Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*	$NetBSD: rf_diskqueue.c,v 1.55.4.2 2021/12/19 16:29:43 martin Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Mark Holland
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/****************************************************************************
 *
 * rf_diskqueue.c -- higher-level disk queue code
 *
 * the routines here are a generic wrapper around the actual queueing
 * routines.  The code here implements thread scheduling, synchronization,
 * and locking ops (see below) on top of the lower-level queueing code.
 *
 * to support atomic RMW, we implement "locking operations".  When a
 * locking op is dispatched to the lower levels of the driver, the
 * queue is locked, and no further I/Os are dispatched until the queue
 * receives & completes a corresponding "unlocking operation".  This
 * code relies on the higher layers to guarantee that a locking op
 * will always be eventually followed by an unlocking op.  The model
 * is that the higher layers are structured so locking and unlocking
 * ops occur in pairs, i.e.  an unlocking op cannot be generated until
 * after a locking op reports completion.  There is no good way to
 * check to see that an unlocking op "corresponds" to the op that
 * currently has the queue locked, so we make no such attempt.  Since
 * by definition there can be only one locking op outstanding on a
 * disk, this should not be a problem.
 *
 * In the kernel, we allow multiple I/Os to be concurrently dispatched
 * to the disk driver.  In order to support locking ops in this
 * environment, when we decide to do a locking op, we stop dispatching
 * new I/Os and wait until all dispatched I/Os have completed before
 * dispatching the locking op.
 *
 * Unfortunately, the code is different in the 3 different operating
 * states (user level, kernel, simulator).  In the kernel, I/O is
 * non-blocking, and we have no disk threads to dispatch for us.
 * Therefore, we have to dispatch new I/Os to the scsi driver at the
 * time of enqueue, and also at the time of completion.  At user
 * level, I/O is blocking, and so only the disk threads may dispatch
 * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
 * and wake up the disk thread to do the dispatch.
 *
 ****************************************************************************/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.55.4.2 2021/12/19 16:29:43 martin Exp $");

#include <dev/raidframe/raidframevar.h>

#include "rf_threadstuff.h"
#include "rf_raid.h"
#include "rf_diskqueue.h"
#include "rf_alloclist.h"
#include "rf_acctrace.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_debugprint.h"
#include "rf_shutdown.h"
#include "rf_cvscan.h"
#include "rf_sstf.h"
#include "rf_fifo.h"
#include "rf_kintf.h"

#include <sys/buf.h>

static void rf_ShutdownDiskQueueSystem(void *);

#ifndef RF_DEBUG_DISKQUEUE
#define RF_DEBUG_DISKQUEUE 0
#endif

#if RF_DEBUG_DISKQUEUE
#define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
#else
#define Dprintf1(s,a)
#define Dprintf2(s,a,b)
#define Dprintf3(s,a,b,c)
#endif

/*****************************************************************************
 *
 * the disk queue switch defines all the functions used in the
 * different queueing disciplines queue ID, init routine, enqueue
 * routine, dequeue routine
 *
 ****************************************************************************/

static const RF_DiskQueueSW_t diskqueuesw[] = {
	{"fifo",		/* FIFO */
		rf_FifoCreate,
		rf_FifoEnqueue,
		rf_FifoDequeue,
		rf_FifoPeek,
	rf_FifoPromote},

	{"cvscan",		/* cvscan */
		rf_CvscanCreate,
		rf_CvscanEnqueue,
		rf_CvscanDequeue,
		rf_CvscanPeek,
	rf_CvscanPromote},

	{"sstf",		/* shortest seek time first */
		rf_SstfCreate,
		rf_SstfEnqueue,
		rf_SstfDequeue,
		rf_SstfPeek,
	rf_SstfPromote},

	{"scan",		/* SCAN (two-way elevator) */
		rf_ScanCreate,
		rf_SstfEnqueue,
		rf_ScanDequeue,
		rf_ScanPeek,
	rf_SstfPromote},

	{"cscan",		/* CSCAN (one-way elevator) */
		rf_CscanCreate,
		rf_SstfEnqueue,
		rf_CscanDequeue,
		rf_CscanPeek,
	rf_SstfPromote},

};
#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))


#define RF_MAX_FREE_DQD 256
#define RF_MIN_FREE_DQD  64

/* XXX: scale these... */
#define RF_MAX_FREE_BUFIO 256
#define RF_MIN_FREE_BUFIO  64



/* configures a single disk queue */

static void
rf_ShutdownDiskQueue(void *arg)
{
	RF_DiskQueue_t *diskqueue = arg;

	rf_destroy_mutex2(diskqueue->mutex);
}

int
rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
		      RF_SectorCount_t sectPerDisk, dev_t dev,
		      int maxOutstanding, RF_ShutdownList_t **listp,
		      RF_AllocListElem_t *clList)
{
	diskqueue->col = c;
	diskqueue->qPtr = p;
	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
	diskqueue->dev = dev;
	diskqueue->numOutstanding = 0;
	diskqueue->queueLength = 0;
	diskqueue->maxOutstanding = maxOutstanding;
	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
	diskqueue->flags = 0;
	diskqueue->raidPtr = raidPtr;
	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
	rf_init_mutex2(diskqueue->mutex, IPL_VM);
	rf_ShutdownCreate(listp, rf_ShutdownDiskQueue, diskqueue);
	return (0);
}

static void
rf_ShutdownDiskQueueSystem(void *ignored)
{
	pool_destroy(&rf_pools.dqd);
	pool_destroy(&rf_pools.bufio);
}

int
rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
{

	rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
		     "rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
	rf_pool_init(&rf_pools.bufio, sizeof(buf_t),
		     "rf_bufio_pl", RF_MIN_FREE_BUFIO, RF_MAX_FREE_BUFIO);
	rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);

	return (0);
}

int
rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
		       RF_Config_t *cfgPtr)
{
	RF_DiskQueue_t *diskQueues, *spareQueues;
	const RF_DiskQueueSW_t *p;
	RF_RowCol_t r,c;
	int     rc, i;

	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;

	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
			p = &diskqueuesw[i];
			break;
		}
	}
	if (p == NULL) {
		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
		p = &diskqueuesw[0];
	}
	raidPtr->qType = p;

	diskQueues = RF_MallocAndAdd(
	    (raidPtr->numCol + RF_MAXSPARE) * sizeof(*diskQueues),
	    raidPtr->cleanupList);
	if (diskQueues == NULL)
		return (ENOMEM);
	raidPtr->Queues = diskQueues;

	for (c = 0; c < raidPtr->numCol; c++) {
		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
					   c, p,
					   raidPtr->sectorsPerDisk,
					   raidPtr->Disks[c].dev,
					   cfgPtr->maxOutstandingDiskReqs,
					   listp, raidPtr->cleanupList);
		if (rc)
			return (rc);
	}

	spareQueues = &raidPtr->Queues[raidPtr->numCol];
	for (r = 0; r < raidPtr->numSpare; r++) {
		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
					   raidPtr->numCol + r, p,
					   raidPtr->sectorsPerDisk,
					   raidPtr->Disks[raidPtr->numCol + r].dev,
					   cfgPtr->maxOutstandingDiskReqs, listp,
					   raidPtr->cleanupList);
		if (rc)
			return (rc);
	}
	return (0);
}
/* Enqueue a disk I/O
 *
 * In the kernel, I/O is non-blocking and so we'd like to have multiple
 * I/Os outstanding on the physical disks when possible.
 *
 * when any request arrives at a queue, we have two choices:
 *    dispatch it to the lower levels
 *    queue it up
 *
 * kernel rules for when to do what:
 *    unlocking req  :  always dispatch it
 *    normal req     :  queue empty => dispatch it & set priority
 *                      queue not full & priority is ok => dispatch it
 *                      else queue it
 */
void
rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
{
	RF_ETIMER_START(req->qtime);
	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
	req->priority = pri;

#if RF_DEBUG_DISKQUEUE
	if (rf_queueDebug && (req->numSector == 0)) {
		printf("Warning: Enqueueing zero-sector access\n");
	}
#endif
	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
	if (RF_OK_TO_DISPATCH(queue, req)) {
		Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
		rf_DispatchKernelIO(queue, req);
	} else {
		queue->queueLength++;	/* increment count of number of requests waiting in this queue */
		Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
		req->queue = (void *) queue;
		(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
	}
	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
}


/* get the next set of I/Os started */
void
rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
{
	int     done = 0;

	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
	queue->numOutstanding--;
	RF_ASSERT(queue->numOutstanding >= 0);

	/* dispatch requests to the disk until we find one that we can't. */
	/* no reason to continue once we've filled up the queue */
	/* no reason to even start if the queue is locked */

	while (!done && !RF_QUEUE_FULL(queue)) {
		req = (queue->qPtr->Dequeue) (queue->qHdr);
		if (req) {
			Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
			queue->queueLength--;	/* decrement count of number of requests waiting in this queue */
			RF_ASSERT(queue->queueLength >= 0);
			if (RF_OK_TO_DISPATCH(queue, req)) {
				Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
				rf_DispatchKernelIO(queue, req);
			} else {	
				/* we can't dispatch it, so just re-enqueue it.  
				   potential trouble here if disk queues batch reqs */
				Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
				queue->queueLength++;
				(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
				done = 1;
			}
		} else {	
			Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
			done = 1;
		}
	}

	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
}
/* promotes accesses tagged with the given parityStripeID from low priority
 * to normal priority.  This promotion is optional, meaning that a queue
 * need not implement it.  If there is no promotion routine associated with
 * a queue, this routine does nothing and returns -1.
 */
int
rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
		 RF_ReconUnitNum_t which_ru)
{
	int     retval;

	if (!queue->qPtr->Promote)
		return (-1);
	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
	return (retval);
}

RF_DiskQueueData_t *
rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
		       RF_SectorCount_t nsect, void *bf,
		       RF_StripeNum_t parityStripeID,
		       RF_ReconUnitNum_t which_ru,
		       int (*wakeF) (void *, int), void *arg,
		       RF_AccTraceEntry_t *tracerec, RF_Raid_t *raidPtr,
		       RF_DiskQueueDataFlags_t flags, void *kb_proc,
		       int waitflag)
{
	RF_DiskQueueData_t *p;

	p = pool_get(&rf_pools.dqd, PR_WAITOK | PR_ZERO);
	KASSERT(p != NULL);

	/* Obtain a buffer from our own pool.  It is possible for the
	   regular getiobuf() to run out of memory and return NULL.
	   We need to guarantee that never happens, as RAIDframe
	   doesn't have a good way to recover if memory allocation
	   fails here.
	*/
	p->bp = pool_get(&rf_pools.bufio, PR_WAITOK | PR_ZERO);
	KASSERT(p->bp != NULL);
	
	buf_init(p->bp);
		
	SET(p->bp->b_cflags, BC_BUSY);	/* mark buffer busy */

	p->sectorOffset = ssect + rf_protectedSectors;
	p->numSector = nsect;
	p->type = typ;
	p->buf = bf;
	p->parityStripeID = parityStripeID;
	p->which_ru = which_ru;
	p->CompleteFunc = wakeF;
	p->argument = arg;
	p->next = NULL;
	p->tracerec = tracerec;
	p->priority = RF_IO_NORMAL_PRIORITY;
	p->raidPtr = raidPtr;
	p->flags = flags;
	p->b_proc = kb_proc;
	return (p);
}

void
rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
{

	buf_destroy(p->bp);

	pool_put(&rf_pools.bufio, p->bp);
	pool_put(&rf_pools.dqd, p);
}