/* $NetBSD: zs.c,v 1.75 2015/10/30 16:21:46 tsutsui Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part)
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zs_async slave.
* Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.75 2015/10/30 16:21:46 tsutsui Exp $");
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <sys/intr.h>
#include <machine/autoconf.h>
#include <machine/openfirm.h>
#include <machine/cpu.h>
#include <machine/eeprom.h>
#include <machine/psl.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <dev/sun/kbd_ms_ttyvar.h>
#include <ddb/db_output.h>
#include <dev/sbus/sbusvar.h>
#include <sparc64/dev/fhcvar.h>
#include <sparc64/dev/cons.h>
#include "ioconf.h"
#include "kbd.h" /* NKBD */
#include "ms.h" /* NMS */
#include "zs.h" /* NZS */
/* Make life easier for the initialized arrays here. */
#if NZS < 3
#undef NZS
#define NZS 3
#endif
/*
* Some warts needed by z8530tty.c -
* The default parity REALLY needs to be the same as the PROM uses,
* or you can not see messages done with printf during boot-up...
*/
int zs_def_cflag = (CREAD | CS8 | HUPCL);
/*
* The Sun provides a 4.9152 MHz clock to the ZS chips.
*/
#define PCLK (9600 * 512) /* PCLK pin input clock rate */
#define ZS_DELAY()
/* The layout of this is hardware-dependent (padding, order). */
struct zschan {
volatile uint8_t zc_csr; /* ctrl,status, and indirect access */
uint8_t zc_xxx0;
volatile uint8_t zc_data; /* data */
uint8_t zc_xxx1;
};
struct zsdevice {
/* Yes, they are backwards. */
struct zschan zs_chan_b;
struct zschan zs_chan_a;
};
/* ZS channel used as the console device (if any) */
void *zs_conschan_get, *zs_conschan_put;
/* Saved PROM mappings */
static struct zsdevice *zsaddr[NZS];
static uint8_t zs_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
0, /* 2: IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE,
};
/* Console ops */
static int zscngetc(dev_t);
static void zscnputc(dev_t, int);
static void zscnpollc(dev_t, int);
struct consdev zs_consdev = {
.cn_getc = zscngetc,
.cn_putc = zscnputc,
.cn_pollc = zscnpollc,
};
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
static int zs_match_sbus(device_t, cfdata_t, void *);
static void zs_attach_sbus(device_t, device_t, void *);
static int zs_match_fhc(device_t, cfdata_t, void *);
static void zs_attach_fhc(device_t, device_t, void *);
static void zs_attach(struct zsc_softc *, struct zsdevice *, int);
static int zs_print(void *, const char *);
CFATTACH_DECL_NEW(zs, sizeof(struct zsc_softc),
zs_match_sbus, zs_attach_sbus, NULL, NULL);
CFATTACH_DECL_NEW(zs_fhc, sizeof(struct zsc_softc),
zs_match_fhc, zs_attach_fhc, NULL, NULL);
/* Interrupt handlers. */
int zscheckintr(void *);
static int zshard(void *);
static void zssoft(void *);
static int zs_get_speed(struct zs_chanstate *);
/* Console device support */
static int zs_console_flags(int, int, int);
/* Power management hooks */
int zs_enable(struct zs_chanstate *);
void zs_disable(struct zs_chanstate *);
/* from dev/ic/z8530tty.c */
struct tty *zstty_get_tty_from_dev(device_t);
/*
* Is the zs chip present?
*/
static int
zs_match_sbus(device_t parent, cfdata_t cf, void *aux)
{
struct sbus_attach_args *sa = aux;
if (strcmp(cf->cf_name, sa->sa_name) != 0)
return (0);
return (1);
}
static int
zs_match_fhc(device_t parent, cfdata_t cf, void *aux)
{
struct fhc_attach_args *fa = aux;
if (strcmp(cf->cf_name, fa->fa_name) != 0)
return (0);
return (1);
}
static void
zs_attach_sbus(device_t parent, device_t self, void *aux)
{
struct zsc_softc *zsc = device_private(self);
struct sbus_attach_args *sa = aux;
bus_space_handle_t bh;
int zs_unit;
zsc->zsc_dev = self;
zs_unit = device_unit(self);
if (sa->sa_nintr == 0) {
aprint_error(": no interrupt lines\n");
return;
}
/* Use the mapping setup by the Sun PROM if possible. */
if (zsaddr[zs_unit] == NULL) {
/* Only map registers once. */
if (sa->sa_npromvaddrs) {
/*
* We're converting from a 32-bit pointer to a 64-bit
* pointer. Since the 32-bit entity is negative, but
* the kernel is still mapped into the lower 4GB
* range, this needs to be zero-extended.
*
* XXXXX If we map the kernel and devices into the
* high 4GB range, this needs to be changed to
* sign-extend the address.
*/
sparc_promaddr_to_handle(sa->sa_bustag,
sa->sa_promvaddrs[0], &bh);
} else {
if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
sa->sa_offset,
sa->sa_size,
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
aprint_error(": cannot map registers\n");
return;
}
}
zsaddr[zs_unit] = bus_space_vaddr(sa->sa_bustag, bh);
}
zsc->zsc_bustag = sa->sa_bustag;
zsc->zsc_dmatag = sa->sa_dmatag;
zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
zsc->zsc_node = sa->sa_node;
aprint_normal("\n");
zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
}
static void
zs_attach_fhc(device_t parent, device_t self, void *aux)
{
struct zsc_softc *zsc = device_private(self);
struct fhc_attach_args *fa = aux;
bus_space_handle_t bh;
int zs_unit;
zsc->zsc_dev = self;
zs_unit = device_unit(self);
if (fa->fa_nreg < 1 && fa->fa_npromvaddrs < 1) {
printf(": no registers\n");
return;
}
if (fa->fa_nintr == 0) {
aprint_error(": no interrupt lines\n");
return;
}
/* Use the mapping setup by the Sun PROM if possible. */
if (zsaddr[zs_unit] == NULL) {
/* Only map registers once. */
if (fa->fa_npromvaddrs) {
/*
* We're converting from a 32-bit pointer to a 64-bit
* pointer. Since the 32-bit entity is negative, but
* the kernel is still mapped into the lower 4GB
* range, this needs to be zero-extended.
*
* XXXXX If we map the kernel and devices into the
* high 4GB range, this needs to be changed to
* sign-extend the address.
*/
sparc_promaddr_to_handle(fa->fa_bustag,
fa->fa_promvaddrs[0], &bh);
} else {
if (fhc_bus_map(fa->fa_bustag,
fa->fa_reg[0].fbr_slot,
fa->fa_reg[0].fbr_offset,
fa->fa_reg[0].fbr_size,
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
aprint_error(": cannot map registers\n");
return;
}
}
zsaddr[zs_unit] = bus_space_vaddr(fa->fa_bustag, bh);
}
zsc->zsc_bustag = fa->fa_bustag;
zsc->zsc_dmatag = NULL;
zsc->zsc_promunit = prom_getpropint(fa->fa_node, "slave", -2);
zsc->zsc_node = fa->fa_node;
aprint_normal("\n");
zs_attach(zsc, zsaddr[zs_unit], fa->fa_intr[0]);
}
/*
* Attach a found zs.
*
* USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
* SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
*/
static void
zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri)
{
struct zsc_attach_args zsc_args;
struct zs_chanstate *cs;
int channel;
if (zsd == NULL) {
aprint_error(": configuration incomplete\n");
return;
}
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
struct zschan *zc;
device_t child;
zsc_args.channel = channel;
cs = &zsc->zsc_cs_store[channel];
zsc->zsc_cs[channel] = cs;
zs_lock_init(cs);
cs->cs_channel = channel;
cs->cs_private = NULL;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
zsc_args.consdev = NULL;
zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
zsc->zsc_node,
channel);
if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
zsc_args.consdev = &zs_consdev;
}
if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
zs_conschan_get = zc;
}
if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
zs_conschan_put = zc;
}
/* Children need to set cn_dev, etc */
cs->cs_reg_csr = &zc->zc_csr;
cs->cs_reg_data = &zc->zc_data;
memcpy(cs->cs_creg, zs_init_reg, 16);
memcpy(cs->cs_preg, zs_init_reg, 16);
/* XXX: Consult PROM properties for this?! */
cs->cs_defspeed = zs_get_speed(cs);
cs->cs_defcflag = zs_def_cflag;
/* Make these correspond to cs_defcflag (-crtscts) */
cs->cs_rr0_dcd = ZSRR0_DCD;
cs->cs_rr0_cts = 0;
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
child = config_found(zsc->zsc_dev, (void *)&zsc_args,
zs_print);
if (child == NULL) {
/* No sub-driver. Just reset it. */
uint8_t reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
zs_lock_chan(cs);
zs_write_reg(cs, 9, reset);
zs_unlock_chan(cs);
}
#if (NKBD > 0) || (NMS > 0)
/*
* If this was a zstty it has a keyboard
* property on it we need to attach the
* sunkbd and sunms line disciplines.
*/
if (child
&& (device_is_a(child, "zstty"))
&& (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
struct kbd_ms_tty_attach_args kma;
struct tty *tp;
kma.kmta_tp = tp = zstty_get_tty_from_dev(child);
kma.kmta_dev = tp->t_dev;
kma.kmta_consdev = zsc_args.consdev;
/* Attach 'em if we got 'em. */
#if (NKBD > 0)
if (channel == 0) {
kma.kmta_name = "keyboard";
config_found(child, (void *)&kma, NULL);
}
#endif
#if (NMS > 0)
if (channel == 1) {
kma.kmta_name = "mouse";
config_found(child, (void *)&kma, NULL);
}
#endif
}
#endif
}
/*
* Now safe to install interrupt handlers. Note the arguments
* to the interrupt handlers aren't used. Note, we only do this
* once since both SCCs interrupt at the same level and vector.
*/
bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
if (!(zsc->zsc_softintr = softint_establish(SOFTINT_SERIAL, zssoft, zsc)))
panic("zsattach: could not establish soft interrupt");
evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
device_xname(zsc->zsc_dev), "intr");
/*
* Set the master interrupt enable and interrupt vector.
* (common to both channels, do it on A)
*/
cs = zsc->zsc_cs[0];
zs_lock_chan(cs);
/* interrupt vector */
zs_write_reg(cs, 2, zs_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(cs, 9, zs_init_reg[9]);
zs_unlock_chan(cs);
}
static int
zs_print(void *aux, const char *name)
{
struct zsc_attach_args *args = aux;
if (name != NULL)
aprint_normal("%s: ", name);
if (args->channel != -1)
aprint_normal(" channel %d", args->channel);
return (UNCONF);
}
static int
zshard(void *arg)
{
struct zsc_softc *zsc = arg;
int rr3, rval;
rval = 0;
while ((rr3 = zsc_intr_hard(zsc))) {
/* Count up the interrupts. */
rval |= rr3;
zsc->zsc_intrcnt.ev_count++;
}
if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
(zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
zsc->zsc_softintr) {
softint_schedule(zsc->zsc_softintr);
}
return (rval);
}
int
zscheckintr(void *arg)
{
struct zsc_softc *zsc;
int unit, rval;
rval = 0;
for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
zsc = device_lookup_private(&zs_cd, unit);
if (zsc == NULL)
continue;
rval = (zshard((void *)zsc) || rval);
}
return (rval);
}
/*
* We need this only for TTY_DEBUG purposes.
*/
static void
zssoft(void *arg)
{
struct zsc_softc *zsc = arg;
#if 0 /* not yet */
/* Make sure we call the tty layer with tty_lock held. */
mutex_spin_enter(&tty_lock);
#endif
(void)zsc_intr_soft(zsc);
#ifdef TTY_DEBUG
{
struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
if (zst0->zst_overflows || zst1->zst_overflows ) {
struct trapframe *frame = (struct trapframe *)arg;
printf("zs silo overflow from %p\n",
(long)frame->tf_pc);
}
}
#endif
#if 0 /* not yet */
mutex_spin_exit(&tty_lock);
#endif
}
/*
* Compute the current baud rate given a ZS channel.
*/
static int
zs_get_speed(struct zs_chanstate *cs)
{
int tconst;
tconst = zs_read_reg(cs, 12);
tconst |= zs_read_reg(cs, 13) << 8;
return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(struct zs_chanstate *cs, int cflag)
{
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
zs_lock_chan(cs);
cs->cs_rr0_pps = 0;
if ((cflag & (CLOCAL | MDMBUF)) != 0) {
cs->cs_rr0_dcd = 0;
if ((cflag & MDMBUF) == 0)
cs->cs_rr0_pps = ZSRR0_DCD;
} else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & CDTRCTS) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
zs_unlock_chan(cs);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Read or write the chip with suitable delays.
*/
u_char
zs_read_reg(struct zs_chanstate *cs, u_char reg)
{
u_char val;
*cs->cs_reg_csr = reg;
ZS_DELAY();
val = *cs->cs_reg_csr;
ZS_DELAY();
return (val);
}
void
zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
{
*cs->cs_reg_csr = reg;
ZS_DELAY();
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char
zs_read_csr(struct zs_chanstate *cs)
{
u_char val;
val = *cs->cs_reg_csr;
ZS_DELAY();
return (val);
}
void
zs_write_csr(struct zs_chanstate *cs, u_char val)
{
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char
zs_read_data(struct zs_chanstate *cs)
{
u_char val;
val = *cs->cs_reg_data;
ZS_DELAY();
return (val);
}
void
zs_write_data(struct zs_chanstate *cs, u_char val)
{
*cs->cs_reg_data = val;
ZS_DELAY();
}
/****************************************************************
* Console support functions (Sun specific!)
* Note: this code is allowed to know about the layout of
* the chip registers, and uses that to keep things simple.
* XXX - I think I like the mvme167 code better. -gwr
****************************************************************/
extern void Debugger(void);
/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(struct zs_chanstate *cs)
{
volatile struct zschan *zc = zs_conschan_get;
int rr0;
/* Wait for end of break to avoid PROM abort. */
/* XXX - Limit the wait? */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while (rr0 & ZSRR0_BREAK);
#if defined(KGDB)
zskgdb(cs);
#elif defined(DDB)
{
extern int db_active;
if (!db_active)
Debugger();
else
/* Debugger is probably hozed */
callrom();
}
#else
printf("stopping on keyboard abort\n");
callrom();
#endif
}
/*
* Polled input char.
*/
int
zs_getc(void *arg)
{
volatile struct zschan *zc = arg;
int s, c, rr0;
s = splhigh();
/* Wait for a character to arrive. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = zc->zc_data;
ZS_DELAY();
splx(s);
/*
* This is used by the kd driver to read scan codes,
* so don't translate '\r' ==> '\n' here...
*/
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(void *arg, int c)
{
volatile struct zschan *zc = arg;
int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_TX_READY) == 0);
/*
* Send the next character.
* Now you'd think that this could be followed by a ZS_DELAY()
* just like all the other chip accesses, but it turns out that
* the `transmit-ready' interrupt isn't de-asserted until
* some period of time after the register write completes
* (more than a couple instructions). So to avoid stray
* interrupts we put in the 2us delay regardless of CPU model.
*/
zc->zc_data = c;
delay(2);
splx(s);
}
/*****************************************************************/
/*
* Polled console input putchar.
*/
static int
zscngetc(dev_t dev)
{
return (zs_getc(zs_conschan_get));
}
/*
* Polled console output putchar.
*/
static void
zscnputc(dev_t dev, int c)
{
zs_putc(zs_conschan_put, c);
}
int swallow_zsintrs;
static void
zscnpollc(dev_t dev, int on)
{
/*
* Need to tell zs driver to acknowledge all interrupts or we get
* annoying spurious interrupt messages. This is because mucking
* with spl() levels during polling does not prevent interrupts from
* being generated.
*/
if (on) swallow_zsintrs++;
else swallow_zsintrs--;
}
int
zs_console_flags(int promunit, int node, int channel)
{
int cookie, flags = 0;
char buf[255];
/*
* We'll just do the OBP grovelling down here since that's
* the only type of firmware we support.
*/
/* Default to channel 0 if there are no explicit prom args */
cookie = 0;
if (node == prom_instance_to_package(prom_stdin())) {
if (prom_getoption("input-device", buf, sizeof buf) == 0 &&
strcmp("ttyb", buf) == 0)
cookie = 1;
if (channel == cookie)
flags |= ZS_HWFLAG_CONSOLE_INPUT;
}
if (node == prom_instance_to_package(prom_stdout())) {
if (prom_getoption("output-device", buf, sizeof buf) == 0 &&
strcmp("ttyb", buf) == 0)
cookie = 1;
if (channel == cookie)
flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
}
return (flags);
}