Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
/*	$NetBSD: aic6915.c,v 1.39.2.1 2019/11/06 09:59:38 martin Exp $	*/

/*-
 * Copyright (c) 2001 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Device driver for the Adaptec AIC-6915 (``Starfire'')
 * 10/100 Ethernet controller.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.39.2.1 2019/11/06 09:59:38 martin Exp $");


#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>

#include <net/bpf.h>

#include <sys/bus.h>
#include <sys/intr.h>

#include <dev/mii/miivar.h>

#include <dev/ic/aic6915reg.h>
#include <dev/ic/aic6915var.h>

static void	sf_start(struct ifnet *);
static void	sf_watchdog(struct ifnet *);
static int	sf_ioctl(struct ifnet *, u_long, void *);
static int	sf_init(struct ifnet *);
static void	sf_stop(struct ifnet *, int);

static bool	sf_shutdown(device_t, int);

static void	sf_txintr(struct sf_softc *);
static void	sf_rxintr(struct sf_softc *);
static void	sf_stats_update(struct sf_softc *);

static void	sf_reset(struct sf_softc *);
static void	sf_macreset(struct sf_softc *);
static void	sf_rxdrain(struct sf_softc *);
static int	sf_add_rxbuf(struct sf_softc *, int);
static uint8_t	sf_read_eeprom(struct sf_softc *, int);
static void	sf_set_filter(struct sf_softc *);

static int	sf_mii_read(device_t, int, int, uint16_t *);
static int	sf_mii_write(device_t, int, int, uint16_t);
static void	sf_mii_statchg(struct ifnet *);

static void	sf_tick(void *);

#define	sf_funcreg_read(sc, reg)					\
	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
#define	sf_funcreg_write(sc, reg, val)					\
	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))

static inline uint32_t
sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
{

	if (__predict_false(sc->sc_iomapped)) {
		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
		    reg);
		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
		    SF_IndirectIoDataPort));
	}

	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
}

static inline void
sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
{

	if (__predict_false(sc->sc_iomapped)) {
		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
		    reg);
		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
		    val);
		return;
	}

	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
}

#define	sf_genreg_read(sc, reg)						\
	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
#define	sf_genreg_write(sc, reg, val)					\
	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))

/*
 * sf_attach:
 *
 *	Attach a Starfire interface to the system.
 */
void
sf_attach(struct sf_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct mii_data * const mii = &sc->sc_mii;
	int i, rseg, error;
	bus_dma_segment_t seg;
	uint8_t enaddr[ETHER_ADDR_LEN];

	callout_init(&sc->sc_tick_callout, 0);

	/*
	 * If we're I/O mapped, the functional register handle is
	 * the same as the base handle.  If we're memory mapped,
	 * carve off a chunk of the register space for the functional
	 * registers, to save on arithmetic later.
	 */
	if (sc->sc_iomapped)
		sc->sc_sh_func = sc->sc_sh;
	else {
		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
			aprint_error_dev(sc->sc_dev, "unable to sub-region "
			    "functional registers, error = %d\n", error);
			return;
		}
	}

	/*
	 * Initialize the transmit threshold for this interface.  The
	 * manual describes the default as 4 * 16 bytes.  We start out
	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
	 * several platforms.
	 */
	sc->sc_txthresh = 10;

	/*
	 * Allocate the control data structures, and create and load the
	 * DMA map for it.
	 */
	if ((error = bus_dmamem_alloc(sc->sc_dmat,
	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
	    BUS_DMA_NOWAIT)) != 0) {
		aprint_error_dev(sc->sc_dev,
		    "unable to allocate control data, error = %d\n", error);
		goto fail_0;
	}

	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
		aprint_error_dev(sc->sc_dev,
		    "unable to map control data, error = %d\n", error);
		goto fail_1;
	}

	if ((error = bus_dmamap_create(sc->sc_dmat,
	    sizeof(struct sf_control_data), 1,
	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
	    &sc->sc_cddmamap)) != 0) {
		aprint_error_dev(sc->sc_dev, "unable to create control data "
		    "DMA map, error = %d\n", error);
		goto fail_2;
	}

	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
	    BUS_DMA_NOWAIT)) != 0) {
		aprint_error_dev(sc->sc_dev, "unable to load control data "
		    "DMA map, error = %d\n", error);
		goto fail_3;
	}

	/*
	 * Create the transmit buffer DMA maps.
	 */
	for (i = 0; i < SF_NTXDESC; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
			aprint_error_dev(sc->sc_dev,
			    "unable to create tx DMA map %d, error = %d\n", i,
			    error);
			goto fail_4;
		}
	}

	/*
	 * Create the receive buffer DMA maps.
	 */
	for (i = 0; i < SF_NRXDESC; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
		    MCLBYTES, 0, BUS_DMA_NOWAIT,
		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
			aprint_error_dev(sc->sc_dev,
			    "unable to create rx DMA map %d, error = %d\n", i,
			    error);
			goto fail_5;
		}
	}

	/*
	 * Reset the chip to a known state.
	 */
	sf_reset(sc);

	/*
	 * Read the Ethernet address from the EEPROM.
	 */
	for (i = 0; i < ETHER_ADDR_LEN; i++)
		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);

	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
	    ether_sprintf(enaddr));

	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
		printf("%s: 64-bit PCI slot detected\n",
		    device_xname(sc->sc_dev));

	/*
	 * Initialize our media structures and probe the MII.
	 */
	mii->mii_ifp = ifp;
	mii->mii_readreg = sf_mii_read;
	mii->mii_writereg = sf_mii_write;
	mii->mii_statchg = sf_mii_statchg;
	sc->sc_ethercom.ec_mii = mii;
	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
	    ether_mediastatus);
	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
	    MII_OFFSET_ANY, 0);
	if (LIST_FIRST(&mii->mii_phys) == NULL) {
		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
	} else
		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = sf_ioctl;
	ifp->if_start = sf_start;
	ifp->if_watchdog = sf_watchdog;
	ifp->if_init = sf_init;
	ifp->if_stop = sf_stop;
	IFQ_SET_READY(&ifp->if_snd);

	/*
	 * Attach the interface.
	 */
	if_attach(ifp);
	if_deferred_start_init(ifp, NULL);
	ether_ifattach(ifp, enaddr);

	/*
	 * Make sure the interface is shutdown during reboot.
	 */
	if (pmf_device_register1(sc->sc_dev, NULL, NULL, sf_shutdown))
		pmf_class_network_register(sc->sc_dev, ifp);
	else
		aprint_error_dev(sc->sc_dev,
		    "couldn't establish power handler\n");
	return;

	/*
	 * Free any resources we've allocated during the failed attach
	 * attempt.  Do this in reverse order an fall through.
	 */
 fail_5:
	for (i = 0; i < SF_NRXDESC; i++) {
		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_rxsoft[i].ds_dmamap);
	}
 fail_4:
	for (i = 0; i < SF_NTXDESC; i++) {
		if (sc->sc_txsoft[i].ds_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_txsoft[i].ds_dmamap);
	}
	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
 fail_3:
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
 fail_2:
	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
	    sizeof(struct sf_control_data));
 fail_1:
	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
 fail_0:
	return;
}

/*
 * sf_shutdown:
 *
 *	Shutdown hook -- make sure the interface is stopped at reboot.
 */
static bool
sf_shutdown(device_t self, int howto)
{
	struct sf_softc *sc;

	sc = device_private(self);
	sf_stop(&sc->sc_ethercom.ec_if, 1);

	return true;
}

/*
 * sf_start:		[ifnet interface function]
 *
 *	Start packet transmission on the interface.
 */
static void
sf_start(struct ifnet *ifp)
{
	struct sf_softc *sc = ifp->if_softc;
	struct mbuf *m0, *m;
	struct sf_txdesc0 *txd;
	struct sf_descsoft *ds;
	bus_dmamap_t dmamap;
	int error, producer, last = -1, opending, seg;

	/*
	 * Remember the previous number of pending transmits.
	 */
	opending = sc->sc_txpending;

	/*
	 * Find out where we're sitting.
	 */
	producer = SF_TXDINDEX_TO_HOST(
	    TDQPI_HiPrTxProducerIndex_get(
	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));

	/*
	 * Loop through the send queue, setting up transmit descriptors
	 * until we drain the queue, or use up all available transmit
	 * descriptors.  Leave a blank one at the end for sanity's sake.
	 */
	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
		/*
		 * Grab a packet off the queue.
		 */
		IFQ_POLL(&ifp->if_snd, m0);
		if (m0 == NULL)
			break;
		m = NULL;

		/*
		 * Get the transmit descriptor.
		 */
		txd = &sc->sc_txdescs[producer];
		ds = &sc->sc_txsoft[producer];
		dmamap = ds->ds_dmamap;

		/*
		 * Load the DMA map.  If this fails, the packet either
		 * didn't fit in the allotted number of frags, or we were
		 * short on resources.  In this case, we'll copy and try
		 * again.
		 */
		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
			MGETHDR(m, M_DONTWAIT, MT_DATA);
			if (m == NULL) {
				aprint_error_dev(sc->sc_dev,
				    "unable to allocate Tx mbuf\n");
				break;
			}
			if (m0->m_pkthdr.len > MHLEN) {
				MCLGET(m, M_DONTWAIT);
				if ((m->m_flags & M_EXT) == 0) {
					aprint_error_dev(sc->sc_dev,
					    "unable to allocate Tx cluster\n");
					m_freem(m);
					break;
				}
			}
			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
			if (error) {
				aprint_error_dev(sc->sc_dev,
				    "unable to load Tx buffer, error = %d\n",
				    error);
				break;
			}
		}

		/*
		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
		 */
		IFQ_DEQUEUE(&ifp->if_snd, m0);
		if (m != NULL) {
			m_freem(m0);
			m0 = m;
		}

		/* Initialize the descriptor. */
		txd->td_word0 =
		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
		if (producer == (SF_NTXDESC - 1))
			txd->td_word0 |= TD_W0_END;
		txd->td_word1 = htole32(dmamap->dm_nsegs);
		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
			txd->td_frags[seg].fr_addr =
			    htole32(dmamap->dm_segs[seg].ds_addr);
			txd->td_frags[seg].fr_len =
			    htole32(dmamap->dm_segs[seg].ds_len);
		}

		/* Sync the descriptor and the DMA map. */
		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
		    BUS_DMASYNC_PREWRITE);

		/*
		 * Store a pointer to the packet so we can free it later.
		 */
		ds->ds_mbuf = m0;

		/* Advance the Tx pointer. */
		sc->sc_txpending++;
		last = producer;
		producer = SF_NEXTTX(producer);

		/*
		 * Pass the packet to any BPF listeners.
		 */
		bpf_mtap(ifp, m0, BPF_D_OUT);
	}

	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
		/* No more slots left; notify upper layer. */
		ifp->if_flags |= IFF_OACTIVE;
	}

	if (sc->sc_txpending != opending) {
		KASSERT(last != -1);
		/*
		 * We enqueued packets.  Cause a transmit interrupt to
		 * happen on the last packet we enqueued, and give the
		 * new descriptors to the chip by writing the new
		 * producer index.
		 */
		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);

		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));

		/* Set a watchdog timer in case the chip flakes out. */
		ifp->if_timer = 5;
	}
}

/*
 * sf_watchdog:		[ifnet interface function]
 *
 *	Watchdog timer handler.
 */
static void
sf_watchdog(struct ifnet *ifp)
{
	struct sf_softc *sc = ifp->if_softc;

	printf("%s: device timeout\n", device_xname(sc->sc_dev));
	ifp->if_oerrors++;

	(void) sf_init(ifp);

	/* Try to get more packets going. */
	sf_start(ifp);
}

/*
 * sf_ioctl:		[ifnet interface function]
 *
 *	Handle control requests from the operator.
 */
static int
sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
	struct sf_softc *sc = ifp->if_softc;
	int s, error;

	s = splnet();

	error = ether_ioctl(ifp, cmd, data);
	if (error == ENETRESET) {
		/*
		 * Multicast list has changed; set the hardware filter
		 * accordingly.
		 */
		if (ifp->if_flags & IFF_RUNNING)
			sf_set_filter(sc);
		error = 0;
	}

	/* Try to get more packets going. */
	sf_start(ifp);

	splx(s);
	return (error);
}

/*
 * sf_intr:
 *
 *	Interrupt service routine.
 */
int
sf_intr(void *arg)
{
	struct sf_softc *sc = arg;
	uint32_t isr;
	int handled = 0, wantinit = 0;

	for (;;) {
		/* Reading clears all interrupts we're interested in. */
		isr = sf_funcreg_read(sc, SF_InterruptStatus);
		if ((isr & IS_PCIPadInt) == 0)
			break;

		handled = 1;

		/* Handle receive interrupts. */
		if (isr & IS_RxQ1DoneInt)
			sf_rxintr(sc);

		/* Handle transmit completion interrupts. */
		if (isr & (IS_TxDmaDoneInt | IS_TxQueueDoneInt))
			sf_txintr(sc);

		/* Handle abnormal interrupts. */
		if (isr & IS_AbnormalInterrupt) {
			/* Statistics. */
			if (isr & IS_StatisticWrapInt)
				sf_stats_update(sc);

			/* DMA errors. */
			if (isr & IS_DmaErrInt) {
				wantinit = 1;
				aprint_error_dev(sc->sc_dev,
				    "WARNING: DMA error\n");
			}

			/* Transmit FIFO underruns. */
			if (isr & IS_TxDataLowInt) {
				if (sc->sc_txthresh < 0xff)
					sc->sc_txthresh++;
				printf("%s: transmit FIFO underrun, new "
				    "threshold: %d bytes\n",
				    device_xname(sc->sc_dev),
				    sc->sc_txthresh * 16);
				sf_funcreg_write(sc, SF_TransmitFrameCSR,
				    sc->sc_TransmitFrameCSR |
				    TFCSR_TransmitThreshold(sc->sc_txthresh));
				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
				    sc->sc_TxDescQueueCtrl |
				    TDQC_TxHighPriorityFifoThreshold(
							sc->sc_txthresh));
			}
		}
	}

	if (handled) {
		/* Reset the interface, if necessary. */
		if (wantinit)
			sf_init(&sc->sc_ethercom.ec_if);

		/* Try and get more packets going. */
		if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
	}

	return (handled);
}

/*
 * sf_txintr:
 *
 *	Helper -- handle transmit completion interrupts.
 */
static void
sf_txintr(struct sf_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct sf_descsoft *ds;
	uint32_t cqci, tcd;
	int consumer, producer, txidx;

 try_again:
	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);

	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
	producer = CQPI_TxCompletionProducerIndex_get(
	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));

	if (consumer == producer)
		return;

	ifp->if_flags &= ~IFF_OACTIVE;

	while (consumer != producer) {
		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);

		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
#ifdef DIAGNOSTIC
		if ((tcd & TCD_PR) == 0)
			aprint_error_dev(sc->sc_dev,
			    "Tx queue mismatch, index %d\n", txidx);
#endif
		/*
		 * NOTE: stats are updated later.  We're just
		 * releasing packets that have been DMA'd to
		 * the chip.
		 */
		ds = &sc->sc_txsoft[txidx];
		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
		    0, ds->ds_dmamap->dm_mapsize,
		    BUS_DMASYNC_POSTWRITE);
		m_freem(ds->ds_mbuf);
		ds->ds_mbuf = NULL;

		consumer = SF_NEXTTCD(consumer);
		sc->sc_txpending--;
	}

	/* XXXJRT -- should be KDASSERT() */
	KASSERT(sc->sc_txpending >= 0);

	/* If all packets are done, cancel the watchdog timer. */
	if (sc->sc_txpending == 0)
		ifp->if_timer = 0;

	/* Update the consumer index. */
	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
	     CQCI_TxCompletionConsumerIndex(consumer));

	/* Double check for new completions. */
	goto try_again;
}

/*
 * sf_rxintr:
 *
 *	Helper -- handle receive interrupts.
 */
static void
sf_rxintr(struct sf_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct sf_descsoft *ds;
	struct sf_rcd_full *rcd;
	struct mbuf *m;
	uint32_t cqci, word0;
	int consumer, producer, bufproducer, rxidx, len;

 try_again:
	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);

	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
	producer = CQPI_RxCompletionQ1ProducerIndex_get(
	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
	bufproducer = RXQ1P_RxDescQ1Producer_get(
	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));

	if (consumer == producer)
		return;

	while (consumer != producer) {
		rcd = &sc->sc_rxcomp[consumer];
		SF_CDRXCSYNC(sc, consumer,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
		SF_CDRXCSYNC(sc, consumer,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

		word0 = le32toh(rcd->rcd_word0);
		rxidx = RCD_W0_EndIndex(word0);

		ds = &sc->sc_rxsoft[rxidx];

		consumer = SF_NEXTRCD(consumer);
		bufproducer = SF_NEXTRX(bufproducer);

		if ((word0 & RCD_W0_OK) == 0) {
			SF_INIT_RXDESC(sc, rxidx);
			continue;
		}

		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);

		/*
		 * No errors; receive the packet.  Note that we have
		 * configured the Starfire to NOT transfer the CRC
		 * with the packet.
		 */
		len = RCD_W0_Length(word0);

#ifdef __NO_STRICT_ALIGNMENT
		/*
		 * Allocate a new mbuf cluster.  If that fails, we are
		 * out of memory, and must drop the packet and recycle
		 * the buffer that's already attached to this descriptor.
		 */
		m = ds->ds_mbuf;
		if (sf_add_rxbuf(sc, rxidx) != 0) {
			ifp->if_ierrors++;
			SF_INIT_RXDESC(sc, rxidx);
			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
			continue;
		}
#else
		/*
		 * The Starfire's receive buffer must be 4-byte aligned.
		 * But this means that the data after the Ethernet header
		 * is misaligned.  We must allocate a new buffer and
		 * copy the data, shifted forward 2 bytes.
		 */
		MGETHDR(m, M_DONTWAIT, MT_DATA);
		if (m == NULL) {
 dropit:
			ifp->if_ierrors++;
			SF_INIT_RXDESC(sc, rxidx);
			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
			continue;
		}
		if (len > (MHLEN - 2)) {
			MCLGET(m, M_DONTWAIT);
			if ((m->m_flags & M_EXT) == 0) {
				m_freem(m);
				goto dropit;
			}
		}
		m->m_data += 2;

		/*
		 * Note that we use cluster for incoming frames, so the
		 * buffer is virtually contiguous.
		 */
		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);

		/* Allow the receive descriptor to continue using its mbuf. */
		SF_INIT_RXDESC(sc, rxidx);
		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif /* __NO_STRICT_ALIGNMENT */

		m_set_rcvif(m, ifp);
		m->m_pkthdr.len = m->m_len = len;

		/* Pass it on. */
		if_percpuq_enqueue(ifp->if_percpuq, m);
	}

	/* Update the chip's pointers. */
	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
	    RXQ1P_RxDescQ1Producer(bufproducer));

	/* Double-check for any new completions. */
	goto try_again;
}

/*
 * sf_tick:
 *
 *	One second timer, used to tick the MII and update stats.
 */
static void
sf_tick(void *arg)
{
	struct sf_softc *sc = arg;
	int s;

	s = splnet();
	mii_tick(&sc->sc_mii);
	sf_stats_update(sc);
	splx(s);

	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
}

/*
 * sf_stats_update:
 *
 *	Read the statitistics counters.
 */
static void
sf_stats_update(struct sf_softc *sc)
{
	struct sf_stats stats;
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	uint32_t *p;
	u_int i;

	p = &stats.TransmitOKFrames;
	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
		*p++ = sf_genreg_read(sc,
		    SF_STATS_BASE + (i * sizeof(uint32_t)));
		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
	}

	ifp->if_opackets += stats.TransmitOKFrames;

	ifp->if_collisions += stats.SingleCollisionFrames +
	    stats.MultipleCollisionFrames;

	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
	    stats.TransmitAbortDueToExcessingDeferral +
	    stats.FramesLostDueToInternalTransmitErrors;

	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
	    stats.ReceiveFramesJabbersError +
	    stats.FramesLostDueToInternalReceiveErrors;
}

/*
 * sf_reset:
 *
 *	Perform a soft reset on the Starfire.
 */
static void
sf_reset(struct sf_softc *sc)
{
	int i;

	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);

	sf_macreset(sc);

	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
	for (i = 0; i < 1000; i++) {
		delay(10);
		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
		     PDC_SoftReset) == 0)
			break;
	}

	if (i == 1000) {
		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
	}

	delay(1000);
}

/*
 * sf_macreset:
 *
 *	Reset the MAC portion of the Starfire.
 */
static void
sf_macreset(struct sf_softc *sc)
{

	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
	delay(1000);
	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
}

/*
 * sf_init:		[ifnet interface function]
 *
 *	Initialize the interface.  Must be called at splnet().
 */
static int
sf_init(struct ifnet *ifp)
{
	struct sf_softc *sc = ifp->if_softc;
	struct sf_descsoft *ds;
	int error = 0;
	u_int i;

	/*
	 * Cancel any pending I/O.
	 */
	sf_stop(ifp, 0);

	/*
	 * Reset the Starfire to a known state.
	 */
	sf_reset(sc);

	/* Clear the stat counters. */
	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
		sf_genreg_write(sc, SF_STATS_BASE + i, 0);

	/*
	 * Initialize the transmit descriptor ring.
	 */
	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);

	/*
	 * Initialize the transmit completion ring.
	 */
	for (i = 0; i < SF_NTCD; i++) {
		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
	}
	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));

	/*
	 * Initialize the receive descriptor ring.
	 */
	for (i = 0; i < SF_NRXDESC; i++) {
		ds = &sc->sc_rxsoft[i];
		if (ds->ds_mbuf == NULL) {
			if ((error = sf_add_rxbuf(sc, i)) != 0) {
				aprint_error_dev(sc->sc_dev,
				    "unable to allocate or map rx buffer %d, "
				    "error = %d\n", i, error);
				/*
				 * XXX Should attempt to run with fewer receive
				 * XXX buffers instead of just failing.
				 */
				sf_rxdrain(sc);
				goto out;
			}
		} else
			SF_INIT_RXDESC(sc, i);
	}
	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);

	/*
	 * Initialize the receive completion ring.
	 */
	for (i = 0; i < SF_NRCD; i++) {
		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
		sc->sc_rxcomp[i].rcd_word1 = 0;
		sc->sc_rxcomp[i].rcd_word2 = 0;
		sc->sc_rxcomp[i].rcd_timestamp = 0;
		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
	}
	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
	    RCQ1C_RxCompletionQ1Type(3));
	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);

	/*
	 * Initialize the Tx CSR.
	 */
	sc->sc_TransmitFrameCSR = 0;
	sf_funcreg_write(sc, SF_TransmitFrameCSR,
	    sc->sc_TransmitFrameCSR |
	    TFCSR_TransmitThreshold(sc->sc_txthresh));

	/*
	 * Initialize the Tx descriptor control register.
	 */
	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
	    TDQC_TxDmaBurstSize(4) |	/* default */
	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
	    TDQC_TxDescType(0);
	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
	    sc->sc_TxDescQueueCtrl |
	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));

	/*
	 * Initialize the Rx descriptor control registers.
	 */
	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
	    RDQ1C_RxDescSpacing(0));
	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);

	/*
	 * Initialize the Tx descriptor producer indices.
	 */
	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
	    TDQPI_HiPrTxProducerIndex(0) |
	    TDQPI_LoPrTxProducerIndex(0));

	/*
	 * Initialize the Rx descriptor producer indices.
	 */
	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
	    RXQ2P_RxDescQ2Producer(0));

	/*
	 * Initialize the Tx and Rx completion queue consumer indices.
	 */
	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
	    CQCI_TxCompletionConsumerIndex(0) |
	    CQCI_RxCompletionQ1ConsumerIndex(0));
	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);

	/*
	 * Initialize the Rx DMA control register.
	 */
	sf_funcreg_write(sc, SF_RxDmaCtrl,
	    RDC_RxHighPriorityThreshold(6) |	/* default */
	    RDC_RxBurstSize(4));		/* default */

	/*
	 * Set the receive filter.
	 */
	sc->sc_RxAddressFilteringCtl = 0;
	sf_set_filter(sc);

	/*
	 * Set MacConfig1.  When we set the media, MacConfig1 will
	 * actually be written and the MAC part reset.
	 */
	sc->sc_MacConfig1 = MC1_PadEn;

	/*
	 * Set the media.
	 */
	if ((error = ether_mediachange(ifp)) != 0)
		goto out;

	/*
	 * Initialize the interrupt register.
	 */
	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
	    IS_StatisticWrapInt;
	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);

	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));

	/*
	 * Start the transmit and receive processes.
	 */
	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
	    GEC_TxDmaEn | GEC_RxDmaEn | GEC_TransmitEn | GEC_ReceiveEn);

	/* Start the on second clock. */
	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);

	/*
	 * Note that the interface is now running.
	 */
	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;

 out:
	if (error) {
		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
		ifp->if_timer = 0;
		printf("%s: interface not running\n", device_xname(sc->sc_dev));
	}
	return (error);
}

/*
 * sf_rxdrain:
 *
 *	Drain the receive queue.
 */
static void
sf_rxdrain(struct sf_softc *sc)
{
	struct sf_descsoft *ds;
	int i;

	for (i = 0; i < SF_NRXDESC; i++) {
		ds = &sc->sc_rxsoft[i];
		if (ds->ds_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
			m_freem(ds->ds_mbuf);
			ds->ds_mbuf = NULL;
		}
	}
}

/*
 * sf_stop:		[ifnet interface function]
 *
 *	Stop transmission on the interface.
 */
static void
sf_stop(struct ifnet *ifp, int disable)
{
	struct sf_softc *sc = ifp->if_softc;
	struct sf_descsoft *ds;
	int i;

	/* Stop the one second clock. */
	callout_stop(&sc->sc_tick_callout);

	/* Down the MII. */
	mii_down(&sc->sc_mii);

	/* Disable interrupts. */
	sf_funcreg_write(sc, SF_InterruptEn, 0);

	/* Stop the transmit and receive processes. */
	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);

	/*
	 * Release any queued transmit buffers.
	 */
	for (i = 0; i < SF_NTXDESC; i++) {
		ds = &sc->sc_txsoft[i];
		if (ds->ds_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
			m_freem(ds->ds_mbuf);
			ds->ds_mbuf = NULL;
		}
	}

	/*
	 * Mark the interface down and cancel the watchdog timer.
	 */
	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
	ifp->if_timer = 0;

	if (disable)
		sf_rxdrain(sc);
}

/*
 * sf_read_eeprom:
 *
 *	Read from the Starfire EEPROM.
 */
static uint8_t
sf_read_eeprom(struct sf_softc *sc, int offset)
{
	uint32_t reg;

	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));

	return ((reg >> (8 * (offset & 3))) & 0xff);
}

/*
 * sf_add_rxbuf:
 *
 *	Add a receive buffer to the indicated descriptor.
 */
static int
sf_add_rxbuf(struct sf_softc *sc, int idx)
{
	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
	struct mbuf *m;
	int error;

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (m == NULL)
		return (ENOBUFS);

	MCLGET(m, M_DONTWAIT);
	if ((m->m_flags & M_EXT) == 0) {
		m_freem(m);
		return (ENOBUFS);
	}

	if (ds->ds_mbuf != NULL)
		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);

	ds->ds_mbuf = m;

	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
	    BUS_DMA_READ | BUS_DMA_NOWAIT);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "can't load rx DMA map %d, error = %d\n", idx, error);
		panic("sf_add_rxbuf"); /* XXX */
	}

	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);

	SF_INIT_RXDESC(sc, idx);

	return (0);
}

static void
sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
{
	uint32_t reg0, reg1, reg2;

	reg0 = enaddr[5] | (enaddr[4] << 8);
	reg1 = enaddr[3] | (enaddr[2] << 8);
	reg2 = enaddr[1] | (enaddr[0] << 8);

	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
}

static void
sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
{
	uint32_t hash, slot, reg;

	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
	slot = hash >> 4;

	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
	reg |= 1 << (hash & 0xf);
	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
}

/*
 * sf_set_filter:
 *
 *	Set the Starfire receive filter.
 */
static void
sf_set_filter(struct sf_softc *sc)
{
	struct ethercom *ec = &sc->sc_ethercom;
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct ether_multi *enm;
	struct ether_multistep step;
	int i;

	/* Start by clearing the perfect and hash tables. */
	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);

	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
		sf_genreg_write(sc, SF_HASH_BASE + i, 0);

	/*
	 * Clear the perfect and hash mode bits.
	 */
	sc->sc_RxAddressFilteringCtl &=
	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));

	if (ifp->if_flags & IFF_BROADCAST)
		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
	else
		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;

	if (ifp->if_flags & IFF_PROMISC) {
		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
		goto allmulti;
	} else
		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;

	/*
	 * Set normal perfect filtering mode.
	 */
	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);

	/*
	 * First, write the station address to the perfect filter
	 * table.
	 */
	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));

	/*
	 * Now set the hash bits for each multicast address in our
	 * list.
	 */
	ETHER_LOCK(ec);
	ETHER_FIRST_MULTI(step, ec, enm);
	if (enm == NULL) {
		ETHER_UNLOCK(ec);
		goto done;
	}
	while (enm != NULL) {
		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
			/*
			 * We must listen to a range of multicast addresses.
			 * For now, just accept all multicasts, rather than
			 * trying to set only those filter bits needed to match
			 * the range.  (At this time, the only use of address
			 * ranges is for IP multicast routing, for which the
			 * range is big enough to require all bits set.)
			 */
			ETHER_UNLOCK(ec);
			goto allmulti;
		}
		sf_set_filter_hash(sc, enm->enm_addrlo);
		ETHER_NEXT_MULTI(step, enm);
	}
	ETHER_UNLOCK(ec);

	/*
	 * Set "hash only multicast dest, match regardless of VLAN ID".
	 */
	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
	goto done;

 allmulti:
	/*
	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
	 */
	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
	ifp->if_flags |= IFF_ALLMULTI;

 done:
	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
	    sc->sc_RxAddressFilteringCtl);
}

/*
 * sf_mii_read:		[mii interface function]
 *
 *	Read from the MII.
 */
static int
sf_mii_read(device_t self, int phy, int reg, uint16_t *data)
{
	struct sf_softc *sc = device_private(self);
	uint32_t v;
	int i;

	for (i = 0; i < 1000; i++) {
		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
		if (v & MiiDataValid)
			break;
		delay(1);
	}

	if ((v & MiiDataValid) == 0)
		return -1;

	if (MiiRegDataPort(v) == 0xffff)
		return -1;

	*data = MiiRegDataPort(v);
	return 0;
}

/*
 * sf_mii_write:	[mii interface function]
 *
 *	Write to the MII.
 */
static int
sf_mii_write(device_t self, int phy, int reg, uint16_t val)
{
	struct sf_softc *sc = device_private(self);
	int i;

	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);

	for (i = 0; i < 1000; i++) {
		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
		     MiiBusy) == 0)
			return 0;
		delay(1);
	}

	printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
	return ETIMEDOUT;
}

/*
 * sf_mii_statchg:	[mii interface function]
 *
 *	Callback from the PHY when the media changes.
 */
static void
sf_mii_statchg(struct ifnet *ifp)
{
	struct sf_softc *sc = ifp->if_softc;
	uint32_t ipg;

	if (sc->sc_mii.mii_media_active & IFM_FDX) {
		sc->sc_MacConfig1 |= MC1_FullDuplex;
		ipg = 0x15;
	} else {
		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
		ipg = 0x11;
	}

	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
	sf_macreset(sc);

	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
}