/* $NetBSD: rk_spi.c,v 1.3.2.2 2019/11/20 16:49:58 martin Exp $ */
/*
* Copyright (c) 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tobias Nygren.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.3.2.2 2019/11/20 16:49:58 martin Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/bitops.h>
#include <dev/spi/spivar.h>
#include <dev/fdt/fdtvar.h>
#include <arm/fdt/arm_fdtvar.h>
#define SPI_CTRLR0 0x00
#define SPI_CTRLR0_MTM __BIT(21)
#define SPI_CTRLR0_OPM __BIT(20)
#define SPI_CTRLR0_XFM __BITS(19, 18)
#define SPI_CTRLR0_FRF __BITS(17, 16)
#define SPI_CTRLR0_RSD __BITS(15, 14)
#define SPI_CTRLR0_BHT __BIT(13)
#define SPI_CTRLR0_FBM __BIT(12)
#define SPI_CTRLR0_EM __BIT(11)
#define SPI_CTRLR0_RW __BIT(10)
#define SPI_CTRLR0_CSM __BITS(9, 8)
#define SPI_CTRLR0_SCPOL __BIT(7)
#define SPI_CTRLR0_SCPH __BIT(6)
#define SPI_CTRLR0_CFS __BITS(5, 2)
#define SPI_CTRLR0_DFS __BITS(1, 0)
#define SPI_CTRLR0_DFS_4BIT 0x0
#define SPI_CTRLR0_DFS_8BIT 0x1
#define SPI_CTRLR0_DFS_16BIT 0x2
#define SPI_CTRLR1 0x04
#define SPI_CTRLR1_NDM __BITS(15, 0)
#define SPI_ENR 0x08
#define SPI_ENR_ENR __BIT(0)
#define SPI_SER 0x0c
#define SPI_SER_SER1 __BIT(1)
#define SPI_SER_SER0 __BIT(0)
#define SPI_BAUDR 0x10
#define SPI_BAUDR_BAUDR __BITS(15, 0)
#define SPI_TXFTLR 0x14
#define SPI_TXFTLR_TXFLTR __BITS(4, 0)
#define SPI_RXFTLR 0x18
#define SPI_RXFLTR_RXFLTR __BITS(4, 0)
#define SPI_TXFLR 0x1c
#define SPI_TXFLR_TXFLR __BITS(5, 0)
#define SPI_RXFLR 0x20
#define SPI_RXFLR_RXFLR __BITS(5, 0)
#define SPI_SR 0x24
#define SPI_SR_RFF __BIT(4)
#define SPI_SR_RFE __BIT(3)
#define SPI_SR_TFE __BIT(2)
#define SPI_SR_TFF __BIT(1)
#define SPI_SR_BSF __BIT(0)
#define SPI_IPR 0x28
#define SPI_IPR_IPR __BIT(0)
#define SPI_IMR 0x2c
#define SPI_IMR_RFFIM __BIT(4)
#define SPI_IMR_RFOIM __BIT(3)
#define SPI_IMR_RFUIM __BIT(2)
#define SPI_IMR_TFOIM __BIT(1)
#define SPI_IMR_TFEIM __BIT(0)
#define SPI_ISR 0x30
#define SPI_ISR_RFFIS __BIT(4)
#define SPI_ISR_RFOIS __BIT(3)
#define SPI_ISR_RFUIS __BIT(2)
#define SPI_ISR_TFOIS __BIT(1)
#define SPI_ISR_TFEIS __BIT(0)
#define SPI_RISR 0x34
#define SPI_RISR_RFFRIS __BIT(4)
#define SPI_RISR_RFORIS __BIT(3)
#define SPI_RISR_RFURIS __BIT(2)
#define SPI_RISR_TFORIS __BIT(1)
#define SPI_RISR_TFERIS __BIT(0)
#define SPI_ICR 0x38
#define SPI_ICR_CTFOI __BIT(3)
#define SPI_ICR_CRFOI __BIT(2)
#define SPI_ICR_CRFUI __BIT(1)
#define SPI_ICR_CCI __BIT(0)
#define SPI_ICR_ALL __BITS(3, 0)
#define SPI_DMACR 0x3c
#define SPI_DMACR_TDE __BIT(1)
#define SPI_DMACR_RDE __BIT(0)
#define SPI_DMATDLR 0x40
#define SPI_DMATDLR_TDL __BITS(4, 0)
#define SPI_DMARDLR 0x44
#define SPI_DMARDLR_RDL __BITS(4, 0)
#define SPI_TXDR 0x400
#define SPI_TXDR_TXDR __BITS(15, 0)
#define SPI_RXDR 0x800
#define SPI_RXDR_RXDR __BITS(15, 0)
#define SPI_FIFOLEN 32
static const char * const compatible[] = {
#if 0 /* should work on RK3328 but untested */
"rockchip,rk3066-spi",
"rockchip,rk3328-spi",
#endif
"rockchip,rk3399-spi",
NULL
};
struct rk_spi_softc {
device_t sc_dev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
void *sc_ih;
u_int sc_spi_freq;
struct spi_controller sc_spi;
SIMPLEQ_HEAD(,spi_transfer) sc_q;
struct spi_transfer *sc_transfer;
struct spi_chunk *sc_rchunk, *sc_wchunk;
volatile bool sc_running;
};
#define SPIREG_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define SPIREG_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
static int rk_spi_match(device_t, cfdata_t, void *);
static void rk_spi_attach(device_t, device_t, void *);
static int rk_spi_configure(void *, int, int, int);
static int rk_spi_transfer(void *, struct spi_transfer *);
static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
static void rk_spi_rxtx(struct rk_spi_softc * const);
static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
static void rk_spi_start(struct rk_spi_softc * const);
static int rk_spi_intr(void *);
CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
rk_spi_match, rk_spi_attach, NULL, NULL);
static int
rk_spi_match(device_t parent, cfdata_t cf, void *aux)
{
struct fdt_attach_args * const faa = aux;
return of_match_compatible(faa->faa_phandle, compatible);
}
static void
rk_spi_attach(device_t parent, device_t self, void *aux)
{
struct rk_spi_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
const int phandle = faa->faa_phandle;
bus_addr_t addr;
bus_size_t size;
struct clk *sclk, *pclk;
char intrstr[128];
struct spibus_attach_args sba;
sc->sc_dev = self;
sc->sc_bst = faa->faa_bst;
SIMPLEQ_INIT(&sc->sc_q);
if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
|| clk_enable(sclk) != 0) {
aprint_error(": couldn't enable sclk\n");
return;
}
if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
|| clk_enable(pclk) != 0) {
aprint_error(": couldn't enable pclk\n");
return;
}
sc->sc_spi_freq = clk_get_rate(sclk);
if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
|| bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
aprint_error(": couldn't map registers\n");
return;
}
SPIREG_WRITE(sc, SPI_ENR, 0);
SPIREG_WRITE(sc, SPI_IMR, 0);
if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error(": failed to decode interrupt\n");
return;
}
sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_VM, 0, rk_spi_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error(": unable to establish interrupt\n");
return;
}
aprint_naive("\n");
aprint_normal(": SPI\n");
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
sc->sc_spi.sct_cookie = sc;
sc->sc_spi.sct_configure = rk_spi_configure;
sc->sc_spi.sct_transfer = rk_spi_transfer;
sc->sc_spi.sct_nslaves = 2;
sba.sba_controller = &sc->sc_spi;
(void) config_found_ia(self, "spibus", &sba, spibus_print);
}
static int
rk_spi_configure(void *cookie, int slave, int mode, int speed)
{
struct rk_spi_softc * const sc = cookie;
uint32_t ctrlr0;
uint16_t divider;
divider = (sc->sc_spi_freq / speed) & ~1;
if (divider < 2)
return EINVAL;
if (slave >= sc->sc_spi.sct_nslaves)
return EINVAL;
ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
switch (mode) {
case SPI_MODE_0:
ctrlr0 |= 0;
break;
case SPI_MODE_1:
ctrlr0 |= SPI_CTRLR0_SCPH;
break;
case SPI_MODE_2:
ctrlr0 |= SPI_CTRLR0_SCPOL;
break;
case SPI_MODE_3:
ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
break;
default:
return EINVAL;
}
SPIREG_WRITE(sc, SPI_ENR, 0);
SPIREG_WRITE(sc, SPI_SER, 0);
SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
SPIREG_WRITE(sc, SPI_BAUDR, divider);
SPIREG_WRITE(sc, SPI_DMACR, 0);
SPIREG_WRITE(sc, SPI_DMATDLR, 0);
SPIREG_WRITE(sc, SPI_DMARDLR, 0);
SPIREG_WRITE(sc, SPI_IPR, 0);
SPIREG_WRITE(sc, SPI_IMR, 0);
SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
SPIREG_WRITE(sc, SPI_ENR, 1);
return 0;
}
static int
rk_spi_transfer(void *cookie, struct spi_transfer *st)
{
struct rk_spi_softc * const sc = cookie;
int s;
s = splbio();
spi_transq_enqueue(&sc->sc_q, st);
if (sc->sc_running == false) {
rk_spi_start(sc);
}
splx(s);
return 0;
}
static void
rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
{
struct spi_chunk *chunk = sc->sc_wchunk;
size_t len;
uint8_t b;
if (chunk == NULL)
return;
len = MIN(maxlen, chunk->chunk_wresid);
chunk->chunk_wresid -= len;
while (len--) {
if (chunk->chunk_wptr) {
b = *chunk->chunk_wptr++;
} else {
b = 0;
}
bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
}
if (sc->sc_wchunk->chunk_wresid == 0) {
sc->sc_wchunk = sc->sc_wchunk->chunk_next;
}
}
static void
rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
{
struct spi_chunk *chunk = sc->sc_rchunk;
size_t len;
uint8_t b;
if (chunk == NULL)
return;
len = MIN(maxlen, chunk->chunk_rresid);
chunk->chunk_rresid -= len;
while (len--) {
b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
if (chunk->chunk_rptr) {
*chunk->chunk_rptr++ = b;
}
}
if (sc->sc_rchunk->chunk_rresid == 0) {
sc->sc_rchunk = sc->sc_rchunk->chunk_next;
}
}
static void
rk_spi_rxtx(struct rk_spi_softc * const sc)
{
bool again;
uint32_t reg;
size_t avail;
/* Service both FIFOs until no more progress can be made. */
again = true;
while (again) {
again = false;
reg = SPIREG_READ(sc, SPI_RXFLR);
avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
if (avail > 0) {
KASSERT(sc->sc_rchunk != NULL);
rk_spi_rxfifo_drain(sc, avail);
again = true;
}
reg = SPIREG_READ(sc, SPI_TXFLR);
avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
if (avail > 0 && sc->sc_wchunk != NULL) {
rk_spi_txfifo_fill(sc, avail);
again = true;
}
}
}
static void
rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
{
uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
int len;
/*
* Delay rx interrupts until the FIFO has the # of bytes we'd
* ideally like to receive, or FIFO is half full.
*/
len = sc->sc_rchunk != NULL
? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
if (len > 0) {
SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
imr |= SPI_IMR_RFFIM;
}
/*
* Delay tx interrupts until the FIFO can accept the # of bytes we'd
* ideally like to transmit, or the FIFO is half empty.
*/
len = sc->sc_wchunk != NULL
? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
if (len > 0) {
SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
imr |= SPI_IMR_TFEIM;
}
/* If xfer is done, then interrupt as soon as the tx fifo is empty. */
if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
SPIREG_WRITE(sc, SPI_TXFTLR, 0);
imr |= SPI_IMR_TFEIM;
}
SPIREG_WRITE(sc, SPI_IMR, imr);
}
static void
rk_spi_start(struct rk_spi_softc * const sc)
{
struct spi_transfer *st;
while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
spi_transq_dequeue(&sc->sc_q);
KASSERT(sc->sc_transfer == NULL);
sc->sc_transfer = st;
sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
sc->sc_running = true;
KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
rk_spi_rxtx(sc);
rk_spi_set_interrupt_mask(sc);
if (!cold)
return;
for (;;) {
(void) rk_spi_intr(sc);
if (ISSET(st->st_flags, SPI_F_DONE))
break;
}
}
sc->sc_running = false;
}
static int
rk_spi_intr(void *cookie)
{
struct rk_spi_softc * const sc = cookie;
struct spi_transfer *st;
uint32_t isr;
uint32_t sr;
uint32_t icr = SPI_ICR_CCI;
isr = SPIREG_READ(sc, SPI_ISR);
if (!isr)
return 0;
if (ISSET(isr, SPI_ISR_RFOIS)) {
device_printf(sc->sc_dev, "RXFIFO overflow\n");
icr |= SPI_ICR_CRFOI;
}
if (ISSET(isr, SPI_ISR_RFUIS)) {
device_printf(sc->sc_dev, "RXFIFO underflow\n");
icr |= SPI_ICR_CRFUI;
}
if (ISSET(isr, SPI_ISR_TFOIS)) {
device_printf(sc->sc_dev, "TXFIFO overflow\n");
icr |= SPI_ICR_CTFOI;
}
rk_spi_rxtx(sc);
if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
do {
sr = SPIREG_READ(sc, SPI_SR);
} while (ISSET(sr, SPI_SR_BSF));
SPIREG_WRITE(sc, SPI_IMR, 0);
SPIREG_WRITE(sc, SPI_SER, 0);
st = sc->sc_transfer;
sc->sc_transfer = NULL;
KASSERT(st != NULL);
spi_done(st, 0);
sc->sc_running = false;
} else {
rk_spi_set_interrupt_mask(sc);
}
SPIREG_WRITE(sc, SPI_ICR, icr);
return 1;
}