(long double x)
{
return __ieee754_sqrt((double)x);
}
#endif /* __HAVE_FENV */
#endif /* __HAVE_LONG_DOUBLE */