Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/*
 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2002-2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD: src/sys/dev/ath/ath_hal/ar5416/ar9285_reset.c,v 1.4 2010/08/14 15:29:21 adrian Exp $
 */

/*
 * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
 * supports only 2Ghz operation.
 */

#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"

#include "ah_eeprom_v14.h"
#include "ah_eeprom_v4k.h"

#include "ar5416/ar9285.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"

/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 
#define	EEP_MINOR(_ah) \
	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)

/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
#define PLL_SETTLE_DELAY	300	/* 300 usec */
#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */

static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
	struct ar5416eeprom_4k *pEepData, 
	HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
	uint16_t cfgCtl, uint16_t AntennaReduction,
	uint16_t twiceMaxRegulatoryPower, 
	uint16_t powerLimit);
static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
	struct ar5416eeprom_4k *pEepData,
	HAL_CHANNEL_INTERNAL *chan,
	int16_t *pTxPowerIndexOffset);
static int16_t interpolate(uint16_t target, uint16_t srcLeft,
	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
static HAL_BOOL ar9285FillVpdTable(uint8_t, uint8_t, uint8_t *, uint8_t *,
		                   uint16_t, uint8_t *);
static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah, 
	HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
	uint8_t * bChans, uint16_t availPiers,
	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
	uint16_t numXpdGains);
static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
static uint16_t ar9285GetMaxEdgePower(uint16_t, CAL_CTL_EDGES *);

/* XXX gag, this is sick */
typedef enum Ar5416_Rates {
	rate6mb,  rate9mb,  rate12mb, rate18mb,
	rate24mb, rate36mb, rate48mb, rate54mb,
	rate1l,   rate2l,   rate2s,   rate5_5l,
	rate5_5s, rate11l,  rate11s,  rateXr,
	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
	Ar5416RateSize
} AR5416_RATES;

HAL_BOOL
ar9285SetTransmitPower(struct ath_hal *ah,
	HAL_CHANNEL *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
#define N(a)            (sizeof (a) / sizeof (a[0]))

    HAL_CHANNEL_INTERNAL *ichan;
    MODAL_EEP4K_HEADER	*pModal;
    struct ath_hal_5212 *ahp = AH5212(ah);
    int16_t		ratesArray[Ar5416RateSize];
    int16_t		txPowerIndexOffset = 0;
    uint8_t		ht40PowerIncForPdadc = 2;	
    int			i;
    
    uint16_t		cfgCtl;
    uint16_t		powerLimit;
    uint16_t		twiceAntennaReduction;
    uint16_t		twiceMaxRegulatoryPower;
    int16_t		maxPower;
    HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
    struct ar5416eeprom_4k *pEepData = &ee->ee_base;

    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
    ichan = ath_hal_checkchannel(ah, chan);

    /* Setup info for the actual eeprom */
    OS_MEMZERO(ratesArray, sizeof(ratesArray));
    cfgCtl = ath_hal_getctl(ah, chan);
    powerLimit = ichan->maxRegTxPower * 2;
    twiceAntennaReduction = ichan->antennaMax;
    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 
    pModal = &pEepData->modalHeader;
    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
	__func__,chan->channel, cfgCtl );      
  
    if (IS_EEP_MINOR_V2(ah)) {
        ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
    }
 
    if (!ar9285SetPowerPerRateTable(ah, pEepData, ichan,
                                    &ratesArray[0],cfgCtl,
                                    twiceAntennaReduction,
				    twiceMaxRegulatoryPower, powerLimit)) {
        HALDEBUG(ah, HAL_DEBUG_ANY,
	    "%s: unable to set tx power per rate table\n", __func__);
        return AH_FALSE;
    }

    if (!ar9285SetPowerCalTable(ah,  pEepData, ichan, &txPowerIndexOffset)) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
	    __func__);
        return AH_FALSE;
    }
  
    maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
    maxPower = AH_MAX(maxPower, ratesArray[rate1l]);

    if (IS_CHAN_HT40(chan)) {
        maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
    }

    ahp->ah_tx6PowerInHalfDbm = maxPower;   
    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;

    /*
     * txPowerIndexOffset is set by the SetPowerTable() call -
     *  adjust the rate table (0 offset if rates EEPROM not loaded)
     */
    for (i = 0; i < N(ratesArray); i++) {
        ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
        if (ratesArray[i] > AR5416_MAX_RATE_POWER)
            ratesArray[i] = AR5416_MAX_RATE_POWER;
	ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
    }

#ifdef AH_EEPROM_DUMP
    ar5416PrintPowerPerRate(ah, ratesArray);
#endif

    /* Write the OFDM power per rate set */
    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
        POW_SM(ratesArray[rate18mb], 24)
          | POW_SM(ratesArray[rate12mb], 16)
          | POW_SM(ratesArray[rate9mb], 8)
          | POW_SM(ratesArray[rate6mb], 0)
    );
    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
        POW_SM(ratesArray[rate54mb], 24)
          | POW_SM(ratesArray[rate48mb], 16)
          | POW_SM(ratesArray[rate36mb], 8)
          | POW_SM(ratesArray[rate24mb], 0)
    );

    /* Write the CCK power per rate set */
    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
        POW_SM(ratesArray[rate2s], 24)
          | POW_SM(ratesArray[rate2l],  16)
          | POW_SM(ratesArray[rateXr],  8) /* XR target power */
          | POW_SM(ratesArray[rate1l],   0)
    );
    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
        POW_SM(ratesArray[rate11s], 24)
          | POW_SM(ratesArray[rate11l], 16)
          | POW_SM(ratesArray[rate5_5s], 8)
          | POW_SM(ratesArray[rate5_5l], 0)
    );
    HALDEBUG(ah, HAL_DEBUG_RESET,
	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); 

    /* Write the HT20 power per rate set */
    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
        POW_SM(ratesArray[rateHt20_3], 24)
          | POW_SM(ratesArray[rateHt20_2], 16)
          | POW_SM(ratesArray[rateHt20_1], 8)
          | POW_SM(ratesArray[rateHt20_0], 0)
    );
    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
        POW_SM(ratesArray[rateHt20_7], 24)
          | POW_SM(ratesArray[rateHt20_6], 16)
          | POW_SM(ratesArray[rateHt20_5], 8)
          | POW_SM(ratesArray[rateHt20_4], 0)
    );

    if (IS_CHAN_HT40(chan)) {
        /* Write the HT40 power per rate set */
	/* Correct PAR difference between HT40 and HT20/LEGACY */
        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
            POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
              | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
              | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
              | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
        );
        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
            POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
              | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
              | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
              | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
        );
        /* Write the Dup/Ext 40 power per rate set */
        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
            POW_SM(ratesArray[rateExtOfdm], 24)
              | POW_SM(ratesArray[rateExtCck], 16)
              | POW_SM(ratesArray[rateDupOfdm], 8)
              | POW_SM(ratesArray[rateDupCck], 0)
        );
    }

    return AH_TRUE;
#undef POW_SM
#undef N
}

HAL_BOOL
ar9285SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *_chan)
{
    HAL_CHANNEL_INTERNAL *chan;
    const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
    const struct ar5416eeprom_4k *eep = &ee->ee_base;
    const MODAL_EEP4K_HEADER *pModal;
    uint8_t	txRxAttenLocal = 23;

    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
    chan = ath_hal_checkchannel(ah, _chan);
    pModal = &eep->modalHeader;

    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
    OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, pModal->antCtrlChain[0]);
    OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) &
        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
        	SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
        	SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

    if (IS_EEP_MINOR_V3(ah)) {
	if (IS_CHAN_HT40(chan)) {
		/* Overwrite switch settling with HT40 value */
		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
		    pModal->swSettleHt40);
	}
	txRxAttenLocal = pModal->txRxAttenCh[0];

        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
	    pModal->bswMargin[0]);
        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
	    pModal->bswAtten[0]);
	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
	    pModal->xatten2Margin[0]);
	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
	    pModal->xatten2Db[0]);

	/* block 1 has the same values as block 0 */	
        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
	    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
	    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
	    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
	    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);

    }
    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
        AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
        AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);

    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
        AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
        AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);

    if (AR_SREV_KITE_11(ah))
	    OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));

    return AH_TRUE;
}

/*
 * Helper functions common for AP/CB/XB
 */

static HAL_BOOL
ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
			   HAL_CHANNEL_INTERNAL *chan,
                           int16_t *ratesArray, uint16_t cfgCtl,
                           uint16_t AntennaReduction, 
                           uint16_t twiceMaxRegulatoryPower,
                           uint16_t powerLimit)
{
#define	N(a)	(sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)

	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
	int i;
	int16_t  twiceLargestAntenna;
	CAL_CTL_DATA_4K *rep;
	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
	int16_t scaledPower, minCtlPower;

#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
	static const uint16_t ctlModesFor11g[] = {
	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
	};
	const uint16_t *pCtlMode;
	uint16_t numCtlModes, ctlMode, freq;
	CHAN_CENTERS centers;

	ar5416GetChannelCenters(ah,  chan, &centers);

	/* Compute TxPower reduction due to Antenna Gain */

	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);

	/* XXX setup for 5212 use (really used?) */
	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);

	/* 
	 * scaledPower is the minimum of the user input power level and
	 * the regulatory allowed power level
	 */
	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);

	/* Get target powers from EEPROM - our baseline for TX Power */
	/* Setup for CTL modes */
	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
	pCtlMode = ctlModesFor11g;

	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);

	if (IS_CHAN_HT40(chan)) {
		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */

		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
		/* Get target powers for extension channels */
		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
	}

	/*
	 * For MIMO, need to apply regulatory caps individually across dynamically
	 * running modes: CCK, OFDM, HT20, HT40
	 *
	 * The outer loop walks through each possible applicable runtime mode.
	 * The inner loop walks through each ctlIndex entry in EEPROM.
	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
	 *
	 */
	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
		    (pCtlMode[ctlMode] == CTL_2GHT40);
		if (isHt40CtlMode) {
			freq = centers.ctl_center;
		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
			freq = centers.ext_center;
		} else {
			freq = centers.ctl_center;
		}

		/* walk through each CTL index stored in EEPROM */
		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
			uint16_t twiceMinEdgePower;

			/* compare test group from regulatory channel list with test mode from pCtlMode list */
			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
				rep = &(pEepData->ctlData[i]);
				twiceMinEdgePower = ar9285GetMaxEdgePower(freq,
							rep->ctlEdges[
							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1]);
				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
					/* Find the minimum of all CTL edge powers that apply to this channel */
					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
				} else {
					/* specific */
					twiceMaxEdgePower = twiceMinEdgePower;
					break;
				}
			}
		}
		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
		/* Apply ctl mode to correct target power set */
		switch(pCtlMode[ctlMode]) {
		case CTL_11B:
			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
			}
			break;
		case CTL_11A:
		case CTL_11G:
			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
			}
			break;
		case CTL_5GHT20:
		case CTL_2GHT20:
			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
			}
			break;
		case CTL_11B_EXT:
			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
			break;
		case CTL_11G_EXT:
			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
			break;
		case CTL_5GHT40:
		case CTL_2GHT40:
			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
			}
			break;
		default:
			return AH_FALSE;
			break;
		}
	} /* end ctl mode checking */

	/* Set rates Array from collected data */
	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];

	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
	}

	ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
	ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
	if (IS_CHAN_HT40(chan)) {
		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
		}
		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
		if (IS_CHAN_2GHZ(chan)) {
			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
		}
	}
	return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}

/**************************************************************************
 * fbin2freq
 *
 * Get channel value from binary representation held in eeprom
 * RETURNS: the frequency in MHz
 */
static uint16_t
fbin2freq(uint8_t fbin)
{
    /*
     * Reserved value 0xFF provides an empty definition both as
     * an fbin and as a frequency - do not convert
     */
    if (fbin == AR5416_BCHAN_UNUSED) {
        return fbin;
    }

    return (uint16_t)(2300 + fbin);
}

/*
 * XXX almost the same as ar5416GetMaxEdgePower.
 */
static uint16_t
ar9285GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower)
{
    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
    int      i;

    /* Get the edge power */
    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
        /*
         * If there's an exact channel match or an inband flag set
         * on the lower channel use the given rdEdgePower
         */
        if (freq == fbin2freq(pRdEdgesPower[i].bChannel)) {
            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
            break;
        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel))) {
            if (fbin2freq(pRdEdgesPower[i - 1].bChannel) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
            }
            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
            break;
        }
    }
    HALASSERT(twiceMaxEdgePower > 0);
    return twiceMaxEdgePower;
}



static HAL_BOOL
ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
	HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
{
    CAL_DATA_PER_FREQ_4K *pRawDataset;
    uint8_t  *pCalBChans = AH_NULL;
    uint16_t pdGainOverlap_t2;
    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
    uint16_t numPiers, i, j;
    int16_t  tMinCalPower;
    uint16_t numXpdGain, xpdMask;
    uint16_t xpdGainValues[AR5416_4K_NUM_PD_GAINS];
    uint32_t reg32, regOffset, regChainOffset;

    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
    
    xpdMask = pEepData->modalHeader.xpdGain;

    if (IS_EEP_MINOR_V2(ah)) {
        pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
    } else { 
    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
    }

    pCalBChans = pEepData->calFreqPier2G;
    numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
    numXpdGain = 0;
    /* Calculate the value of xpdgains from the xpdGain Mask */
    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
            if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
                HALASSERT(0);
                break;
            }
            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
            numXpdGain++;
        }
    }
    
    /* Write the detector gain biases and their number */
    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & 
    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | 
	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(0, AR_PHY_TPCRG1_PD_GAIN_3));

    for (i = 0; i < AR5416_MAX_CHAINS; i++) {

            if (AR_SREV_OWL_20_OR_LATER(ah) && 
            ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with 
             * only chains 0 and 2 populated 
             */
            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
        } else {
            regChainOffset = i * 0x1000;
        }

        if (pEepData->baseEepHeader.txMask & (1 << i)) {
            pRawDataset = pEepData->calPierData2G[i];

            ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
                                             pCalBChans, numPiers,
                                             pdGainOverlap_t2,
                                             &tMinCalPower, gainBoundaries,
                                             pdadcValues, numXpdGain);

            if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
                /*
                 * Note the pdadc table may not start at 0 dBm power, could be
                 * negative or greater than 0.  Need to offset the power
                 * values by the amount of minPower for griffin
                 */

                OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
                     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
                     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
                     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
                     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
                     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
            }

            /* Write the power values into the baseband power table */
            regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;

            for (j = 0; j < 32; j++) {
                reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
                    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
                    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
                    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
                OS_REG_WRITE(ah, regOffset, reg32);

#ifdef PDADC_DUMP
		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
			       i,
			       4*j, pdadcValues[4*j],
			       4*j+1, pdadcValues[4*j + 1],
			       4*j+2, pdadcValues[4*j + 2],
			       4*j+3, pdadcValues[4*j + 3]);
#endif
                regOffset += 4;
            }
        }
    }
    *pTxPowerIndexOffset = 0;

    return AH_TRUE;
}

static void
ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah, 
				 HAL_CHANNEL_INTERNAL *chan,
				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
                                 uint8_t * bChans,  uint16_t availPiers,
                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
{

    int       i, j, k;
    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
    uint16_t  idxL, idxR, numPiers; /* Pier indexes */

    /* filled out Vpd table for all pdGains (chanL) */
    static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];

    /* filled out Vpd table for all pdGains (chanR) */
    static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];

    /* filled out Vpd table for all pdGains (interpolated) */
    static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];

    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
    uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
    uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
    int16_t   vpdStep;
    int16_t   tmpVal;
    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
    HAL_BOOL    match;
    int16_t  minDelta = 0;
    CHAN_CENTERS centers;

    ar5416GetChannelCenters(ah, chan, &centers);

    /* Trim numPiers for the number of populated channel Piers */
    for (numPiers = 0; numPiers < availPiers; numPiers++) {
        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
            break;
        }
    }

    /* Find pier indexes around the current channel */
    match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
			bChans, numPiers, &idxL, &idxR);

    if (match) {
        /* Directly fill both vpd tables from the matching index */
        for (i = 0; i < numXpdGains; i++) {
            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
            ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i],
			       pRawDataSet[idxL].pwrPdg[i],
                               pRawDataSet[idxL].vpdPdg[i],
			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
        }
    } else {
        for (i = 0; i < numXpdGains; i++) {
            pVpdL = pRawDataSet[idxL].vpdPdg[i];
            pPwrL = pRawDataSet[idxL].pwrPdg[i];
            pVpdR = pRawDataSet[idxR].vpdPdg[i];
            pPwrR = pRawDataSet[idxR].pwrPdg[i];

            /* Start Vpd interpolation from the max of the minimum powers */
            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);

            /* End Vpd interpolation from the min of the max powers */
            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
            HALASSERT(maxPwrT4[i] > minPwrT4[i]);

            /* Fill pier Vpds */
            ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
            ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);

            /* Interpolate the final vpd */
            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
                vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
            }
        }
    }
    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);

    k = 0; /* index for the final table */
    for (i = 0; i < numXpdGains; i++) {
        if (i == (numXpdGains - 1)) {
            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
        } else {
            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
        }

        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);

	/* NB: only applies to owl 1.0 */
        if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
	    /*
             * fix the gain delta, but get a delta that can be applied to min to
             * keep the upper power values accurate, don't think max needs to
             * be adjusted because should not be at that area of the table?
	     */
            minDelta = pPdGainBoundaries[0] - 23;
            pPdGainBoundaries[0] = 23;
        }
        else {
            minDelta = 0;
        }

        /* Find starting index for this pdGain */
        if (i == 0) {
            ss = 0; /* for the first pdGain, start from index 0 */
        } else {
	    /* need overlap entries extrapolated below. */
            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
        }
        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
        /*
         *-ve ss indicates need to extrapolate data below for this pdGain
         */
        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
            ss++;
        }

        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;

        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
            pPDADCValues[k++] = vpdTableI[i][ss++];
        }

        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
        /*
         * for last gain, pdGainBoundary == Pmax_t2, so will
         * have to extrapolate
         */
        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
                          (ss - maxIndex +1) * vpdStep));
                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
                ss++;
            }
        }               /* extrapolated above */
    }                   /* for all pdGainUsed */

    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
    while (i < AR5416_PD_GAINS_IN_MASK) {
        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
        i++;
    }

    while (k < AR5416_NUM_PDADC_VALUES) {
        pPDADCValues[k] = pPDADCValues[k-1];
        k++;
    }
    return;
}
/*
 * XXX same as ar5416FillVpdTable
 */
static HAL_BOOL
ar9285FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
    uint16_t  i, k;
    uint8_t   currPwr = pwrMin;
    uint16_t  idxL, idxR;

    HALASSERT(pwrMax > pwrMin);
    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
        getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
                           &(idxL), &(idxR));
        if (idxR < 1)
            idxR = 1;           /* extrapolate below */
        if (idxL == numIntercepts - 1)
            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
        if (pPwrList[idxL] == pPwrList[idxR])
            k = pVpdList[idxL];
        else
            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
                  (pPwrList[idxR] - pPwrList[idxL]) );
        HALASSERT(k < 256);
        pRetVpdList[i] = (uint8_t)k;
        currPwr += 2;               /* half dB steps */
    }

    return AH_TRUE;
}
static int16_t
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
            int16_t targetLeft, int16_t targetRight)
{
    int16_t rv;

    if (srcRight == srcLeft) {
        rv = targetLeft;
    } else {
        rv = (int16_t)( ((target - srcLeft) * targetRight +
              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
    }
    return rv;
}

HAL_BOOL
getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
                   uint16_t *indexL, uint16_t *indexR)
{
    uint16_t i;

    /*
     * Check first and last elements for beyond ordered array cases.
     */
    if (target <= pList[0]) {
        *indexL = *indexR = 0;
        return AH_TRUE;
    }
    if (target >= pList[listSize-1]) {
        *indexL = *indexR = (uint16_t)(listSize - 1);
        return AH_TRUE;
    }

    /* look for value being near or between 2 values in list */
    for (i = 0; i < listSize - 1; i++) {
        /*
         * If value is close to the current value of the list
         * then target is not between values, it is one of the values
         */
        if (pList[i] == target) {
            *indexL = *indexR = i;
            return AH_TRUE;
        }
        /*
         * Look for value being between current value and next value
         * if so return these 2 values
         */
        if (target < pList[i + 1]) {
            *indexL = i;
            *indexR = (uint16_t)(i + 1);
            return AH_FALSE;
        }
    }
    HALASSERT(0);
    *indexL = *indexR = 0;
    return AH_FALSE;
}