/* $NetBSD: iommu.c,v 1.95 2012/01/27 18:53:02 para Exp $ */
/*
* Copyright (c) 1996
* The President and Fellows of Harvard College. All rights reserved.
* Copyright (c) 1995 Paul Kranenburg
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Aaron Brown and
* Harvard University.
* This product includes software developed by Paul Kranenburg.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: iommu.c,v 1.95 2012/01/27 18:53:02 para Exp $");
#include "opt_sparc_arch.h"
#include <sys/param.h>
#include <sys/extent.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <uvm/uvm.h>
#define _SPARC_BUS_DMA_PRIVATE
#include <sys/bus.h>
#include <machine/autoconf.h>
#include <machine/ctlreg.h>
#include <sparc/sparc/asm.h>
#include <sparc/sparc/vaddrs.h>
#include <sparc/sparc/cpuvar.h>
#include <sparc/sparc/iommureg.h>
#include <sparc/sparc/iommuvar.h>
struct iommu_softc {
struct iommureg *sc_reg;
u_int sc_pagesize;
u_int sc_range;
bus_addr_t sc_dvmabase;
iopte_t *sc_ptes;
int sc_cachecoherent;
/*
* Note: operations on the extent map are being protected with
* splhigh(), since we cannot predict at which interrupt priority
* our clients will run.
*/
struct sparc_bus_dma_tag sc_dmatag;
struct extent *sc_dvmamap;
};
/* autoconfiguration driver */
int iommu_print(void *, const char *);
void iommu_attach(device_t, device_t, void *);
int iommu_match(device_t, cfdata_t, void *);
#if defined(SUN4M)
static void iommu_copy_prom_entries(struct iommu_softc *);
#endif
CFATTACH_DECL_NEW(iommu, sizeof(struct iommu_softc),
iommu_match, iommu_attach, NULL, NULL);
/* IOMMU DMA map functions */
int iommu_dmamap_create(bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *);
int iommu_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int);
int iommu_dmamap_load_mbuf(bus_dma_tag_t, bus_dmamap_t,
struct mbuf *, int);
int iommu_dmamap_load_uio(bus_dma_tag_t, bus_dmamap_t,
struct uio *, int);
int iommu_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int);
void iommu_dmamap_unload(bus_dma_tag_t, bus_dmamap_t);
void iommu_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
bus_size_t, int);
int iommu_dmamem_map(bus_dma_tag_t, bus_dma_segment_t *,
int, size_t, void **, int);
void iommu_dmamem_unmap(bus_dma_tag_t, void *, size_t);
paddr_t iommu_dmamem_mmap(bus_dma_tag_t, bus_dma_segment_t *,
int, off_t, int, int);
int iommu_dvma_alloc(struct iommu_softc *, bus_dmamap_t, vaddr_t,
bus_size_t, int, bus_addr_t *, bus_size_t *);
/*
* Print the location of some iommu-attached device (called just
* before attaching that device). If `iommu' is not NULL, the
* device was found but not configured; print the iommu as well.
* Return UNCONF (config_find ignores this if the device was configured).
*/
int
iommu_print(void *args, const char *iommu)
{
struct iommu_attach_args *ia = args;
if (iommu)
aprint_normal("%s at %s", ia->iom_name, iommu);
return (UNCONF);
}
int
iommu_match(device_t parent, cfdata_t cf, void *aux)
{
struct mainbus_attach_args *ma = aux;
if (CPU_ISSUN4 || CPU_ISSUN4C)
return (0);
return (strcmp(cf->cf_name, ma->ma_name) == 0);
}
/*
* Attach the iommu.
*/
void
iommu_attach(device_t parent, device_t self, void *aux)
{
#if defined(SUN4M)
struct iommu_softc *sc = device_private(self);
struct mainbus_attach_args *ma = aux;
struct sparc_bus_dma_tag *dmat = &sc->sc_dmatag;
bus_space_handle_t bh;
int node;
int js1_implicit_iommu;
int i, s;
u_int iopte_table_pa;
struct pglist mlist;
u_int size;
struct vm_page *m;
vaddr_t va;
dmat->_cookie = sc;
dmat->_dmamap_create = iommu_dmamap_create;
dmat->_dmamap_destroy = _bus_dmamap_destroy;
dmat->_dmamap_load = iommu_dmamap_load;
dmat->_dmamap_load_mbuf = iommu_dmamap_load_mbuf;
dmat->_dmamap_load_uio = iommu_dmamap_load_uio;
dmat->_dmamap_load_raw = iommu_dmamap_load_raw;
dmat->_dmamap_unload = iommu_dmamap_unload;
dmat->_dmamap_sync = iommu_dmamap_sync;
dmat->_dmamem_alloc = _bus_dmamem_alloc;
dmat->_dmamem_free = _bus_dmamem_free;
dmat->_dmamem_map = iommu_dmamem_map;
dmat->_dmamem_unmap = _bus_dmamem_unmap;
dmat->_dmamem_mmap = iommu_dmamem_mmap;
/*
* JS1/OF device tree does not have an iommu node and sbus
* node is directly under root. mainbus_attach detects this
* and calls us with sbus node instead so that we can attach
* implicit iommu and attach that sbus node under it.
*/
node = ma->ma_node;
if (strcmp(prom_getpropstring(node, "name"), "sbus") == 0)
js1_implicit_iommu = 1;
else
js1_implicit_iommu = 0;
/*
* Map registers into our space. The PROM may have done this
* already, but I feel better if we have our own copy. Plus, the
* prom doesn't map the entire register set.
*
* XXX struct iommureg is bigger than ra->ra_len; what are the
* other fields for?
*/
if (bus_space_map(ma->ma_bustag, ma->ma_paddr,
sizeof(struct iommureg), 0, &bh) != 0) {
printf("iommu_attach: cannot map registers\n");
return;
}
sc->sc_reg = (struct iommureg *)bh;
sc->sc_cachecoherent = js1_implicit_iommu ? 0
: node_has_property(node, "cache-coherence?");
if (CACHEINFO.c_enabled == 0) /* XXX - is this correct? */
sc->sc_cachecoherent = 0;
sc->sc_pagesize = js1_implicit_iommu ? PAGE_SIZE
: prom_getpropint(node, "page-size", PAGE_SIZE),
/*
* Allocate memory for I/O pagetables.
* This takes 64K of contiguous physical memory to map 64M of
* DVMA space (starting at IOMMU_DVMA_BASE).
* The table must be aligned on a (-IOMMU_DVMA_BASE/pagesize)
* boundary (i.e. 64K for 64M of DVMA space).
*/
size = ((0 - IOMMU_DVMA_BASE) / sc->sc_pagesize) * sizeof(iopte_t);
if (uvm_pglistalloc(size, vm_first_phys, vm_first_phys+vm_num_phys,
size, 0, &mlist, 1, 0) != 0)
panic("iommu_attach: no memory");
va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY);
if (va == 0)
panic("iommu_attach: no memory");
sc->sc_ptes = (iopte_t *)va;
m = TAILQ_FIRST(&mlist);
iopte_table_pa = VM_PAGE_TO_PHYS(m);
/* Map the pages */
for (; m != NULL; m = TAILQ_NEXT(m,pageq.queue)) {
paddr_t pa = VM_PAGE_TO_PHYS(m);
pmap_kenter_pa(va, pa | PMAP_NC,
VM_PROT_READ | VM_PROT_WRITE, 0);
va += PAGE_SIZE;
}
pmap_update(pmap_kernel());
/*
* Copy entries from current IOMMU table.
* XXX - Why do we need to do this?
*/
iommu_copy_prom_entries(sc);
/*
* Now we can install our new pagetable into the IOMMU
*/
sc->sc_range = 0 - IOMMU_DVMA_BASE;
sc->sc_dvmabase = IOMMU_DVMA_BASE;
/* calculate log2(sc->sc_range/16MB) */
i = ffs(sc->sc_range/(1 << 24)) - 1;
if ((1 << i) != (sc->sc_range/(1 << 24)))
panic("iommu: bad range: %d", i);
s = splhigh();
IOMMU_FLUSHALL(sc);
/* Load range and physical address of PTEs */
sc->sc_reg->io_cr = (sc->sc_reg->io_cr & ~IOMMU_CTL_RANGE) |
(i << IOMMU_CTL_RANGESHFT) | IOMMU_CTL_ME;
sc->sc_reg->io_bar = (iopte_table_pa >> 4) & IOMMU_BAR_IBA;
IOMMU_FLUSHALL(sc);
splx(s);
printf(": version 0x%x/0x%x, page-size %d, range %dMB\n",
(sc->sc_reg->io_cr & IOMMU_CTL_VER) >> 24,
(sc->sc_reg->io_cr & IOMMU_CTL_IMPL) >> 28,
sc->sc_pagesize,
sc->sc_range >> 20);
sc->sc_dvmamap = extent_create("iommudvma",
IOMMU_DVMA_BASE, IOMMU_DVMA_END,
0, 0, EX_NOWAIT);
if (sc->sc_dvmamap == NULL)
panic("iommu: unable to allocate DVMA map");
/*
* If we are attaching implicit iommu on JS1/OF we do not have
* an iommu node to traverse, instead mainbus_attach passed us
* sbus node in ma.ma_node. Attach it as the only iommu child.
*/
if (js1_implicit_iommu) {
struct iommu_attach_args ia;
struct openprom_addr sbus_iommu_reg = { 0, 0x10001000, 0x28 };
memset(&ia, 0, sizeof ia);
/* Propagate BUS & DMA tags */
ia.iom_bustag = ma->ma_bustag;
ia.iom_dmatag = &sc->sc_dmatag;
ia.iom_name = "sbus";
ia.iom_node = node;
ia.iom_reg = &sbus_iommu_reg;
ia.iom_nreg = 1;
(void) config_found(self, (void *)&ia, iommu_print);
return;
}
/*
* Loop through ROM children (expect Sbus among them).
*/
for (node = firstchild(node); node; node = nextsibling(node)) {
struct iommu_attach_args ia;
memset(&ia, 0, sizeof ia);
ia.iom_name = prom_getpropstring(node, "name");
/* Propagate BUS & DMA tags */
ia.iom_bustag = ma->ma_bustag;
ia.iom_dmatag = &sc->sc_dmatag;
ia.iom_node = node;
ia.iom_reg = NULL;
prom_getprop(node, "reg", sizeof(struct openprom_addr),
&ia.iom_nreg, &ia.iom_reg);
(void) config_found(self, (void *)&ia, iommu_print);
if (ia.iom_reg != NULL)
free(ia.iom_reg, M_DEVBUF);
}
#endif
}
#if defined(SUN4M)
static void
iommu_copy_prom_entries(struct iommu_softc *sc)
{
u_int pbase, pa;
u_int range;
iopte_t *tpte_p;
u_int pagesz = sc->sc_pagesize;
int use_ac = (cpuinfo.cpu_impl == 4 && cpuinfo.mxcc);
u_int mmupcr_save;
/*
* We read in the original table using MMU bypass and copy all
* of its entries to the appropriate place in our new table,
* even if the sizes are different.
* This is pretty easy since we know DVMA ends at 0xffffffff.
*/
range = (1 << 24) <<
((sc->sc_reg->io_cr & IOMMU_CTL_RANGE) >> IOMMU_CTL_RANGESHFT);
pbase = (sc->sc_reg->io_bar & IOMMU_BAR_IBA) <<
(14 - IOMMU_BAR_IBASHFT);
if (use_ac) {
/*
* Set MMU AC bit so we'll still read from the cache
* in by-pass mode.
*/
mmupcr_save = lda(SRMMU_PCR, ASI_SRMMU);
sta(SRMMU_PCR, ASI_SRMMU, mmupcr_save | VIKING_PCR_AC);
} else
mmupcr_save = 0; /* XXX - avoid GCC `uninitialized' warning */
/* Flush entire IOMMU TLB before messing with the in-memory tables */
IOMMU_FLUSHALL(sc);
/*
* tpte_p = top of our PTE table
* pa = top of current PTE table
* Then work downwards and copy entries until we hit the bottom
* of either table.
*/
for (tpte_p = &sc->sc_ptes[((0 - IOMMU_DVMA_BASE)/pagesz) - 1],
pa = (u_int)pbase + (range/pagesz - 1)*sizeof(iopte_t);
tpte_p >= &sc->sc_ptes[0] && pa >= (u_int)pbase;
tpte_p--, pa -= sizeof(iopte_t)) {
*tpte_p = lda(pa, ASI_BYPASS);
}
if (use_ac) {
/* restore mmu after bug-avoidance */
sta(SRMMU_PCR, ASI_SRMMU, mmupcr_save);
}
}
#endif
static void
iommu_enter(struct iommu_softc *sc, bus_addr_t dva, paddr_t pa)
{
int pte;
/* This routine relies on the fact that sc->sc_pagesize == PAGE_SIZE */
#ifdef DIAGNOSTIC
if (dva < sc->sc_dvmabase)
panic("iommu_enter: dva 0x%lx not in DVMA space", (long)dva);
#endif
pte = atop(pa) << IOPTE_PPNSHFT;
pte &= IOPTE_PPN;
pte |= IOPTE_V | IOPTE_W | (sc->sc_cachecoherent ? IOPTE_C : 0);
sc->sc_ptes[atop(dva - sc->sc_dvmabase)] = pte;
IOMMU_FLUSHPAGE(sc, dva);
}
/*
* iommu_remove: removes mappings created by iommu_enter
*/
static void
iommu_remove(struct iommu_softc *sc, bus_addr_t dva, bus_size_t len)
{
u_int pagesz = sc->sc_pagesize;
bus_addr_t base = sc->sc_dvmabase;
#ifdef DEBUG
if (dva < base)
panic("iommu_remove: va 0x%lx not in DVMA space", (long)dva);
#endif
while ((long)len > 0) {
#ifdef notyet
#ifdef DEBUG
if ((sc->sc_ptes[atop(dva - base)] & IOPTE_V) == 0)
panic("iommu_remove: clearing invalid pte at dva 0x%lx",
(long)dva);
#endif
#endif
sc->sc_ptes[atop(dva - base)] = 0;
IOMMU_FLUSHPAGE(sc, dva);
len -= pagesz;
dva += pagesz;
}
}
#if 0 /* These registers aren't there??? */
void
iommu_error(void)
{
struct iommu_softc *sc = X;
struct iommureg *iop = sc->sc_reg;
printf("iommu: afsr 0x%x, afar 0x%x\n", iop->io_afsr, iop->io_afar);
printf("iommu: mfsr 0x%x, mfar 0x%x\n", iop->io_mfsr, iop->io_mfar);
}
int
iommu_alloc(u_int va, u_int len)
{
struct iommu_softc *sc = X;
int off, tva, iovaddr, pte;
paddr_t pa;
off = (int)va & PGOFSET;
len = round_page(len + off);
va -= off;
if ((int)sc->sc_dvmacur + len > 0)
sc->sc_dvmacur = sc->sc_dvmabase;
iovaddr = tva = sc->sc_dvmacur;
sc->sc_dvmacur += len;
while (len) {
(void) pmap_extract(pmap_kernel(), va, &pa);
#define IOMMU_PPNSHIFT 8
#define IOMMU_V 0x00000002
#define IOMMU_W 0x00000004
pte = atop(pa) << IOMMU_PPNSHIFT;
pte |= IOMMU_V | IOMMU_W;
sta(sc->sc_ptes + atop(tva - sc->sc_dvmabase), ASI_BYPASS, pte);
sc->sc_reg->io_flushpage = tva;
len -= PAGE_SIZE;
va += PAGE_SIZE;
tva += PAGE_SIZE;
}
return iovaddr + off;
}
#endif
/*
* IOMMU DMA map functions.
*/
int
iommu_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
bus_size_t maxsegsz, bus_size_t boundary, int flags,
bus_dmamap_t *dmamp)
{
struct iommu_softc *sc = t->_cookie;
bus_dmamap_t map;
int error;
if ((error = _bus_dmamap_create(t, size, nsegments, maxsegsz,
boundary, flags, &map)) != 0)
return (error);
if ((flags & BUS_DMA_24BIT) != 0) {
/* Limit this map to the range usable by `24-bit' devices */
map->_dm_ex_start = D24_DVMA_BASE;
map->_dm_ex_end = D24_DVMA_END;
} else {
/* Enable allocations from the entire map */
map->_dm_ex_start = sc->sc_dvmamap->ex_start;
map->_dm_ex_end = sc->sc_dvmamap->ex_end;
}
*dmamp = map;
return (0);
}
/*
* Internal routine to allocate space in the IOMMU map.
*/
int
iommu_dvma_alloc(struct iommu_softc *sc, bus_dmamap_t map,
vaddr_t va, bus_size_t len, int flags,
bus_addr_t *dvap, bus_size_t *sgsizep)
{
bus_size_t sgsize;
u_long align, voff, dvaddr;
int s, error;
int pagesz = PAGE_SIZE;
/*
* Remember page offset, then truncate the buffer address to
* a page boundary.
*/
voff = va & (pagesz - 1);
va &= -pagesz;
if (len > map->_dm_size)
return (EINVAL);
sgsize = (len + voff + pagesz - 1) & -pagesz;
align = dvma_cachealign ? dvma_cachealign : map->_dm_align;
s = splhigh();
error = extent_alloc_subregion1(sc->sc_dvmamap,
map->_dm_ex_start, map->_dm_ex_end,
sgsize, align, va & (align-1),
map->_dm_boundary,
(flags & BUS_DMA_NOWAIT) == 0
? EX_WAITOK : EX_NOWAIT,
&dvaddr);
splx(s);
*dvap = (bus_addr_t)dvaddr;
*sgsizep = sgsize;
return (error);
}
/*
* Prepare buffer for DMA transfer.
*/
int
iommu_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map,
void *buf, bus_size_t buflen,
struct proc *p, int flags)
{
struct iommu_softc *sc = t->_cookie;
bus_size_t sgsize;
bus_addr_t dva;
vaddr_t va = (vaddr_t)buf;
int pagesz = PAGE_SIZE;
pmap_t pmap;
int error;
/*
* Make sure that on error condition we return "no valid mappings".
*/
map->dm_nsegs = 0;
/* Allocate IOMMU resources */
if ((error = iommu_dvma_alloc(sc, map, va, buflen, flags,
&dva, &sgsize)) != 0)
return (error);
if ((sc->sc_cachecoherent == 0) ||
(curcpu()->cacheinfo.ec_totalsize == 0))
cache_flush(buf, buflen); /* XXX - move to bus_dma_sync? */
/*
* We always use just one segment.
*/
map->dm_mapsize = buflen;
map->dm_nsegs = 1;
map->dm_segs[0].ds_addr = dva + (va & (pagesz - 1));
map->dm_segs[0].ds_len = buflen;
map->dm_segs[0]._ds_sgsize = sgsize;
if (p != NULL)
pmap = p->p_vmspace->vm_map.pmap;
else
pmap = pmap_kernel();
for (; sgsize != 0; ) {
paddr_t pa;
/*
* Get the physical address for this page.
*/
if (!pmap_extract(pmap, va, &pa)) {
iommu_dmamap_unload(t, map);
return (EFAULT);
}
iommu_enter(sc, dva, pa);
dva += pagesz;
va += pagesz;
sgsize -= pagesz;
}
return (0);
}
/*
* Like _bus_dmamap_load(), but for mbufs.
*/
int
iommu_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map,
struct mbuf *m, int flags)
{
panic("_bus_dmamap_load_mbuf: not implemented");
}
/*
* Like _bus_dmamap_load(), but for uios.
*/
int
iommu_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map,
struct uio *uio, int flags)
{
panic("_bus_dmamap_load_uio: not implemented");
}
/*
* Like _bus_dmamap_load(), but for raw memory allocated with
* bus_dmamem_alloc().
*/
int
iommu_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
bus_dma_segment_t *segs, int nsegs, bus_size_t size,
int flags)
{
struct iommu_softc *sc = t->_cookie;
struct vm_page *m;
paddr_t pa;
bus_addr_t dva;
bus_size_t sgsize;
struct pglist *mlist;
int pagesz = PAGE_SIZE;
int error;
map->dm_nsegs = 0;
/* Allocate IOMMU resources */
if ((error = iommu_dvma_alloc(sc, map, segs[0]._ds_va, size,
flags, &dva, &sgsize)) != 0)
return (error);
/*
* Note DVMA address in case bus_dmamem_map() is called later.
* It can then insure cache coherency by choosing a KVA that
* is aligned to `ds_addr'.
*/
segs[0].ds_addr = dva;
segs[0].ds_len = size;
map->dm_segs[0].ds_addr = dva;
map->dm_segs[0].ds_len = size;
map->dm_segs[0]._ds_sgsize = sgsize;
/* Map physical pages into IOMMU */
mlist = segs[0]._ds_mlist;
for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq.queue)) {
if (sgsize == 0)
panic("iommu_dmamap_load_raw: size botch");
pa = VM_PAGE_TO_PHYS(m);
iommu_enter(sc, dva, pa);
dva += pagesz;
sgsize -= pagesz;
}
map->dm_nsegs = 1;
map->dm_mapsize = size;
return (0);
}
/*
* Unload an IOMMU DMA map.
*/
void
iommu_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
{
struct iommu_softc *sc = t->_cookie;
bus_dma_segment_t *segs = map->dm_segs;
int nsegs = map->dm_nsegs;
bus_addr_t dva;
bus_size_t len;
int i, s, error;
for (i = 0; i < nsegs; i++) {
dva = segs[i].ds_addr & -PAGE_SIZE;
len = segs[i]._ds_sgsize;
iommu_remove(sc, dva, len);
s = splhigh();
error = extent_free(sc->sc_dvmamap, dva, len, EX_NOWAIT);
splx(s);
if (error != 0)
printf("warning: %ld of DVMA space lost\n", (long)len);
}
/* Mark the mappings as invalid. */
map->dm_mapsize = 0;
map->dm_nsegs = 0;
}
/*
* DMA map synchronization.
*/
void
iommu_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map,
bus_addr_t offset, bus_size_t len, int ops)
{
/*
* XXX Should flush CPU write buffers.
*/
}
/*
* Map DMA-safe memory.
*/
int
iommu_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
size_t size, void **kvap, int flags)
{
struct iommu_softc *sc = t->_cookie;
struct vm_page *m;
vaddr_t va;
bus_addr_t addr;
struct pglist *mlist;
int cbit;
u_long align;
int pagesz = PAGE_SIZE;
if (nsegs != 1)
panic("iommu_dmamem_map: nsegs = %d", nsegs);
cbit = sc->sc_cachecoherent ? 0 : PMAP_NC;
align = dvma_cachealign ? dvma_cachealign : pagesz;
size = round_page(size);
/*
* In case the segment has already been loaded by
* iommu_dmamap_load_raw(), find a region of kernel virtual
* addresses that can accommodate our aligment requirements.
*/
va = _bus_dma_valloc_skewed(size, 0, align,
segs[0].ds_addr & (align - 1));
if (va == 0)
return (ENOMEM);
segs[0]._ds_va = va;
*kvap = (void *)va;
/*
* Map the pages allocated in _bus_dmamem_alloc() to the
* kernel virtual address space.
*/
mlist = segs[0]._ds_mlist;
for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq.queue)) {
if (size == 0)
panic("iommu_dmamem_map: size botch");
addr = VM_PAGE_TO_PHYS(m);
pmap_kenter_pa(va, addr | cbit,
VM_PROT_READ | VM_PROT_WRITE, 0);
#if 0
if (flags & BUS_DMA_COHERENT)
/* XXX */;
#endif
va += pagesz;
size -= pagesz;
}
pmap_update(pmap_kernel());
return (0);
}
void
iommu_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
{
#ifdef DIAGNOSTIC
if ((u_long)kva & PAGE_MASK)
panic("iommu_dmamem_unmap");
#endif
size = round_page(size);
pmap_kremove((vaddr_t)kva, size);
pmap_update(pmap_kernel());
uvm_unmap(kernel_map, (vaddr_t)kva, (vaddr_t)kva + size);
}
/*
* mmap(2)'ing DMA-safe memory.
*/
paddr_t
iommu_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
off_t off, int prot, int flags)
{
panic("_bus_dmamem_mmap: not implemented");
}