/* $NetBSD: pmap.h,v 1.156.4.1 2020/02/27 19:06:23 martin Exp $ */
/*
* Copyright (c) 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994,1995 Mark Brinicombe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _ARM32_PMAP_H_
#define _ARM32_PMAP_H_
#ifdef _KERNEL
#include <arm/cpuconf.h>
#include <arm/arm32/pte.h>
#ifndef _LOCORE
#if defined(_KERNEL_OPT)
#include "opt_arm32_pmap.h"
#include "opt_multiprocessor.h"
#endif
#include <arm/cpufunc.h>
#include <arm/locore.h>
#include <uvm/uvm_object.h>
#include <uvm/pmap/pmap_pvt.h>
#endif
#ifdef ARM_MMU_EXTENDED
#define PMAP_HWPAGEWALKER 1
#define PMAP_TLB_MAX 1
#if PMAP_TLB_MAX > 1
#define PMAP_TLB_NEED_SHOOTDOWN 1
#endif
#define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p)
#define PMAP_TLB_NUM_PIDS 256
#define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti)))
#if PMAP_TLB_MAX > 1
#define cpu_tlb_info(ci) ((ci)->ci_tlb_info)
#else
#define cpu_tlb_info(ci) (&pmap_tlb0_info)
#endif
#define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1)
#include <uvm/pmap/tlb.h>
#include <uvm/pmap/pmap_tlb.h>
/*
* If we have an EXTENDED MMU and the address space is split evenly between
* user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
* user and kernel address spaces.
*/
#if (KERNEL_BASE & 0x80000000) == 0
#error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
#endif
#endif /* ARM_MMU_EXTENDED */
/*
* a pmap describes a processes' 4GB virtual address space. this
* virtual address space can be broken up into 4096 1MB regions which
* are described by L1 PTEs in the L1 table.
*
* There is a line drawn at KERNEL_BASE. Everything below that line
* changes when the VM context is switched. Everything above that line
* is the same no matter which VM context is running. This is achieved
* by making the L1 PTEs for those slots above KERNEL_BASE reference
* kernel L2 tables.
*
* The basic layout of the virtual address space thus looks like this:
*
* 0xffffffff
* .
* .
* .
* KERNEL_BASE
* --------------------
* .
* .
* .
* 0x00000000
*/
/*
* The number of L2 descriptor tables which can be tracked by an l2_dtable.
* A bucket size of 16 provides for 16MB of contiguous virtual address
* space per l2_dtable. Most processes will, therefore, require only two or
* three of these to map their whole working set.
*/
#define L2_BUCKET_XLOG2 (L1_S_SHIFT)
#define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2)
#define L2_BUCKET_LOG2 4
#define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
/*
* Given the above "L2-descriptors-per-l2_dtable" constant, the number
* of l2_dtable structures required to track all possible page descriptors
* mappable by an L1 translation table is given by the following constants:
*/
#define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
#define L2_SIZE (1 << L2_LOG2)
/*
* tell MI code that the cache is virtually-indexed.
* ARMv6 is physically-tagged but all others are virtually-tagged.
*/
#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
#define PMAP_CACHE_VIPT
#else
#define PMAP_CACHE_VIVT
#endif
#ifndef _LOCORE
#ifndef ARM_MMU_EXTENDED
struct l1_ttable;
struct l2_dtable;
/*
* Track cache/tlb occupancy using the following structure
*/
union pmap_cache_state {
struct {
union {
uint8_t csu_cache_b[2];
uint16_t csu_cache;
} cs_cache_u;
union {
uint8_t csu_tlb_b[2];
uint16_t csu_tlb;
} cs_tlb_u;
} cs_s;
uint32_t cs_all;
};
#define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
#define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
#define cs_cache cs_s.cs_cache_u.csu_cache
#define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
#define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
#define cs_tlb cs_s.cs_tlb_u.csu_tlb
/*
* Assigned to cs_all to force cacheops to work for a particular pmap
*/
#define PMAP_CACHE_STATE_ALL 0xffffffffu
#endif /* !ARM_MMU_EXTENDED */
/*
* This structure is used by machine-dependent code to describe
* static mappings of devices, created at bootstrap time.
*/
struct pmap_devmap {
vaddr_t pd_va; /* virtual address */
paddr_t pd_pa; /* physical address */
psize_t pd_size; /* size of region */
vm_prot_t pd_prot; /* protection code */
int pd_cache; /* cache attributes */
};
#define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET)
#define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE)
#define DEVMAP_ENTRY(va, pa, sz) \
{ \
.pd_va = DEVMAP_ALIGN(va), \
.pd_pa = DEVMAP_ALIGN(pa), \
.pd_size = DEVMAP_SIZE(sz), \
.pd_prot = VM_PROT_READ|VM_PROT_WRITE, \
.pd_cache = PTE_DEV \
}
#define DEVMAP_ENTRY_END { 0 }
/*
* The pmap structure itself
*/
struct pmap {
struct uvm_object pm_obj;
kmutex_t pm_obj_lock;
#define pm_lock pm_obj.vmobjlock
#ifndef ARM_HAS_VBAR
pd_entry_t *pm_pl1vec;
pd_entry_t pm_l1vec;
#endif
struct l2_dtable *pm_l2[L2_SIZE];
struct pmap_statistics pm_stats;
LIST_ENTRY(pmap) pm_list;
#ifdef ARM_MMU_EXTENDED
pd_entry_t *pm_l1;
paddr_t pm_l1_pa;
bool pm_remove_all;
#ifdef MULTIPROCESSOR
kcpuset_t *pm_onproc;
kcpuset_t *pm_active;
#if PMAP_TLB_MAX > 1
u_int pm_shootdown_pending;
#endif
#endif
struct pmap_asid_info pm_pai[PMAP_TLB_MAX];
#else
struct l1_ttable *pm_l1;
union pmap_cache_state pm_cstate;
uint8_t pm_domain;
bool pm_activated;
bool pm_remove_all;
#endif
};
struct pmap_kernel {
struct pmap kernel_pmap;
};
/*
* Physical / virtual address structure. In a number of places (particularly
* during bootstrapping) we need to keep track of the physical and virtual
* addresses of various pages
*/
typedef struct pv_addr {
SLIST_ENTRY(pv_addr) pv_list;
paddr_t pv_pa;
vaddr_t pv_va;
vsize_t pv_size;
uint8_t pv_cache;
uint8_t pv_prot;
} pv_addr_t;
typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
extern pv_addrqh_t pmap_freeq;
extern pv_addr_t kernelstack;
extern pv_addr_t abtstack;
extern pv_addr_t fiqstack;
extern pv_addr_t irqstack;
extern pv_addr_t undstack;
extern pv_addr_t idlestack;
extern pv_addr_t systempage;
extern pv_addr_t kernel_l1pt;
#ifdef ARM_MMU_EXTENDED
extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */
#endif
/*
* Determine various modes for PTEs (user vs. kernel, cacheable
* vs. non-cacheable).
*/
#define PTE_KERNEL 0
#define PTE_USER 1
#define PTE_NOCACHE 0
#define PTE_CACHE 1
#define PTE_PAGETABLE 2
#define PTE_DEV 3
/*
* Flags that indicate attributes of pages or mappings of pages.
*
* The PVF_MOD and PVF_REF flags are stored in the mdpage for each
* page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
* pv_entry's for each page. They live in the same "namespace" so
* that we can clear multiple attributes at a time.
*
* Note the "non-cacheable" flag generally means the page has
* multiple mappings in a given address space.
*/
#define PVF_MOD 0x01 /* page is modified */
#define PVF_REF 0x02 /* page is referenced */
#define PVF_WIRED 0x04 /* mapping is wired */
#define PVF_WRITE 0x08 /* mapping is writable */
#define PVF_EXEC 0x10 /* mapping is executable */
#ifdef PMAP_CACHE_VIVT
#define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
#define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
#define PVF_NC (PVF_UNC|PVF_KNC)
#endif
#ifdef PMAP_CACHE_VIPT
#define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
#define PVF_MULTCLR 0x40 /* mapping is multi-colored */
#endif
#define PVF_COLORED 0x80 /* page has or had a color */
#define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
#define PVF_KMPAGE 0x0200 /* page is used for kmem */
#define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
#define PVF_KMOD 0x0800 /* unmanaged page is modified */
#define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
#define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
/*
* Commonly referenced structures
*/
extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */
extern int arm_poolpage_vmfreelist;
/*
* Macros that we need to export
*/
#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
#define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
#define pmap_is_modified(pg) \
(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
#define pmap_is_referenced(pg) \
(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
#define pmap_is_page_colored_p(md) \
(((md)->pvh_attrs & PVF_COLORED) != 0)
#define pmap_copy(dp, sp, da, l, sa) /* nothing */
#define pmap_phys_address(ppn) (arm_ptob((ppn)))
u_int arm32_mmap_flags(paddr_t);
#define ARM32_MMAP_WRITECOMBINE 0x40000000
#define ARM32_MMAP_CACHEABLE 0x20000000
#define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE
#define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE
#define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn)
#define PMAP_PTE 0x10000000 /* kenter_pa */
#define PMAP_DEV 0x20000000 /* kenter_pa */
#define PMAP_DEV_SO 0x40000000 /* kenter_pa */
#define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO)
/*
* Functions that we need to export
*/
void pmap_procwr(struct proc *, vaddr_t, int);
void pmap_remove_all(pmap_t);
bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
#define PMAP_NEED_PROCWR
#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
#define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
#define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
void pmap_prefer(vaddr_t, vaddr_t *, int);
#endif
void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
/* Functions we use internally. */
#ifdef PMAP_STEAL_MEMORY
void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
void pmap_boot_pageadd(pv_addr_t *);
vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
#endif
void pmap_bootstrap(vaddr_t, vaddr_t);
void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
int pmap_prefetchabt_fixup(void *);
bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *);
void pmap_debug(int);
void pmap_postinit(void);
void vector_page_setprot(int);
const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
/* Bootstrapping routines. */
void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t);
void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
void pmap_devmap_register(const struct pmap_devmap *);
/*
* Special page zero routine for use by the idle loop (no cache cleans).
*/
bool pmap_pageidlezero(paddr_t);
#define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
/*
* For the pmap, this is a more useful way to map a direct mapped page.
* It returns either the direct-mapped VA or the VA supplied if it can't
* be direct mapped.
*/
vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
#endif
/*
* used by dumpsys to record the PA of the L1 table
*/
uint32_t pmap_kernel_L1_addr(void);
/*
* The current top of kernel VM
*/
extern vaddr_t pmap_curmaxkvaddr;
#if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
/*
* Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
*/
extern vaddr_t pmap_directlimit;
#endif
/*
* Useful macros and constants
*/
/* Virtual address to page table entry */
static inline pt_entry_t *
vtopte(vaddr_t va)
{
pd_entry_t *pdep;
pt_entry_t *ptep;
KASSERT(trunc_page(va) == va);
if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
return (NULL);
return (ptep);
}
/*
* Virtual address to physical address
*/
static inline paddr_t
vtophys(vaddr_t va)
{
paddr_t pa;
if (pmap_extract(pmap_kernel(), va, &pa) == false)
return (0); /* XXXSCW: Panic? */
return (pa);
}
/*
* The new pmap ensures that page-tables are always mapping Write-Thru.
* Thus, on some platforms we can run fast and loose and avoid syncing PTEs
* on every change.
*
* Unfortunately, not all CPUs have a write-through cache mode. So we
* define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
* and if there is the chance for PTE syncs to be needed, we define
* PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
* the code.
*/
extern int pmap_needs_pte_sync;
#if defined(_KERNEL_OPT)
/*
* Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
* single MMU type is selected.
*
* StrongARM SA-1 caches do not have a write-through mode. So, on these,
* we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
* Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
*
* Use run time evaluation for all other cases.
*
*/
#if (ARM_NMMUS == 1)
#if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
#define PMAP_INCLUDE_PTE_SYNC
#define PMAP_NEEDS_PTE_SYNC 1
#elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
#define PMAP_NEEDS_PTE_SYNC 0
#endif
#endif
#endif /* _KERNEL_OPT */
/*
* Provide a fallback in case we were not able to determine it at
* compile-time.
*/
#ifndef PMAP_NEEDS_PTE_SYNC
#define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
#define PMAP_INCLUDE_PTE_SYNC
#endif
static inline void
pmap_ptesync(pt_entry_t *ptep, size_t cnt)
{
if (PMAP_NEEDS_PTE_SYNC) {
cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
#ifdef SHEEVA_L2_CACHE
cpu_sdcache_wb_range((vaddr_t)ptep, -1,
cnt * sizeof(pt_entry_t));
#endif
}
arm_dsb();
}
#define PDE_SYNC(pdep) pmap_ptesync((pdep), 1)
#define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt))
#define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
#define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt))
#define l1pte_valid_p(pde) ((pde) != 0)
#define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
#define l1pte_supersection_p(pde) (l1pte_section_p(pde) \
&& ((pde) & L1_S_V6_SUPER) != 0)
#define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
#define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
#define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK)
#define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT)
#define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \
& ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
static inline void
l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
{
*pdep = pde;
}
static inline void
l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
{
*pdep = pde;
if (l1pte_page_p(pde)) {
KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
pde += L2_T_SIZE;
pdep[k] = pde;
}
} else if (l1pte_supersection_p(pde)) {
KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
pdep[k] = pde;
}
}
}
#define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
#define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
#define l2pte_pa(pte) ((pte) & L2_S_FRAME)
#define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L)
#define l2pte_minidata_p(pte) (((pte) & \
(L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
== (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
static inline void
l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
{
if (l1pte_lpage_p(pte)) {
KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
*ptep++ = pte;
}
} else {
KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
*ptep++ = pte;
pte += L2_S_SIZE;
if (opte)
opte += L2_S_SIZE;
}
}
}
static inline void
l2pte_reset(pt_entry_t *ptep)
{
KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
*ptep = 0;
for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
ptep[k] = 0;
}
}
/* L1 and L2 page table macros */
#define pmap_pde_v(pde) l1pte_valid(*(pde))
#define pmap_pde_section(pde) l1pte_section_p(*(pde))
#define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde))
#define pmap_pde_page(pde) l1pte_page_p(*(pde))
#define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
#define pmap_pte_v(pte) l2pte_valid_p(*(pte))
#define pmap_pte_pa(pte) l2pte_pa(*(pte))
/* Size of the kernel part of the L1 page table */
#define KERNEL_PD_SIZE \
(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
void bzero_page(vaddr_t);
void bcopy_page(vaddr_t, vaddr_t);
#ifdef FPU_VFP
void bzero_page_vfp(vaddr_t);
void bcopy_page_vfp(vaddr_t, vaddr_t);
#endif
/************************* ARM MMU configuration *****************************/
#if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
void pmap_copy_page_generic(paddr_t, paddr_t);
void pmap_zero_page_generic(paddr_t);
void pmap_pte_init_generic(void);
#if defined(CPU_ARM8)
void pmap_pte_init_arm8(void);
#endif
#if defined(CPU_ARM9)
void pmap_pte_init_arm9(void);
#endif /* CPU_ARM9 */
#if defined(CPU_ARM10)
void pmap_pte_init_arm10(void);
#endif /* CPU_ARM10 */
#if defined(CPU_ARM11) /* ARM_MMU_V6 */
void pmap_pte_init_arm11(void);
#endif /* CPU_ARM11 */
#if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */
void pmap_pte_init_arm11mpcore(void);
#endif
#if ARM_MMU_V6 == 1
void pmap_pte_init_armv6(void);
#endif /* ARM_MMU_V6 */
#if ARM_MMU_V7 == 1
void pmap_pte_init_armv7(void);
#endif /* ARM_MMU_V7 */
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
#if ARM_MMU_SA1 == 1
void pmap_pte_init_sa1(void);
#endif /* ARM_MMU_SA1 == 1 */
#if ARM_MMU_XSCALE == 1
void pmap_copy_page_xscale(paddr_t, paddr_t);
void pmap_zero_page_xscale(paddr_t);
void pmap_pte_init_xscale(void);
void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
#define PMAP_UAREA(va) pmap_uarea(va)
void pmap_uarea(vaddr_t);
#endif /* ARM_MMU_XSCALE == 1 */
extern pt_entry_t pte_l1_s_nocache_mode;
extern pt_entry_t pte_l2_l_nocache_mode;
extern pt_entry_t pte_l2_s_nocache_mode;
extern pt_entry_t pte_l1_s_cache_mode;
extern pt_entry_t pte_l2_l_cache_mode;
extern pt_entry_t pte_l2_s_cache_mode;
extern pt_entry_t pte_l1_s_cache_mode_pt;
extern pt_entry_t pte_l2_l_cache_mode_pt;
extern pt_entry_t pte_l2_s_cache_mode_pt;
extern pt_entry_t pte_l1_s_wc_mode;
extern pt_entry_t pte_l2_l_wc_mode;
extern pt_entry_t pte_l2_s_wc_mode;
extern pt_entry_t pte_l1_s_cache_mask;
extern pt_entry_t pte_l2_l_cache_mask;
extern pt_entry_t pte_l2_s_cache_mask;
extern pt_entry_t pte_l1_s_prot_u;
extern pt_entry_t pte_l1_s_prot_w;
extern pt_entry_t pte_l1_s_prot_ro;
extern pt_entry_t pte_l1_s_prot_mask;
extern pt_entry_t pte_l2_s_prot_u;
extern pt_entry_t pte_l2_s_prot_w;
extern pt_entry_t pte_l2_s_prot_ro;
extern pt_entry_t pte_l2_s_prot_mask;
extern pt_entry_t pte_l2_l_prot_u;
extern pt_entry_t pte_l2_l_prot_w;
extern pt_entry_t pte_l2_l_prot_ro;
extern pt_entry_t pte_l2_l_prot_mask;
extern pt_entry_t pte_l1_ss_proto;
extern pt_entry_t pte_l1_s_proto;
extern pt_entry_t pte_l1_c_proto;
extern pt_entry_t pte_l2_s_proto;
extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
extern void (*pmap_zero_page_func)(paddr_t);
#endif /* !_LOCORE */
/*****************************************************************************/
#define KERNEL_PID 0 /* The kernel uses ASID 0 */
/*
* Definitions for MMU domains
*/
#define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
#define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */
#ifdef ARM_MMU_EXTENDED
#define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */
#define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)))
#else
#define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)))
#endif
/*
* These macros define the various bit masks in the PTE.
*
* We use these macros since we use different bits on different processor
* models.
*/
#define L1_S_PROT_U_generic (L1_S_AP(AP_U))
#define L1_S_PROT_W_generic (L1_S_AP(AP_W))
#define L1_S_PROT_RO_generic (0)
#define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
#define L1_S_PROT_U_xscale (L1_S_AP(AP_U))
#define L1_S_PROT_W_xscale (L1_S_AP(AP_W))
#define L1_S_PROT_RO_xscale (0)
#define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
#define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
#define L1_S_PROT_W_armv6 (L1_S_AP(AP_W))
#define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
#define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
#define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U))
#define L1_S_PROT_W_armv7 (L1_S_AP(AP_W))
#define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO))
#define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
#define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
#define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
#define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
#define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
#define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
#define L2_L_PROT_U_generic (L2_AP(AP_U))
#define L2_L_PROT_W_generic (L2_AP(AP_W))
#define L2_L_PROT_RO_generic (0)
#define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
#define L2_L_PROT_U_xscale (L2_AP(AP_U))
#define L2_L_PROT_W_xscale (L2_AP(AP_W))
#define L2_L_PROT_RO_xscale (0)
#define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
#define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
#define L2_L_PROT_W_armv6n (L2_AP0(AP_W))
#define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
#define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
#define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
#define L2_L_PROT_W_armv7 (L2_AP0(AP_W))
#define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
#define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
#define L2_L_CACHE_MASK_generic (L2_B|L2_C)
#define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
#define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
#define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
#define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
#define L2_S_PROT_U_generic (L2_AP(AP_U))
#define L2_S_PROT_W_generic (L2_AP(AP_W))
#define L2_S_PROT_RO_generic (0)
#define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
#define L2_S_PROT_U_xscale (L2_AP0(AP_U))
#define L2_S_PROT_W_xscale (L2_AP0(AP_W))
#define L2_S_PROT_RO_xscale (0)
#define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
#define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U))
#define L2_S_PROT_W_armv6n (L2_AP0(AP_W))
#define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO))
#define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
#define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U))
#define L2_S_PROT_W_armv7 (L2_AP0(AP_W))
#define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO))
#define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
#define L2_S_CACHE_MASK_generic (L2_B|L2_C)
#define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
#define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
#ifdef ARMV6_EXTENDED_SMALL_PAGE
#define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6
#else
#define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic
#endif
#define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
#define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
#define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
#define L1_S_PROTO_xscale (L1_TYPE_S)
#define L1_S_PROTO_armv6 (L1_TYPE_S)
#define L1_S_PROTO_armv7 (L1_TYPE_S)
#define L1_SS_PROTO_generic 0
#define L1_SS_PROTO_xscale 0
#define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS)
#define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS)
#define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
#define L1_C_PROTO_xscale (L1_TYPE_C)
#define L1_C_PROTO_armv6 (L1_TYPE_C)
#define L1_C_PROTO_armv7 (L1_TYPE_C)
#define L2_L_PROTO (L2_TYPE_L)
#define L2_S_PROTO_generic (L2_TYPE_S)
#define L2_S_PROTO_xscale (L2_TYPE_XS)
#ifdef ARMV6_EXTENDED_SMALL_PAGE
#define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */
#else
#define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */
#endif
#ifdef ARM_MMU_EXTENDED
#define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN)
#else
#define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */
#endif
#ifdef ARM_MMU_EXTENDED
#define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN)
#else
#define L2_S_PROTO_armv7 (L2_TYPE_S)
#endif
/*
* User-visible names for the ones that vary with MMU class.
*/
#if ARM_NMMUS > 1
/* More than one MMU class configured; use variables. */
#define L1_S_PROT_U pte_l1_s_prot_u
#define L1_S_PROT_W pte_l1_s_prot_w
#define L1_S_PROT_RO pte_l1_s_prot_ro
#define L1_S_PROT_MASK pte_l1_s_prot_mask
#define L2_S_PROT_U pte_l2_s_prot_u
#define L2_S_PROT_W pte_l2_s_prot_w
#define L2_S_PROT_RO pte_l2_s_prot_ro
#define L2_S_PROT_MASK pte_l2_s_prot_mask
#define L2_L_PROT_U pte_l2_l_prot_u
#define L2_L_PROT_W pte_l2_l_prot_w
#define L2_L_PROT_RO pte_l2_l_prot_ro
#define L2_L_PROT_MASK pte_l2_l_prot_mask
#define L1_S_CACHE_MASK pte_l1_s_cache_mask
#define L2_L_CACHE_MASK pte_l2_l_cache_mask
#define L2_S_CACHE_MASK pte_l2_s_cache_mask
#define L1_SS_PROTO pte_l1_ss_proto
#define L1_S_PROTO pte_l1_s_proto
#define L1_C_PROTO pte_l1_c_proto
#define L2_S_PROTO pte_l2_s_proto
#define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
#define pmap_zero_page(d) (*pmap_zero_page_func)((d))
#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
#define L1_S_PROT_U L1_S_PROT_U_generic
#define L1_S_PROT_W L1_S_PROT_W_generic
#define L1_S_PROT_RO L1_S_PROT_RO_generic
#define L1_S_PROT_MASK L1_S_PROT_MASK_generic
#define L2_S_PROT_U L2_S_PROT_U_generic
#define L2_S_PROT_W L2_S_PROT_W_generic
#define L2_S_PROT_RO L2_S_PROT_RO_generic
#define L2_S_PROT_MASK L2_S_PROT_MASK_generic
#define L2_L_PROT_U L2_L_PROT_U_generic
#define L2_L_PROT_W L2_L_PROT_W_generic
#define L2_L_PROT_RO L2_L_PROT_RO_generic
#define L2_L_PROT_MASK L2_L_PROT_MASK_generic
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
#define L1_SS_PROTO L1_SS_PROTO_generic
#define L1_S_PROTO L1_S_PROTO_generic
#define L1_C_PROTO L1_C_PROTO_generic
#define L2_S_PROTO L2_S_PROTO_generic
#define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
#define pmap_zero_page(d) pmap_zero_page_generic((d))
#elif ARM_MMU_V6N != 0
#define L1_S_PROT_U L1_S_PROT_U_armv6
#define L1_S_PROT_W L1_S_PROT_W_armv6
#define L1_S_PROT_RO L1_S_PROT_RO_armv6
#define L1_S_PROT_MASK L1_S_PROT_MASK_armv6
#define L2_S_PROT_U L2_S_PROT_U_armv6n
#define L2_S_PROT_W L2_S_PROT_W_armv6n
#define L2_S_PROT_RO L2_S_PROT_RO_armv6n
#define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n
#define L2_L_PROT_U L2_L_PROT_U_armv6n
#define L2_L_PROT_W L2_L_PROT_W_armv6n
#define L2_L_PROT_RO L2_L_PROT_RO_armv6n
#define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n
/*
* These prototypes make writeable mappings, while the other MMU types
* make read-only mappings.
*/
#define L1_SS_PROTO L1_SS_PROTO_armv6
#define L1_S_PROTO L1_S_PROTO_armv6
#define L1_C_PROTO L1_C_PROTO_armv6
#define L2_S_PROTO L2_S_PROTO_armv6n
#define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
#define pmap_zero_page(d) pmap_zero_page_generic((d))
#elif ARM_MMU_V6C != 0
#define L1_S_PROT_U L1_S_PROT_U_generic
#define L1_S_PROT_W L1_S_PROT_W_generic
#define L1_S_PROT_RO L1_S_PROT_RO_generic
#define L1_S_PROT_MASK L1_S_PROT_MASK_generic
#define L2_S_PROT_U L2_S_PROT_U_generic
#define L2_S_PROT_W L2_S_PROT_W_generic
#define L2_S_PROT_RO L2_S_PROT_RO_generic
#define L2_S_PROT_MASK L2_S_PROT_MASK_generic
#define L2_L_PROT_U L2_L_PROT_U_generic
#define L2_L_PROT_W L2_L_PROT_W_generic
#define L2_L_PROT_RO L2_L_PROT_RO_generic
#define L2_L_PROT_MASK L2_L_PROT_MASK_generic
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
#define L1_SS_PROTO L1_SS_PROTO_armv6
#define L1_S_PROTO L1_S_PROTO_generic
#define L1_C_PROTO L1_C_PROTO_generic
#define L2_S_PROTO L2_S_PROTO_generic
#define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
#define pmap_zero_page(d) pmap_zero_page_generic((d))
#elif ARM_MMU_XSCALE == 1
#define L1_S_PROT_U L1_S_PROT_U_generic
#define L1_S_PROT_W L1_S_PROT_W_generic
#define L1_S_PROT_RO L1_S_PROT_RO_generic
#define L1_S_PROT_MASK L1_S_PROT_MASK_generic
#define L2_S_PROT_U L2_S_PROT_U_xscale
#define L2_S_PROT_W L2_S_PROT_W_xscale
#define L2_S_PROT_RO L2_S_PROT_RO_xscale
#define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
#define L2_L_PROT_U L2_L_PROT_U_generic
#define L2_L_PROT_W L2_L_PROT_W_generic
#define L2_L_PROT_RO L2_L_PROT_RO_generic
#define L2_L_PROT_MASK L2_L_PROT_MASK_generic
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
#define L1_SS_PROTO L1_SS_PROTO_xscale
#define L1_S_PROTO L1_S_PROTO_xscale
#define L1_C_PROTO L1_C_PROTO_xscale
#define L2_S_PROTO L2_S_PROTO_xscale
#define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
#define pmap_zero_page(d) pmap_zero_page_xscale((d))
#elif ARM_MMU_V7 == 1
#define L1_S_PROT_U L1_S_PROT_U_armv7
#define L1_S_PROT_W L1_S_PROT_W_armv7
#define L1_S_PROT_RO L1_S_PROT_RO_armv7
#define L1_S_PROT_MASK L1_S_PROT_MASK_armv7
#define L2_S_PROT_U L2_S_PROT_U_armv7
#define L2_S_PROT_W L2_S_PROT_W_armv7
#define L2_S_PROT_RO L2_S_PROT_RO_armv7
#define L2_S_PROT_MASK L2_S_PROT_MASK_armv7
#define L2_L_PROT_U L2_L_PROT_U_armv7
#define L2_L_PROT_W L2_L_PROT_W_armv7
#define L2_L_PROT_RO L2_L_PROT_RO_armv7
#define L2_L_PROT_MASK L2_L_PROT_MASK_armv7
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7
/*
* These prototypes make writeable mappings, while the other MMU types
* make read-only mappings.
*/
#define L1_SS_PROTO L1_SS_PROTO_armv7
#define L1_S_PROTO L1_S_PROTO_armv7
#define L1_C_PROTO L1_C_PROTO_armv7
#define L2_S_PROTO L2_S_PROTO_armv7
#define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
#define pmap_zero_page(d) pmap_zero_page_generic((d))
#endif /* ARM_NMMUS > 1 */
/*
* Macros to set and query the write permission on page descriptors.
*/
#define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
#define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
#define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
#define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
#define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
(L2_S_PROT_RO == 0 || \
((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
/*
* These macros return various bits based on kernel/user and protection.
* Note that the compiler will usually fold these at compile time.
*/
#define L1_S_PROT(ku, pr) ( \
(((ku) == PTE_USER) ? \
L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \
: \
(((L1_S_PROT_RO && \
((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
L1_S_PROT_RO : L1_S_PROT_W))) \
)
#define L2_L_PROT(ku, pr) ( \
(((ku) == PTE_USER) ? \
L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \
: \
(((L2_L_PROT_RO && \
((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
L2_L_PROT_RO : L2_L_PROT_W))) \
)
#define L2_S_PROT(ku, pr) ( \
(((ku) == PTE_USER) ? \
L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \
: \
(((L2_S_PROT_RO && \
((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
L2_S_PROT_RO : L2_S_PROT_W))) \
)
/*
* Macros to test if a mapping is mappable with an L1 SuperSection,
* L1 Section, or an L2 Large Page mapping.
*/
#define L1_SS_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
#define L1_S_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
#define L2_L_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
#define PMAP_MAPSIZE1 L2_L_SIZE
#define PMAP_MAPSIZE2 L1_S_SIZE
#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
#define PMAP_MAPSIZE3 L1_SS_SIZE
#endif
#ifndef _LOCORE
/*
* Hooks for the pool allocator.
*/
#define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
extern paddr_t physical_start, physical_end;
#ifdef PMAP_NEED_ALLOC_POOLPAGE
struct vm_page *arm_pmap_alloc_poolpage(int);
#define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage
#endif
#if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
vaddr_t pmap_map_poolpage(paddr_t);
paddr_t pmap_unmap_poolpage(vaddr_t);
#define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa)
#define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va)
#endif
#define __HAVE_PMAP_PV_TRACK 1
void pmap_pv_protect(paddr_t, vm_prot_t);
struct pmap_page {
SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */
int pvh_attrs; /* page attributes */
u_int uro_mappings;
u_int urw_mappings;
union {
u_short s_mappings[2]; /* Assume kernel count <= 65535 */
u_int i_mappings;
} k_u;
};
/*
* pmap-specific data store in the vm_page structure.
*/
#define __HAVE_VM_PAGE_MD
struct vm_page_md {
struct pmap_page pp;
#define pvh_list pp.pvh_list
#define pvh_attrs pp.pvh_attrs
#define uro_mappings pp.uro_mappings
#define urw_mappings pp.urw_mappings
#define kro_mappings pp.k_u.s_mappings[0]
#define krw_mappings pp.k_u.s_mappings[1]
#define k_mappings pp.k_u.i_mappings
};
#define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
/*
* Set the default color of each page.
*/
#if ARM_MMU_V6 > 0
#define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
(pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
#else
#define VM_MDPAGE_PVH_ATTRS_INIT(pg) \
(pg)->mdpage.pvh_attrs = 0
#endif
#define VM_MDPAGE_INIT(pg) \
do { \
SLIST_INIT(&(pg)->mdpage.pvh_list); \
VM_MDPAGE_PVH_ATTRS_INIT(pg); \
(pg)->mdpage.uro_mappings = 0; \
(pg)->mdpage.urw_mappings = 0; \
(pg)->mdpage.k_mappings = 0; \
} while (/*CONSTCOND*/0)
#endif /* !_LOCORE */
#endif /* _KERNEL */
#endif /* _ARM32_PMAP_H_ */