/* $Id: if_ae.c,v 1.36 2019/05/28 07:41:47 msaitoh Exp $ */
/*-
* Copyright (c) 2006 Urbana-Champaign Independent Media Center.
* Copyright (c) 2006 Garrett D'Amore.
* All rights reserved.
*
* This code was written by Garrett D'Amore for the Champaign-Urbana
* Community Wireless Network Project.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgements:
* This product includes software developed by the Urbana-Champaign
* Independent Media Center.
* This product includes software developed by Garrett D'Amore.
* 4. Urbana-Champaign Independent Media Center's name and Garrett
* D'Amore's name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
* MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
* MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center; and by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the onboard ethernet MAC found on the AR5312
* chip's AHB bus.
*
* This device is very simliar to the tulip in most regards, and
* the code is directly derived from NetBSD's tulip.c. However, it
* is different enough that it did not seem to be a good idea to
* add further complexity to the tulip driver, so we have our own.
*
* Also tulip has a lot of complexity in it for various parts/options
* that we don't need, and on these little boxes with only ~8MB RAM, we
* don't want any extra bloat.
*/
/*
* TODO:
*
* 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
* inbound packets on a half-word boundary, which would make life easier
* for TCP/IP. (Aligning IP headers on a word.)
*
* 2) There is stuff in original tulip to shut down the device when reacting
* to a change in link status. Is that needed.
*
* 3) Test with variety of 10/100 HDX/FDX scenarios.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.36 2019/05/28 07:41:47 msaitoh Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/intr.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <mips/atheros/include/arbusvar.h>
#include <mips/atheros/dev/aereg.h>
#include <mips/atheros/dev/aevar.h>
static const struct {
uint32_t txth_opmode; /* OPMODE bits */
const char *txth_name; /* name of mode */
} ae_txthresh[] = {
{ OPMODE_TR_32, "32 words" },
{ OPMODE_TR_64, "64 words" },
{ OPMODE_TR_128, "128 words" },
{ OPMODE_TR_256, "256 words" },
{ OPMODE_SF, "store and forward mode" },
{ 0, NULL },
};
static int ae_match(device_t, struct cfdata *, void *);
static void ae_attach(device_t, device_t, void *);
static int ae_detach(device_t, int);
static int ae_activate(device_t, enum devact);
static int ae_ifflags_cb(struct ethercom *);
static void ae_reset(struct ae_softc *);
static void ae_idle(struct ae_softc *, uint32_t);
static void ae_start(struct ifnet *);
static void ae_watchdog(struct ifnet *);
static int ae_ioctl(struct ifnet *, u_long, void *);
static int ae_init(struct ifnet *);
static void ae_stop(struct ifnet *, int);
static void ae_shutdown(void *);
static void ae_rxdrain(struct ae_softc *);
static int ae_add_rxbuf(struct ae_softc *, int);
static int ae_enable(struct ae_softc *);
static void ae_disable(struct ae_softc *);
static void ae_power(int, void *);
static void ae_filter_setup(struct ae_softc *);
static int ae_intr(void *);
static void ae_rxintr(struct ae_softc *);
static void ae_txintr(struct ae_softc *);
static void ae_mii_tick(void *);
static void ae_mii_statchg(struct ifnet *);
static int ae_mii_readreg(device_t, int, int, uint16_t *);
static int ae_mii_writereg(device_t, int, int, uint16_t);
#ifdef AE_DEBUG
#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
printf x
#else
#define DPRINTF(sc, x) /* nothing */
#endif
#ifdef AE_STATS
static void ae_print_stats(struct ae_softc *);
#endif
CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
ae_match, ae_attach, ae_detach, ae_activate);
/*
* ae_match:
*
* Check for a device match.
*/
int
ae_match(device_t parent, struct cfdata *cf, void *aux)
{
struct arbus_attach_args *aa = aux;
if (strcmp(aa->aa_name, cf->cf_name) == 0)
return 1;
return 0;
}
/*
* ae_attach:
*
* Attach an ae interface to the system.
*/
void
ae_attach(device_t parent, device_t self, void *aux)
{
const uint8_t *enaddr;
prop_data_t ea;
struct ae_softc *sc = device_private(self);
struct arbus_attach_args *aa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data * const mii = &sc->sc_mii;
int i, error;
sc->sc_dev = self;
callout_init(&sc->sc_tick_callout, 0);
printf(": Atheros AR531X 10/100 Ethernet\n");
/*
* Try to get MAC address.
*/
ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
if (ea == NULL) {
printf("%s: unable to get mac-addr property\n",
device_xname(sc->sc_dev));
return;
}
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
enaddr = prop_data_data_nocopy(ea);
/* Announce ourselves. */
printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
ether_sprintf(enaddr));
sc->sc_cirq = aa->aa_cirq;
sc->sc_mirq = aa->aa_mirq;
sc->sc_st = aa->aa_bst;
sc->sc_dmat = aa->aa_dmat;
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/*
* Map registers.
*/
sc->sc_size = aa->aa_size;
if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
&sc->sc_sh)) != 0) {
printf("%s: unable to map registers, error = %d\n",
device_xname(sc->sc_dev), error);
goto fail_0;
}
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
1, &sc->sc_cdnseg, 0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
device_xname(sc->sc_dev), error);
goto fail_1;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
device_xname(sc->sc_dev), error);
goto fail_2;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct ae_control_data), 1,
sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", device_xname(sc->sc_dev), error);
goto fail_3;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct ae_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
device_xname(sc->sc_dev), error);
goto fail_4;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < AE_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
AE_NTXSEGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", device_xname(sc->sc_dev), i, error);
goto fail_5;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < AE_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", device_xname(sc->sc_dev), i, error);
goto fail_6;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* Reset the chip to a known state.
*/
ae_reset(sc);
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
sc->sc_flags |= AE_ATTACHED;
/*
* Initialize our media structures. This may probe the MII, if
* present.
*/
mii->mii_ifp = ifp;
mii->mii_readreg = ae_mii_readreg;
mii->mii_writereg = ae_mii_writereg;
mii->mii_statchg = ae_mii_statchg;
sc->sc_ethercom.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&mii->mii_phys) == NULL) {
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
} else
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
sc->sc_tick = ae_mii_tick;
strcpy(ifp->if_xname, device_xname(sc->sc_dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
sc->sc_if_flags = ifp->if_flags;
ifp->if_ioctl = ae_ioctl;
ifp->if_start = ae_start;
ifp->if_watchdog = ae_watchdog;
ifp->if_init = ae_init;
ifp->if_stop = ae_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/*
* Attach the interface.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, enaddr);
ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
device_xname(sc->sc_dev));
/*
* Add a suspend hook to make sure we come back up after a
* resume.
*/
sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
ae_power, sc);
if (sc->sc_powerhook == NULL)
printf("%s: WARNING: unable to establish power hook\n",
device_xname(sc->sc_dev));
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_6:
for (i = 0; i < AE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_5:
for (i = 0; i < AE_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_4:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct ae_control_data));
fail_2:
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
fail_1:
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
fail_0:
return;
}
/*
* ae_activate:
*
* Handle device activation/deactivation requests.
*/
int
ae_activate(device_t self, enum devact act)
{
struct ae_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ethercom.ec_if);
return 0;
default:
return EOPNOTSUPP;
}
}
/*
* ae_detach:
*
* Detach a device interface.
*/
int
ae_detach(device_t self, int flags)
{
struct ae_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ae_rxsoft *rxs;
struct ae_txsoft *txs;
int i;
/*
* Succeed now if there isn't any work to do.
*/
if ((sc->sc_flags & AE_ATTACHED) == 0)
return (0);
/* Unhook our tick handler. */
if (sc->sc_tick)
callout_stop(&sc->sc_tick_callout);
/* Detach all PHYs */
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
rnd_detach_source(&sc->sc_rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < AE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
}
for (i = 0; i < AE_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct ae_control_data));
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
shutdownhook_disestablish(sc->sc_sdhook);
powerhook_disestablish(sc->sc_powerhook);
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
return (0);
}
/*
* ae_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static void
ae_shutdown(void *arg)
{
struct ae_softc *sc = arg;
ae_stop(&sc->sc_ethercom.ec_if, 1);
}
/*
* ae_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
ae_start(struct ifnet *ifp)
{
struct ae_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct ae_txsoft *txs;
bus_dmamap_t dmamap;
int error, firsttx, nexttx, lasttx = 1, ofree, seg;
DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
firsttx = sc->sc_txnext;
DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
device_xname(sc->sc_dev), ofree, firsttx));
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
sc->sc_txfree != 0) {
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we were
* short on resources. In this case, we'll copy and try
* again.
*/
if (((mtod(m0, uintptr_t) & 3) != 0) ||
bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
device_xname(sc->sc_dev));
break;
}
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", device_xname(sc->sc_dev));
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", device_xname(sc->sc_dev),
error);
break;
}
}
/*
* Ensure we have enough descriptors free to describe
* the packet.
*/
if (dmamap->dm_nsegs > sc->sc_txfree) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed to anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are no more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX it is worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
if (m != NULL)
m_freem(m);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptors.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = AE_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
sc->sc_txdescs[nexttx].ad_status =
(nexttx == firsttx) ? 0 : ADSTAT_OWN;
sc->sc_txdescs[nexttx].ad_bufaddr1 =
dmamap->dm_segs[seg].ds_addr;
sc->sc_txdescs[nexttx].ad_ctl =
(dmamap->dm_segs[seg].ds_len <<
ADCTL_SIZE1_SHIFT) |
(nexttx == (AE_NTXDESC - 1) ?
ADCTL_ER : 0);
lasttx = nexttx;
}
KASSERT(lasttx != -1);
/* Set `first segment' and `last segment' appropriately. */
sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
#ifdef AE_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" txsoft %p transmit chain:\n", txs);
for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
printf(" descriptor %d:\n", seg);
printf(" ad_status: 0x%08x\n",
sc->sc_txdescs[seg].ad_status);
printf(" ad_ctl: 0x%08x\n",
sc->sc_txdescs[seg].ad_ctl);
printf(" ad_bufaddr1: 0x%08x\n",
sc->sc_txdescs[seg].ad_bufaddr1);
printf(" ad_bufaddr2: 0x%08x\n",
sc->sc_txdescs[seg].ad_bufaddr2);
if (seg == lasttx)
break;
}
}
#endif
/* Sync the descriptors we're using. */
AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
txs->txs_ndescs = dmamap->dm_nsegs;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
/*
* Pass the packet to any BPF listeners.
*/
bpf_mtap(ifp, m0, BPF_D_OUT);
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
device_xname(sc->sc_dev), lasttx, firsttx));
/*
* Cause a transmit interrupt to happen on the
* last packet we enqueued.
*/
sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
AE_CDTXSYNC(sc, lasttx, 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Give the
* first descriptor to the chip now.
*/
sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
AE_CDTXSYNC(sc, firsttx, 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Wake up the transmitter. */
/* XXX USE AUTOPOLLING? */
AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
AE_BARRIER(sc);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* ae_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
ae_watchdog(struct ifnet *ifp)
{
struct ae_softc *sc = ifp->if_softc;
int doing_transmit;
doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
if (doing_transmit) {
printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
}
else
printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
(void) ae_init(ifp);
/* Try to get more packets going. */
ae_start(ifp);
}
/* If the interface is up and running, only modify the receive
* filter when changing to/from promiscuous mode. Otherwise return
* ENETRESET so that ether_ioctl will reset the chip.
*/
static int
ae_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct ae_softc *sc = ifp->if_softc;
int change = ifp->if_flags ^ sc->sc_if_flags;
if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
return ENETRESET;
else if ((change & IFF_PROMISC) != 0)
ae_filter_setup(sc);
return 0;
}
/*
* ae_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct ae_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed. Set the
* hardware filter accordingly.
*/
ae_filter_setup(sc);
}
error = 0;
}
/* Try to get more packets going. */
if (AE_IS_ENABLED(sc))
ae_start(ifp);
sc->sc_if_flags = ifp->if_flags;
splx(s);
return (error);
}
/*
* ae_intr:
*
* Interrupt service routine.
*/
int
ae_intr(void *arg)
{
struct ae_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t status, rxstatus, txstatus;
int handled = 0, txthresh;
DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
#ifdef DEBUG
if (AE_IS_ENABLED(sc) == 0)
panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
#endif
/*
* If the interface isn't running, the interrupt couldn't
* possibly have come from us.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
!device_is_active(sc->sc_dev)) {
printf("spurious?!?\n");
return (0);
}
for (;;) {
status = AE_READ(sc, CSR_STATUS);
if (status) {
AE_WRITE(sc, CSR_STATUS, status);
AE_BARRIER(sc);
}
if ((status & sc->sc_inten) == 0)
break;
handled = 1;
rxstatus = status & sc->sc_rxint_mask;
txstatus = status & sc->sc_txint_mask;
if (rxstatus) {
/* Grab new any new packets. */
ae_rxintr(sc);
if (rxstatus & STATUS_RU) {
printf("%s: receive ring overrun\n",
device_xname(sc->sc_dev));
/* Get the receive process going again. */
AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
AE_BARRIER(sc);
break;
}
}
if (txstatus) {
/* Sweep up transmit descriptors. */
ae_txintr(sc);
if (txstatus & STATUS_TJT)
printf("%s: transmit jabber timeout\n",
device_xname(sc->sc_dev));
if (txstatus & STATUS_UNF) {
/*
* Increase our transmit threshold if
* another is available.
*/
txthresh = sc->sc_txthresh + 1;
if (ae_txthresh[txthresh].txth_name != NULL) {
uint32_t opmode;
/* Idle the transmit process. */
opmode = AE_READ(sc, CSR_OPMODE);
ae_idle(sc, OPMODE_ST);
sc->sc_txthresh = txthresh;
opmode &= ~(OPMODE_TR | OPMODE_SF);
opmode |=
ae_txthresh[txthresh].txth_opmode;
printf("%s: transmit underrun; new "
"threshold: %s\n",
device_xname(sc->sc_dev),
ae_txthresh[txthresh].txth_name);
/*
* Set the new threshold and restart
* the transmit process.
*/
AE_WRITE(sc, CSR_OPMODE, opmode);
AE_BARRIER(sc);
}
/*
* XXX Log every Nth underrun from
* XXX now on?
*/
}
}
if (status & (STATUS_TPS | STATUS_RPS)) {
if (status & STATUS_TPS)
printf("%s: transmit process stopped\n",
device_xname(sc->sc_dev));
if (status & STATUS_RPS)
printf("%s: receive process stopped\n",
device_xname(sc->sc_dev));
(void) ae_init(ifp);
break;
}
if (status & STATUS_SE) {
const char *str;
if (status & STATUS_TX_ABORT)
str = "tx abort";
else if (status & STATUS_RX_ABORT)
str = "rx abort";
else
str = "unknown error";
printf("%s: fatal system error: %s\n",
device_xname(sc->sc_dev), str);
(void) ae_init(ifp);
break;
}
/*
* Not handled:
*
* Transmit buffer unavailable -- normal
* condition, nothing to do, really.
*
* General purpose timer experied -- we don't
* use the general purpose timer.
*
* Early receive interrupt -- not available on
* all chips, we just use RI. We also only
* use single-segment receive DMA, so this
* is mostly useless.
*/
}
/* Try to get more packets going. */
if_schedule_deferred_start(ifp);
if (handled)
rnd_add_uint32(&sc->sc_rnd_source, status);
return (handled);
}
/*
* ae_rxintr:
*
* Helper; handle receive interrupts.
*/
static void
ae_rxintr(struct ae_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ae_rxsoft *rxs;
struct mbuf *m;
uint32_t rxstat;
int i, len;
for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
AE_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rxstat = sc->sc_rxdescs[i].ad_status;
if (rxstat & ADSTAT_OWN) {
/*
* We have processed all of the receive buffers.
*/
break;
}
/*
* If any collisions were seen on the wire, count one.
*/
if (rxstat & ADSTAT_Rx_CS)
ifp->if_collisions++;
/*
* If an error occurred, update stats, clear the status
* word, and leave the packet buffer in place. It will
* simply be reused the next time the ring comes around.
* If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
* error.
*/
if (rxstat & ADSTAT_ES &&
((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
(rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
#define PRINTERR(bit, str) \
if (rxstat & (bit)) \
printf("%s: receive error: %s\n", \
device_xname(sc->sc_dev), str)
ifp->if_ierrors++;
PRINTERR(ADSTAT_Rx_DE, "descriptor error");
PRINTERR(ADSTAT_Rx_RF, "runt frame");
PRINTERR(ADSTAT_Rx_TL, "frame too long");
PRINTERR(ADSTAT_Rx_RE, "MII error");
PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
PRINTERR(ADSTAT_Rx_CE, "CRC error");
#undef PRINTERR
AE_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note the chip
* includes the CRC with every packet.
*/
len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
/*
* XXX: the Atheros part can align on half words. what
* is the performance implication of this? Probably
* minimal, and we should use it...
*/
#ifdef __NO_STRICT_ALIGNMENT
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (ae_add_rxbuf(sc, i) != 0) {
ifp->if_ierrors++;
AE_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
#else
/*
* The chip's receive buffers must be 4-byte aligned.
* But this means that the data after the Ethernet header
* is misaligned. We must allocate a new buffer and
* copy the data, shifted forward 2 bytes.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
dropit:
ifp->if_ierrors++;
AE_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
if (len > (MHLEN - 2)) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
goto dropit;
}
}
m->m_data += 2;
/*
* Note that we use clusters for incoming frames, so the
* buffer is virtually contiguous.
*/
memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
/* Allow the receive descriptor to continue using its mbuf. */
AE_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif /* __NO_STRICT_ALIGNMENT */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = len;
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* ae_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
ae_txintr(struct ae_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ae_txsoft *txs;
uint32_t txstat;
DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
device_xname(sc->sc_dev), sc->sc_flags));
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
AE_CDTXSYNC(sc, txs->txs_lastdesc,
txs->txs_ndescs,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef AE_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
int i;
printf(" txsoft %p transmit chain:\n", txs);
for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
printf(" descriptor %d:\n", i);
printf(" ad_status: 0x%08x\n",
sc->sc_txdescs[i].ad_status);
printf(" ad_ctl: 0x%08x\n",
sc->sc_txdescs[i].ad_ctl);
printf(" ad_bufaddr1: 0x%08x\n",
sc->sc_txdescs[i].ad_bufaddr1);
printf(" ad_bufaddr2: 0x%08x\n",
sc->sc_txdescs[i].ad_bufaddr2);
if (i == txs->txs_lastdesc)
break;
}
}
#endif
txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
if (txstat & ADSTAT_OWN)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
/*
* Check for errors and collisions.
*/
#ifdef AE_STATS
if (txstat & ADSTAT_Tx_UF)
sc->sc_stats.ts_tx_uf++;
if (txstat & ADSTAT_Tx_TO)
sc->sc_stats.ts_tx_to++;
if (txstat & ADSTAT_Tx_EC)
sc->sc_stats.ts_tx_ec++;
if (txstat & ADSTAT_Tx_LC)
sc->sc_stats.ts_tx_lc++;
#endif
if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
ifp->if_oerrors++;
if (txstat & ADSTAT_Tx_EC)
ifp->if_collisions += 16;
else
ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
if (txstat & ADSTAT_Tx_LC)
ifp->if_collisions++;
ifp->if_opackets++;
}
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (txs == NULL)
ifp->if_timer = 0;
}
#ifdef AE_STATS
void
ae_print_stats(struct ae_softc *sc)
{
printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
device_xname(sc->sc_dev),
sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
}
#endif
/*
* ae_reset:
*
* Perform a soft reset on the chip.
*/
void
ae_reset(struct ae_softc *sc)
{
int i;
AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
AE_BARRIER(sc);
/*
* The chip doesn't take itself out of reset automatically.
* We need to do so after 2us.
*/
delay(10);
AE_WRITE(sc, CSR_BUSMODE, 0);
AE_BARRIER(sc);
for (i = 0; i < 1000; i++) {
/*
* Wait a bit for the reset to complete before peeking
* at the chip again.
*/
delay(10);
if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
break;
}
if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
delay(1000);
}
/*
* ae_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
static int
ae_init(struct ifnet *ifp)
{
struct ae_softc *sc = ifp->if_softc;
struct ae_txsoft *txs;
struct ae_rxsoft *rxs;
const uint8_t *enaddr;
int i, error = 0;
if ((error = ae_enable(sc)) != 0)
goto out;
/*
* Cancel any pending I/O.
*/
ae_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
ae_reset(sc);
/*
* Initialize the BUSMODE register.
*/
AE_WRITE(sc, CSR_BUSMODE,
/* XXX: not sure if this is a good thing or not... */
//BUSMODE_ALIGN_16B |
BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
AE_BARRIER(sc);
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < AE_NTXDESC; i++) {
sc->sc_txdescs[i].ad_ctl = 0;
sc->sc_txdescs[i].ad_bufaddr2 =
AE_CDTXADDR(sc, AE_NEXTTX(i));
}
sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
AE_CDTXSYNC(sc, 0, AE_NTXDESC,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_txfree = AE_NTXDESC;
sc->sc_txnext = 0;
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
for (i = 0; i < AE_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < AE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = ae_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
device_xname(sc->sc_dev), i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
ae_rxdrain(sc);
goto out;
}
} else
AE_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
/*
* Initialize the interrupt mask and enable interrupts.
*/
/* normal interrupts */
sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
/* abnormal interrupts */
sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
sc->sc_rxint_mask &= sc->sc_inten;
sc->sc_txint_mask &= sc->sc_inten;
AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
AE_WRITE(sc, CSR_STATUS, 0xffffffff);
/*
* Give the transmit and receive rings to the chip.
*/
AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
AE_BARRIER(sc);
/*
* Set the station address.
*/
enaddr = CLLADDR(ifp->if_sadl);
AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
enaddr[1] << 8 | enaddr[0]);
AE_BARRIER(sc);
/*
* Set the receive filter. This will start the transmit and
* receive processes.
*/
ae_filter_setup(sc);
/*
* Set the current media.
*/
if ((error = ether_mediachange(ifp)) != 0)
goto out;
/*
* Start the mac.
*/
AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
AE_BARRIER(sc);
/*
* Write out the opmode.
*/
AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
ae_txthresh[sc->sc_txthresh].txth_opmode);
/*
* Start the receive process.
*/
AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
AE_BARRIER(sc);
if (sc->sc_tick != NULL) {
/* Start the one second clock. */
callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
}
/*
* Note that the interface is now running.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_if_flags = ifp->if_flags;
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n", device_xname(sc->sc_dev));
}
return (error);
}
/*
* ae_enable:
*
* Enable the chip.
*/
static int
ae_enable(struct ae_softc *sc)
{
if (AE_IS_ENABLED(sc) == 0) {
sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
ae_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to establish interrupt\n",
device_xname(sc->sc_dev));
return (EIO);
}
sc->sc_flags |= AE_ENABLED;
}
return (0);
}
/*
* ae_disable:
*
* Disable the chip.
*/
static void
ae_disable(struct ae_softc *sc)
{
if (AE_IS_ENABLED(sc)) {
arbus_intr_disestablish(sc->sc_ih);
sc->sc_flags &= ~AE_ENABLED;
}
}
/*
* ae_power:
*
* Power management (suspend/resume) hook.
*/
static void
ae_power(int why, void *arg)
{
struct ae_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
printf("power called: %d, %x\n", why, (uint32_t)arg);
s = splnet();
switch (why) {
case PWR_STANDBY:
/* do nothing! */
break;
case PWR_SUSPEND:
ae_stop(ifp, 0);
ae_disable(sc);
break;
case PWR_RESUME:
if (ifp->if_flags & IFF_UP) {
ae_enable(sc);
ae_init(ifp);
}
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
/*
* ae_rxdrain:
*
* Drain the receive queue.
*/
static void
ae_rxdrain(struct ae_softc *sc)
{
struct ae_rxsoft *rxs;
int i;
for (i = 0; i < AE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* ae_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
static void
ae_stop(struct ifnet *ifp, int disable)
{
struct ae_softc *sc = ifp->if_softc;
struct ae_txsoft *txs;
if (sc->sc_tick != NULL) {
/* Stop the one second clock. */
callout_stop(&sc->sc_tick_callout);
}
/* Down the MII. */
mii_down(&sc->sc_mii);
/* Disable interrupts. */
AE_WRITE(sc, CSR_INTEN, 0);
/* Stop the transmit and receive processes. */
AE_WRITE(sc, CSR_OPMODE, 0);
AE_WRITE(sc, CSR_RXLIST, 0);
AE_WRITE(sc, CSR_TXLIST, 0);
AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
AE_BARRIER(sc);
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->sc_if_flags = ifp->if_flags;
ifp->if_timer = 0;
if (disable) {
ae_rxdrain(sc);
ae_disable(sc);
}
/*
* Reset the chip (needed on some flavors to actually disable it).
*/
ae_reset(sc);
}
/*
* ae_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
static int
ae_add_rxbuf(struct ae_softc *sc, int idx)
{
struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
device_xname(sc->sc_dev), idx, error);
panic("ae_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
AE_INIT_RXDESC(sc, idx);
return (0);
}
/*
* ae_filter_setup:
*
* Set the chip's receive filter.
*/
static void
ae_filter_setup(struct ae_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hash, mchash[2];
uint32_t macctl = 0;
/*
* If the chip is running, we need to reset the interface,
* and will revisit here (with IFF_RUNNING) clear. The
* chip seems to really not like to have its multicast
* filter programmed without a reset.
*/
if (ifp->if_flags & IFF_RUNNING) {
(void) ae_init(ifp);
return;
}
DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
device_xname(sc->sc_dev), sc->sc_flags));
macctl = AE_READ(sc, CSR_MACCTL);
macctl &= ~(MACCTL_PR | MACCTL_PM);
macctl |= MACCTL_HASH;
macctl |= MACCTL_HBD;
macctl |= MACCTL_PR;
if (ifp->if_flags & IFF_PROMISC) {
macctl |= MACCTL_PR;
goto allmulti;
}
mchash[0] = mchash[1] = 0;
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ETHER_UNLOCK(ec);
goto allmulti;
}
/* Verify whether we use big or little endian hashes */
hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
mchash[hash >> 5] |= 1 << (hash & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
mchash[0] = mchash[1] = 0xffffffff;
macctl |= MACCTL_PM;
setit:
AE_WRITE(sc, CSR_HTHI, mchash[0]);
AE_WRITE(sc, CSR_HTHI, mchash[1]);
AE_WRITE(sc, CSR_MACCTL, macctl);
AE_BARRIER(sc);
DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
device_xname(sc->sc_dev), macctl));
}
/*
* ae_idle:
*
* Cause the transmit and/or receive processes to go idle.
*/
void
ae_idle(struct ae_softc *sc, uint32_t bits)
{
static const char * const txstate_names[] = {
"STOPPED",
"RUNNING - FETCH",
"RUNNING - WAIT",
"RUNNING - READING",
"-- RESERVED --",
"RUNNING - SETUP",
"SUSPENDED",
"RUNNING - CLOSE",
};
static const char * const rxstate_names[] = {
"STOPPED",
"RUNNING - FETCH",
"RUNNING - CHECK",
"RUNNING - WAIT",
"SUSPENDED",
"RUNNING - CLOSE",
"RUNNING - FLUSH",
"RUNNING - QUEUE",
};
uint32_t csr, ackmask = 0;
int i;
if (bits & OPMODE_ST)
ackmask |= STATUS_TPS;
if (bits & OPMODE_SR)
ackmask |= STATUS_RPS;
AE_CLR(sc, CSR_OPMODE, bits);
for (i = 0; i < 1000; i++) {
if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
break;
delay(10);
}
csr = AE_READ(sc, CSR_STATUS);
if ((csr & ackmask) != ackmask) {
if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
(csr & STATUS_TS) != STATUS_TS_STOPPED) {
printf("%s: transmit process failed to idle: "
"state %s\n", device_xname(sc->sc_dev),
txstate_names[(csr & STATUS_TS) >> 20]);
}
if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
(csr & STATUS_RS) != STATUS_RS_STOPPED) {
printf("%s: receive process failed to idle: "
"state %s\n", device_xname(sc->sc_dev),
rxstate_names[(csr & STATUS_RS) >> 17]);
}
}
}
/*****************************************************************************
* Support functions for MII-attached media.
*****************************************************************************/
/*
* ae_mii_tick:
*
* One second timer, used to tick the MII.
*/
static void
ae_mii_tick(void *arg)
{
struct ae_softc *sc = arg;
int s;
if (!device_is_active(sc->sc_dev))
return;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
}
/*
* ae_mii_statchg: [mii interface function]
*
* Callback from PHY when media changes.
*/
static void
ae_mii_statchg(struct ifnet *ifp)
{
struct ae_softc *sc = ifp->if_softc;
uint32_t macctl, flowc;
//opmode = AE_READ(sc, CSR_OPMODE);
macctl = AE_READ(sc, CSR_MACCTL);
/* XXX: do we need to do this? */
/* Idle the transmit and receive processes. */
//ae_idle(sc, OPMODE_ST | OPMODE_SR);
if (sc->sc_mii.mii_media_active & IFM_FDX) {
flowc = FLOWC_FCE;
macctl &= ~MACCTL_DRO;
macctl |= MACCTL_FDX;
} else {
flowc = 0; /* cannot do flow control in HDX */
macctl |= MACCTL_DRO;
macctl &= ~MACCTL_FDX;
}
AE_WRITE(sc, CSR_FLOWC, flowc);
AE_WRITE(sc, CSR_MACCTL, macctl);
/* restore operational mode */
//AE_WRITE(sc, CSR_OPMODE, opmode);
AE_BARRIER(sc);
}
/*
* ae_mii_readreg:
*
* Read a PHY register.
*/
static int
ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
struct ae_softc *sc = device_private(self);
uint32_t addr;
int i;
addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
AE_WRITE(sc, CSR_MIIADDR, addr);
AE_BARRIER(sc);
for (i = 0; i < 100000000; i++) {
if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
break;
}
if (i >= 100000000)
return ETIMEDOUT;
*val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
return 0;
}
/*
* ae_mii_writereg:
*
* Write a PHY register.
*/
static int
ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
struct ae_softc *sc = device_private(self);
uint32_t addr;
int i;
/* write the data register */
AE_WRITE(sc, CSR_MIIDATA, val);
/* write the address to latch it in */
addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
MIIADDR_WRITE;
AE_WRITE(sc, CSR_MIIADDR, addr);
AE_BARRIER(sc);
for (i = 0; i < 100000000; i++) {
if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
break;
}
if (i >= 100000000)
return ETIMEDOUT;
return 0;
}