Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*	$NetBSD: rf_paritylogDiskMgr.c,v 1.29 2019/02/09 03:34:00 christos Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: William V. Courtright II
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */
/* Code for flushing and reintegration operations related to parity logging.
 *
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_paritylogDiskMgr.c,v 1.29 2019/02/09 03:34:00 christos Exp $");

#include "rf_archs.h"

#if RF_INCLUDE_PARITYLOGGING > 0

#include <dev/raidframe/raidframevar.h>

#include "rf_threadstuff.h"
#include "rf_mcpair.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagfuncs.h"
#include "rf_desc.h"
#include "rf_layout.h"
#include "rf_diskqueue.h"
#include "rf_paritylog.h"
#include "rf_general.h"
#include "rf_etimer.h"
#include "rf_paritylogging.h"
#include "rf_engine.h"
#include "rf_dagutils.h"
#include "rf_map.h"
#include "rf_parityscan.h"

#include "rf_paritylogDiskMgr.h"

static void *AcquireReintBuffer(RF_RegionBufferQueue_t *);

static void *
AcquireReintBuffer(RF_RegionBufferQueue_t *pool)
{
	void *bufPtr = NULL;

	/* Return a region buffer from the free list (pool). If the free list
	 * is empty, WAIT. BLOCKING */

	rf_lock_mutex2(pool->mutex);
	if (pool->availableBuffers > 0) {
		bufPtr = pool->buffers[pool->availBuffersIndex];
		pool->availableBuffers--;
		pool->availBuffersIndex++;
		if (pool->availBuffersIndex == pool->totalBuffers)
			pool->availBuffersIndex = 0;
		rf_unlock_mutex2(pool->mutex);
	} else {
		RF_PANIC();	/* should never happen in correct config,
				 * single reint */
		rf_wait_cond2(pool->cond, pool->mutex);
	}
	return (bufPtr);
}

static void
ReleaseReintBuffer(
    RF_RegionBufferQueue_t * pool,
    void *bufPtr)
{
	/* Insert a region buffer (bufPtr) into the free list (pool).
	 * NON-BLOCKING */

	rf_lock_mutex2(pool->mutex);
	pool->availableBuffers++;
	pool->buffers[pool->emptyBuffersIndex] = bufPtr;
	pool->emptyBuffersIndex++;
	if (pool->emptyBuffersIndex == pool->totalBuffers)
		pool->emptyBuffersIndex = 0;
	RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
	/*
	 * XXXmrg this signal goes with the above "shouldn't happen" wait?
	 */
	rf_signal_cond2(pool->cond);
	rf_unlock_mutex2(pool->mutex);
}



static void
ReadRegionLog(
    RF_RegionId_t regionID,
    RF_MCPair_t * rrd_mcpair,
    void *regionBuffer,
    RF_Raid_t * raidPtr,
    RF_DagHeader_t ** rrd_dag_h,
    RF_AllocListElem_t ** rrd_alloclist,
    RF_PhysDiskAddr_t ** rrd_pda)
{
	/* Initiate the read a region log from disk.  Once initiated, return
	 * to the calling routine.
	 *
	 * NON-BLOCKING */

	RF_AccTraceEntry_t *tracerec;
	RF_DagNode_t *rrd_rdNode;

	/* create DAG to read region log from disk */
	rf_MakeAllocList(*rrd_alloclist);
	*rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer,
				      rf_DiskReadFunc, rf_DiskReadUndoFunc,
				      "Rrl", *rrd_alloclist,
				      RF_DAG_FLAGS_NONE,
				      RF_IO_NORMAL_PRIORITY);

	/* create and initialize PDA for the core log */
	*rrd_pda = rf_AllocPDAList(1);
	rf_MapLogParityLogging(raidPtr, regionID, 0,
			       &((*rrd_pda)->col), &((*rrd_pda)->startSector));
	(*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;

	if ((*rrd_pda)->next) {
		(*rrd_pda)->next = NULL;
		printf("set rrd_pda->next to NULL\n");
	}
	/* initialize DAG parameters */
	tracerec = RF_Malloc(sizeof(*tracerec));
	(*rrd_dag_h)->tracerec = tracerec;
	rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
	rrd_rdNode->params[0].p = *rrd_pda;
/*  rrd_rdNode->params[1] = regionBuffer; */
	rrd_rdNode->params[2].v = 0;
	rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);

	/* launch region log read dag */
	rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
	    (void *) rrd_mcpair);
}



static void
WriteCoreLog(
    RF_ParityLog_t * log,
    RF_MCPair_t * fwr_mcpair,
    RF_Raid_t * raidPtr,
    RF_DagHeader_t ** fwr_dag_h,
    RF_AllocListElem_t ** fwr_alloclist,
    RF_PhysDiskAddr_t ** fwr_pda)
{
	RF_RegionId_t regionID = log->regionID;
	RF_AccTraceEntry_t *tracerec;
	RF_SectorNum_t regionOffset;
	RF_DagNode_t *fwr_wrNode;

	/* Initiate the write of a core log to a region log disk. Once
	 * initiated, return to the calling routine.
	 *
	 * NON-BLOCKING */

	/* create DAG to write a core log to a region log disk */
	rf_MakeAllocList(*fwr_alloclist);
	*fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr,
				      rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
	    "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);

	*fwr_pda = rf_AllocPDAList(1);
	regionOffset = log->diskOffset;
	rf_MapLogParityLogging(raidPtr, regionID, regionOffset,
			       &((*fwr_pda)->col),
			       &((*fwr_pda)->startSector));
	(*fwr_pda)->numSector = raidPtr->numSectorsPerLog;

	/* initialize DAG parameters */
	tracerec = RF_Malloc(sizeof(*tracerec));
	(*fwr_dag_h)->tracerec = tracerec;
	fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
	fwr_wrNode->params[0].p = *fwr_pda;
/*  fwr_wrNode->params[1] = log->bufPtr; */
	fwr_wrNode->params[2].v = 0;
	fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);

	/* launch the dag to write the core log to disk */
	rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
	    (void *) fwr_mcpair);
}


static void
ReadRegionParity(
    RF_RegionId_t regionID,
    RF_MCPair_t * prd_mcpair,
    void *parityBuffer,
    RF_Raid_t * raidPtr,
    RF_DagHeader_t ** prd_dag_h,
    RF_AllocListElem_t ** prd_alloclist,
    RF_PhysDiskAddr_t ** prd_pda)
{
	/* Initiate the read region parity from disk. Once initiated, return
	 * to the calling routine.
	 *
	 * NON-BLOCKING */

	RF_AccTraceEntry_t *tracerec;
	RF_DagNode_t *prd_rdNode;

	/* create DAG to read region parity from disk */
	rf_MakeAllocList(*prd_alloclist);
	*prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc,
				      rf_DiskReadUndoFunc, "Rrp",
				      *prd_alloclist, RF_DAG_FLAGS_NONE,
				      RF_IO_NORMAL_PRIORITY);

	/* create and initialize PDA for region parity */
	*prd_pda = rf_AllocPDAList(1);
	rf_MapRegionParity(raidPtr, regionID,
			   &((*prd_pda)->col), &((*prd_pda)->startSector),
			   &((*prd_pda)->numSector));
	if (rf_parityLogDebug)
		printf("[reading %d sectors of parity from region %d]\n",
		    (int) (*prd_pda)->numSector, regionID);
	if ((*prd_pda)->next) {
		(*prd_pda)->next = NULL;
		printf("set prd_pda->next to NULL\n");
	}
	/* initialize DAG parameters */
	tracerec = RF_Malloc(sizeof(*tracerec));
	(*prd_dag_h)->tracerec = tracerec;
	prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
	prd_rdNode->params[0].p = *prd_pda;
	prd_rdNode->params[1].p = parityBuffer;
	prd_rdNode->params[2].v = 0;
	prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
#if RF_DEBUG_VALIDATE_DAG
	if (rf_validateDAGDebug)
		rf_ValidateDAG(*prd_dag_h);
#endif
	/* launch region parity read dag */
	rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
	    (void *) prd_mcpair);
}

static void
WriteRegionParity(
    RF_RegionId_t regionID,
    RF_MCPair_t * pwr_mcpair,
    void *parityBuffer,
    RF_Raid_t * raidPtr,
    RF_DagHeader_t ** pwr_dag_h,
    RF_AllocListElem_t ** pwr_alloclist,
    RF_PhysDiskAddr_t ** pwr_pda)
{
	/* Initiate the write of region parity to disk. Once initiated, return
	 * to the calling routine.
	 *
	 * NON-BLOCKING */

	RF_AccTraceEntry_t *tracerec;
	RF_DagNode_t *pwr_wrNode;

	/* create DAG to write region log from disk */
	rf_MakeAllocList(*pwr_alloclist);
	*pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer,
				      rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
				      "Wrp", *pwr_alloclist,
				      RF_DAG_FLAGS_NONE,
				      RF_IO_NORMAL_PRIORITY);

	/* create and initialize PDA for region parity */
	*pwr_pda = rf_AllocPDAList(1);
	rf_MapRegionParity(raidPtr, regionID,
			   &((*pwr_pda)->col), &((*pwr_pda)->startSector),
			   &((*pwr_pda)->numSector));

	/* initialize DAG parameters */
	tracerec = RF_Malloc(sizeof(*tracerec));
	(*pwr_dag_h)->tracerec = tracerec;
	pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
	pwr_wrNode->params[0].p = *pwr_pda;
/*  pwr_wrNode->params[1] = parityBuffer; */
	pwr_wrNode->params[2].v = 0;
	pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);

	/* launch the dag to write region parity to disk */
	rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
	    (void *) pwr_mcpair);
}

static void
FlushLogsToDisk(
    RF_Raid_t * raidPtr,
    RF_ParityLog_t * logList)
{
	/* Flush a linked list of core logs to the log disk. Logs contain the
	 * disk location where they should be written.  Logs were written in
	 * FIFO order and that order must be preserved.
	 *
	 * Recommended optimizations: 1) allow multiple flushes to occur
	 * simultaneously 2) coalesce contiguous flush operations
	 *
	 * BLOCKING */

	RF_ParityLog_t *log;
	RF_RegionId_t regionID;
	RF_MCPair_t *fwr_mcpair;
	RF_DagHeader_t *fwr_dag_h;
	RF_AllocListElem_t *fwr_alloclist;
	RF_PhysDiskAddr_t *fwr_pda;

	fwr_mcpair = rf_AllocMCPair();
	RF_LOCK_MCPAIR(fwr_mcpair);

	RF_ASSERT(logList);
	log = logList;
	while (log) {
		regionID = log->regionID;

		/* create and launch a DAG to write the core log */
		if (rf_parityLogDebug)
			printf("[initiating write of core log for region %d]\n", regionID);
		fwr_mcpair->flag = RF_FALSE;
		WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h,
			     &fwr_alloclist, &fwr_pda);

		/* wait for the DAG to complete */
		while (!fwr_mcpair->flag)
			RF_WAIT_MCPAIR(fwr_mcpair);
		if (fwr_dag_h->status != rf_enable) {
			RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
			RF_ASSERT(0);
		}
		/* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
		rf_FreePhysDiskAddr(fwr_pda);
		rf_FreeDAG(fwr_dag_h);
		rf_FreeAllocList(fwr_alloclist);

		log = log->next;
	}
	RF_UNLOCK_MCPAIR(fwr_mcpair);
	rf_FreeMCPair(fwr_mcpair);
	rf_ReleaseParityLogs(raidPtr, logList);
}

static void
ReintegrateRegion(
    RF_Raid_t * raidPtr,
    RF_RegionId_t regionID,
    RF_ParityLog_t * coreLog)
{
	RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
	RF_DagHeader_t *rrd_dag_h = NULL, *prd_dag_h, *pwr_dag_h;
	RF_AllocListElem_t *rrd_alloclist = NULL, *prd_alloclist, *pwr_alloclist;
	RF_PhysDiskAddr_t *rrd_pda = NULL, *prd_pda, *pwr_pda;
	void *parityBuffer, *regionBuffer = NULL;

	/* Reintegrate a region (regionID).
	 *
	 * 1. acquire region and parity buffers
	 * 2. read log from disk
	 * 3. read parity from disk
	 * 4. apply log to parity
	 * 5. apply core log to parity
	 * 6. write new parity to disk
	 *
	 * BLOCKING */

	if (rf_parityLogDebug)
		printf("[reintegrating region %d]\n", regionID);

	/* initiate read of region parity */
	if (rf_parityLogDebug)
		printf("[initiating read of parity for region %d]\n",regionID);
	parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
	prd_mcpair = rf_AllocMCPair();
	RF_LOCK_MCPAIR(prd_mcpair);
	prd_mcpair->flag = RF_FALSE;
	ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr,
			 &prd_dag_h, &prd_alloclist, &prd_pda);

	/* if region log nonempty, initiate read */
	if (raidPtr->regionInfo[regionID].diskCount > 0) {
		if (rf_parityLogDebug)
			printf("[initiating read of disk log for region %d]\n",
			       regionID);
		regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
		rrd_mcpair = rf_AllocMCPair();
		RF_LOCK_MCPAIR(rrd_mcpair);
		rrd_mcpair->flag = RF_FALSE;
		ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr,
			      &rrd_dag_h, &rrd_alloclist, &rrd_pda);
	}
	/* wait on read of region parity to complete */
	while (!prd_mcpair->flag) {
		RF_WAIT_MCPAIR(prd_mcpair);
	}
	RF_UNLOCK_MCPAIR(prd_mcpair);
	if (prd_dag_h->status != rf_enable) {
		RF_ERRORMSG("Unable to read parity from disk\n");
		/* add code to fail the parity disk */
		RF_ASSERT(0);
	}
	/* apply core log to parity */
	/* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */

	if (raidPtr->regionInfo[regionID].diskCount > 0) {
		/* wait on read of region log to complete */
		while (!rrd_mcpair->flag)
			RF_WAIT_MCPAIR(rrd_mcpair);
		RF_UNLOCK_MCPAIR(rrd_mcpair);
		if (rrd_dag_h->status != rf_enable) {
			RF_ERRORMSG("Unable to read region log from disk\n");
			/* add code to fail the log disk */
			RF_ASSERT(0);
		}
		/* apply region log to parity */
		/* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
		/* release resources associated with region log */
		/* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
		rf_FreePhysDiskAddr(rrd_pda);
		rf_FreeDAG(rrd_dag_h);
		rf_FreeAllocList(rrd_alloclist);
		rf_FreeMCPair(rrd_mcpair);
		ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
	}
	/* write reintegrated parity to disk */
	if (rf_parityLogDebug)
		printf("[initiating write of parity for region %d]\n",
		       regionID);
	pwr_mcpair = rf_AllocMCPair();
	RF_LOCK_MCPAIR(pwr_mcpair);
	pwr_mcpair->flag = RF_FALSE;
	WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr,
			  &pwr_dag_h, &pwr_alloclist, &pwr_pda);
	while (!pwr_mcpair->flag)
		RF_WAIT_MCPAIR(pwr_mcpair);
	RF_UNLOCK_MCPAIR(pwr_mcpair);
	if (pwr_dag_h->status != rf_enable) {
		RF_ERRORMSG("Unable to write parity to disk\n");
		/* add code to fail the parity disk */
		RF_ASSERT(0);
	}
	/* release resources associated with read of old parity */
	/* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
	rf_FreePhysDiskAddr(prd_pda);
	rf_FreeDAG(prd_dag_h);
	rf_FreeAllocList(prd_alloclist);
	rf_FreeMCPair(prd_mcpair);

	/* release resources associated with write of new parity */
	ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
	/* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
	rf_FreePhysDiskAddr(pwr_pda);
	rf_FreeDAG(pwr_dag_h);
	rf_FreeAllocList(pwr_alloclist);
	rf_FreeMCPair(pwr_mcpair);

	if (rf_parityLogDebug)
		printf("[finished reintegrating region %d]\n", regionID);
}



static void
ReintegrateLogs(
    RF_Raid_t * raidPtr,
    RF_ParityLog_t * logList)
{
	RF_ParityLog_t *log, *freeLogList = NULL;
	RF_ParityLogData_t *logData, *logDataList;
	RF_RegionId_t regionID;

	RF_ASSERT(logList);
	while (logList) {
		log = logList;
		logList = logList->next;
		log->next = NULL;
		regionID = log->regionID;
		ReintegrateRegion(raidPtr, regionID, log);
		log->numRecords = 0;

		/* remove all items which are blocked on reintegration of this
		 * region */
		rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
		logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID,
			   &raidPtr->parityLogDiskQueue.reintBlockHead,
			   &raidPtr->parityLogDiskQueue.reintBlockTail,
							   RF_TRUE);
		logDataList = logData;
		while (logData) {
			logData->next = rf_SearchAndDequeueParityLogData(
					 raidPtr, regionID,
					 &raidPtr->parityLogDiskQueue.reintBlockHead,
					 &raidPtr->parityLogDiskQueue.reintBlockTail,
					 RF_TRUE);
			logData = logData->next;
		}
		rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);

		/* process blocked log data and clear reintInProgress flag for
		 * this region */
		if (logDataList)
			rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
		else {
			/* Enable flushing for this region.  Holding both
			 * locks provides a synchronization barrier with
			 * DumpParityLogToDisk */
			rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex);
			rf_lock_mutex2(raidPtr->regionInfo[regionID].reintMutex);
			/* XXXmrg: don't need this? */
			rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
			raidPtr->regionInfo[regionID].diskCount = 0;
			raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
			rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex);
			rf_unlock_mutex2(raidPtr->regionInfo[regionID].reintMutex);	/* flushing is now
											 * enabled */
			/* XXXmrg: don't need this? */
			rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
		}
		/* if log wasn't used, attach it to the list of logs to be
		 * returned */
		if (log) {
			log->next = freeLogList;
			freeLogList = log;
		}
	}
	if (freeLogList)
		rf_ReleaseParityLogs(raidPtr, freeLogList);
}

int
rf_ShutdownLogging(RF_Raid_t * raidPtr)
{
	/* shutdown parity logging 1) disable parity logging in all regions 2)
	 * reintegrate all regions */

	RF_SectorCount_t diskCount;
	RF_RegionId_t regionID;
	RF_ParityLog_t *log;

	if (rf_parityLogDebug)
		printf("[shutting down parity logging]\n");
	/* Since parity log maps are volatile, we must reintegrate all
	 * regions. */
	if (rf_forceParityLogReint) {
		for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
			rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex);
			raidPtr->regionInfo[regionID].loggingEnabled =
				RF_FALSE;
			log = raidPtr->regionInfo[regionID].coreLog;
			raidPtr->regionInfo[regionID].coreLog = NULL;
			diskCount = raidPtr->regionInfo[regionID].diskCount;
			rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex);
			if (diskCount > 0 || log != NULL)
				ReintegrateRegion(raidPtr, regionID, log);
			if (log != NULL)
				rf_ReleaseParityLogs(raidPtr, log);
		}
	}
	if (rf_parityLogDebug) {
		printf("[parity logging disabled]\n");
		printf("[should be done!]\n");
	}
	return (0);
}

int
rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
{
	RF_ParityLog_t *reintQueue, *flushQueue;
	int     workNeeded, done = RF_FALSE;
	int s;

	/* Main program for parity logging disk thread.  This routine waits
	 * for work to appear in either the flush or reintegration queues and
	 * is responsible for flushing core logs to the log disk as well as
	 * reintegrating parity regions.
	 *
	 * BLOCKING */

	s = splbio();

	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);

	/*
         * Inform our creator that we're running. Don't bother doing the
         * mutex lock/unlock dance- we locked above, and we'll unlock
         * below with nothing to do, yet.
         */
	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);

	/* empty the work queues */
	flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
	raidPtr->parityLogDiskQueue.flushQueue = NULL;
	reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
	raidPtr->parityLogDiskQueue.reintQueue = NULL;
	workNeeded = (flushQueue || reintQueue);

	while (!done) {
		while (workNeeded) {
			/* First, flush all logs in the flush queue, freeing
			 * buffers Second, reintegrate all regions which are
			 * reported as full. Third, append queued log data
			 * until blocked.
			 *
			 * Note: Incoming appends (ParityLogAppend) can block on
			 * either 1. empty buffer pool 2. region under
			 * reintegration To preserve a global FIFO ordering of
			 * appends, buffers are not released to the world
			 * until those appends blocked on buffers are removed
			 * from the append queue.  Similarly, regions which
			 * are reintegrated are not opened for general use
			 * until the append queue has been emptied. */

			rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);

			/* empty flushQueue, using free'd log buffers to
			 * process bufTail */
			if (flushQueue)
			       FlushLogsToDisk(raidPtr, flushQueue);

			/* empty reintQueue, flushing from reintTail as we go */
			if (reintQueue)
				ReintegrateLogs(raidPtr, reintQueue);

			rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
			flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
			raidPtr->parityLogDiskQueue.flushQueue = NULL;
			reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
			raidPtr->parityLogDiskQueue.reintQueue = NULL;
			workNeeded = (flushQueue || reintQueue);
		}
		/* no work is needed at this point */
		if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
			/* shutdown parity logging 1. disable parity logging
			 * in all regions 2. reintegrate all regions */
			done = RF_TRUE;	/* thread disabled, no work needed */
			rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
			rf_ShutdownLogging(raidPtr);
		}
		if (!done) {
			/* thread enabled, no work needed, so sleep */
			if (rf_parityLogDebug)
				printf("[parity logging disk manager sleeping]\n");
			rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
				      raidPtr->parityLogDiskQueue.mutex);
			if (rf_parityLogDebug)
				printf("[parity logging disk manager just woke up]\n");
			flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
			raidPtr->parityLogDiskQueue.flushQueue = NULL;
			reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
			raidPtr->parityLogDiskQueue.reintQueue = NULL;
			workNeeded = (flushQueue || reintQueue);
		}
	}
	/*
         * Announce that we're done.
         */
	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);

	splx(s);

	/*
         * In the NetBSD kernel, the thread must exit; returning would
         * cause the proc trampoline to attempt to return to userspace.
         */
	kthread_exit(0);	/* does not return */
}
#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */