Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/*	$NetBSD: kern_turnstile.c,v 1.32 2012/06/15 13:51:40 yamt Exp $	*/

/*-
 * Copyright (c) 2002, 2006, 2007, 2009 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe and Andrew Doran.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Turnstiles are described in detail in:
 *
 *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
 *	    Richard McDougall.
 *
 * Turnstiles are kept in a hash table.  There are likely to be many more
 * synchronisation objects than there are threads.  Since a thread can block
 * on only one lock at a time, we only need one turnstile per thread, and
 * so they are allocated at thread creation time.
 *
 * When a thread decides it needs to block on a lock, it looks up the
 * active turnstile for that lock.  If no active turnstile exists, then
 * the process lends its turnstile to the lock.  If there is already an
 * active turnstile for the lock, the thread places its turnstile on a
 * list of free turnstiles, and references the active one instead.
 *
 * The act of looking up the turnstile acquires an interlock on the sleep
 * queue.  If a thread decides it doesn't need to block after all, then this
 * interlock must be released by explicitly aborting the turnstile
 * operation.
 *
 * When a thread is awakened, it needs to get its turnstile back.  If there
 * are still other threads waiting in the active turnstile, the thread
 * grabs a free turnstile off the free list.  Otherwise, it can take back
 * the active turnstile from the lock (thus deactivating the turnstile).
 *
 * Turnstiles are the place to do priority inheritence.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_turnstile.c,v 1.32 2012/06/15 13:51:40 yamt Exp $");

#include <sys/param.h>
#include <sys/lockdebug.h>
#include <sys/pool.h>
#include <sys/proc.h> 
#include <sys/sleepq.h>
#include <sys/systm.h>

#define	TS_HASH_SIZE	64
#define	TS_HASH_MASK	(TS_HASH_SIZE - 1)
#define	TS_HASH(obj)	(((uintptr_t)(obj) >> 3) & TS_HASH_MASK)

static tschain_t	turnstile_tab[TS_HASH_SIZE]	__cacheline_aligned;
pool_cache_t		turnstile_cache			__read_mostly;

static int		turnstile_ctor(void *, void *, int);

extern turnstile_t	turnstile0;

/*
 * turnstile_init:
 *
 *	Initialize the turnstile mechanism.
 */
void
turnstile_init(void)
{
	tschain_t *tc;
	int i;

	for (i = 0; i < TS_HASH_SIZE; i++) {
		tc = &turnstile_tab[i];
		LIST_INIT(&tc->tc_chain);
		tc->tc_mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
	}

	turnstile_cache = pool_cache_init(sizeof(turnstile_t), 0, 0, 0,
	    "tstilepl", NULL, IPL_NONE, turnstile_ctor, NULL, NULL);
	KASSERT(turnstile_cache != NULL);

	(void)turnstile_ctor(NULL, &turnstile0, 0);
}

/*
 * turnstile_ctor:
 *
 *	Constructor for turnstiles.
 */
static int
turnstile_ctor(void *arg, void *obj, int flags)
{
	turnstile_t *ts = obj;

	memset(ts, 0, sizeof(*ts));
	sleepq_init(&ts->ts_sleepq[TS_READER_Q]);
	sleepq_init(&ts->ts_sleepq[TS_WRITER_Q]);
	return (0);
}

/*
 * turnstile_remove:
 *
 *	Remove an LWP from a turnstile sleep queue and wake it.
 */
static inline void
turnstile_remove(turnstile_t *ts, lwp_t *l, int q)
{
	turnstile_t *nts;

	KASSERT(l->l_ts == ts);

	/*
	 * This process is no longer using the active turnstile.
	 * Find an inactive one on the free list to give to it.
	 */
	if ((nts = ts->ts_free) != NULL) {
		KASSERT(TS_ALL_WAITERS(ts) > 1);
		l->l_ts = nts;
		ts->ts_free = nts->ts_free;
		nts->ts_free = NULL;
	} else {
		/*
		 * If the free list is empty, this is the last
		 * waiter.
		 */
		KASSERT(TS_ALL_WAITERS(ts) == 1);
		LIST_REMOVE(ts, ts_chain);
	}

	ts->ts_waiters[q]--;
	sleepq_remove(&ts->ts_sleepq[q], l);
}

/*
 * turnstile_lookup:
 *
 *	Look up the turnstile for the specified lock.  This acquires and
 *	holds the turnstile chain lock (sleep queue interlock).
 */
turnstile_t *
turnstile_lookup(wchan_t obj)
{
	turnstile_t *ts;
	tschain_t *tc;

	tc = &turnstile_tab[TS_HASH(obj)];
	mutex_spin_enter(tc->tc_mutex);

	LIST_FOREACH(ts, &tc->tc_chain, ts_chain)
		if (ts->ts_obj == obj)
			return (ts);

	/*
	 * No turnstile yet for this lock.  No problem, turnstile_block()
	 * handles this by fetching the turnstile from the blocking thread.
	 */
	return (NULL);
}

/*
 * turnstile_exit:
 *
 *	Abort a turnstile operation.
 */
void
turnstile_exit(wchan_t obj)
{
	tschain_t *tc;

	tc = &turnstile_tab[TS_HASH(obj)];
	mutex_spin_exit(tc->tc_mutex);
}

/*
 * turnstile_lendpri:
 *
 *	Lend our priority to lwps on the blocking chain.
 *
 *	If the current owner of the lock (l->l_wchan, set by sleepq_enqueue)
 *	has a priority lower than ours (lwp_eprio(l)), lend our priority to
 *	him to avoid priority inversions.
 */

static void
turnstile_lendpri(lwp_t *cur)
{
	lwp_t * l = cur;
	pri_t prio;

	/*
	 * NOTE: if you get a panic in this code block, it is likely that
	 * a lock has been destroyed or corrupted while still in use.  Try
	 * compiling a kernel with LOCKDEBUG to pinpoint the problem.
	 */

	LOCKDEBUG_BARRIER(l->l_mutex, 1);
	KASSERT(l == curlwp);
	prio = lwp_eprio(l);
	for (;;) {
		lwp_t *owner;
		turnstile_t *ts;
		bool dolock;

		if (l->l_wchan == NULL)
			break;

		/*
		 * Ask syncobj the owner of the lock.
		 */
		owner = (*l->l_syncobj->sobj_owner)(l->l_wchan);
		if (owner == NULL)
			break;

		/*
		 * The owner may have changed as we have dropped the tc lock.
		 */
		if (cur == owner) {
			/*
			 * We own the lock: stop here, sleepq_block()
			 * should wake up immediatly.
			 */
			break;
		}
		/*
		 * Acquire owner->l_mutex if we don't have it yet.
		 * Because we already have another LWP lock (l->l_mutex) held,
		 * we need to play a try lock dance to avoid deadlock.
		 */
		dolock = l->l_mutex != owner->l_mutex;
		if (l == owner || (dolock && !lwp_trylock(owner))) {
			/*
			 * The owner was changed behind us or trylock failed.
			 * Restart from curlwp.
			 *
			 * Note that there may be a livelock here:
			 * the owner may try grabing cur's lock (which is the
			 * tc lock) while we're trying to grab the owner's lock.
			 */
			lwp_unlock(l);
			l = cur;
			lwp_lock(l);
			prio = lwp_eprio(l);
			continue;
		}
		/*
		 * If the owner's priority is already higher than ours,
		 * there's nothing to do anymore.
		 */
		if (prio <= lwp_eprio(owner)) {
			if (dolock)
				lwp_unlock(owner);
			break;
		}
		/*
		 * Lend our priority to the 'owner' LWP.
		 *
		 * Update lenders info for turnstile_unlendpri.
		 */
		ts = l->l_ts;
		KASSERT(ts->ts_inheritor == owner || ts->ts_inheritor == NULL);
		if (ts->ts_inheritor == NULL) {
			ts->ts_inheritor = owner;
			ts->ts_eprio = prio;
			SLIST_INSERT_HEAD(&owner->l_pi_lenders, ts, ts_pichain);
			lwp_lendpri(owner, prio);
		} else if (prio > ts->ts_eprio) {
			ts->ts_eprio = prio;
			lwp_lendpri(owner, prio);
		}
		if (dolock)
			lwp_unlock(l);
		LOCKDEBUG_BARRIER(owner->l_mutex, 1);
		l = owner;
	}
	LOCKDEBUG_BARRIER(l->l_mutex, 1);
	if (cur->l_mutex != l->l_mutex) {
		lwp_unlock(l);
		lwp_lock(cur);
	}
	LOCKDEBUG_BARRIER(cur->l_mutex, 1);
}

/*
 * turnstile_unlendpri: undo turnstile_lendpri
 */

static void
turnstile_unlendpri(turnstile_t *ts)
{
	lwp_t * const l = curlwp;
	turnstile_t *iter;
	turnstile_t *next;
	turnstile_t *prev = NULL;
	pri_t prio;
	bool dolock;

	KASSERT(ts->ts_inheritor != NULL);
	ts->ts_inheritor = NULL;
	dolock = l->l_mutex == l->l_cpu->ci_schedstate.spc_lwplock;
	if (dolock) {
		lwp_lock(l);
	}

	/*
	 * the following loop does two things.
	 *
	 * - remove ts from the list.
	 *
	 * - from the rest of the list, find the highest priority.
	 */

	prio = -1;
	KASSERT(!SLIST_EMPTY(&l->l_pi_lenders));
	for (iter = SLIST_FIRST(&l->l_pi_lenders);
	    iter != NULL; iter = next) {
		KASSERT(lwp_eprio(l) >= ts->ts_eprio);
		next = SLIST_NEXT(iter, ts_pichain);
		if (iter == ts) {
			if (prev == NULL) {
				SLIST_REMOVE_HEAD(&l->l_pi_lenders,
				    ts_pichain);
			} else {
				SLIST_REMOVE_AFTER(prev, ts_pichain);
			}
		} else if (prio < iter->ts_eprio) {
			prio = iter->ts_eprio;
		}
		prev = iter;
	}

	lwp_lendpri(l, prio);

	if (dolock) {
		lwp_unlock(l);
	}
}

/*
 * turnstile_block:
 *
 *	 Enter an object into the turnstile chain and prepare the current
 *	 LWP for sleep.
 */
void
turnstile_block(turnstile_t *ts, int q, wchan_t obj, syncobj_t *sobj)
{
	lwp_t * const l = curlwp; /* cached curlwp */
	turnstile_t *ots;
	tschain_t *tc;
	sleepq_t *sq;
	pri_t obase;

	tc = &turnstile_tab[TS_HASH(obj)];

	KASSERT(q == TS_READER_Q || q == TS_WRITER_Q);
	KASSERT(mutex_owned(tc->tc_mutex));
	KASSERT(l != NULL && l->l_ts != NULL);

	if (ts == NULL) {
		/*
		 * We are the first thread to wait for this object;
		 * lend our turnstile to it.
		 */
		ts = l->l_ts;
		KASSERT(TS_ALL_WAITERS(ts) == 0);
		KASSERT(TAILQ_EMPTY(&ts->ts_sleepq[TS_READER_Q]) &&
			TAILQ_EMPTY(&ts->ts_sleepq[TS_WRITER_Q]));
		ts->ts_obj = obj;
		ts->ts_inheritor = NULL;
		LIST_INSERT_HEAD(&tc->tc_chain, ts, ts_chain);
	} else {
		/*
		 * Object already has a turnstile.  Put our turnstile
		 * onto the free list, and reference the existing
		 * turnstile instead.
		 */
		ots = l->l_ts;
		KASSERT(ots->ts_free == NULL);
		ots->ts_free = ts->ts_free;
		ts->ts_free = ots;
		l->l_ts = ts;

		KASSERT(ts->ts_obj == obj);
		KASSERT(TS_ALL_WAITERS(ts) != 0);
		KASSERT(!TAILQ_EMPTY(&ts->ts_sleepq[TS_READER_Q]) ||
			!TAILQ_EMPTY(&ts->ts_sleepq[TS_WRITER_Q]));
	}

	sq = &ts->ts_sleepq[q];
	ts->ts_waiters[q]++;
	sleepq_enter(sq, l, tc->tc_mutex);
	LOCKDEBUG_BARRIER(tc->tc_mutex, 1);
	l->l_kpriority = true;
	obase = l->l_kpribase;
	if (obase < PRI_KTHREAD)
		l->l_kpribase = PRI_KTHREAD;
	sleepq_enqueue(sq, obj, "tstile", sobj);

	/*
	 * Disable preemption across this entire block, as we may drop
	 * scheduler locks (allowing preemption), and would prefer not
	 * to be interrupted while in a state of flux.
	 */
	KPREEMPT_DISABLE(l);
	KASSERT(tc->tc_mutex == l->l_mutex);
	turnstile_lendpri(l);
	sleepq_block(0, false);
	l->l_kpribase = obase;
	KPREEMPT_ENABLE(l);
}

/*
 * turnstile_wakeup:
 *
 *	Wake up the specified number of threads that are blocked
 *	in a turnstile.
 */
void
turnstile_wakeup(turnstile_t *ts, int q, int count, lwp_t *nl)
{
	sleepq_t *sq;
	tschain_t *tc;
	lwp_t *l;

	tc = &turnstile_tab[TS_HASH(ts->ts_obj)];
	sq = &ts->ts_sleepq[q];

	KASSERT(q == TS_READER_Q || q == TS_WRITER_Q);
	KASSERT(count > 0 && count <= TS_WAITERS(ts, q));
	KASSERT(mutex_owned(tc->tc_mutex));
	KASSERT(ts->ts_inheritor == curlwp || ts->ts_inheritor == NULL);

	/*
	 * restore inherited priority if necessary.
	 */

	if (ts->ts_inheritor != NULL) {
		turnstile_unlendpri(ts);
	}

	if (nl != NULL) {
#if defined(DEBUG) || defined(LOCKDEBUG)
		TAILQ_FOREACH(l, sq, l_sleepchain) {
			if (l == nl)
				break;
		}
		if (l == NULL)
			panic("turnstile_wakeup: nl not on sleepq");
#endif
		turnstile_remove(ts, nl, q);
	} else {
		while (count-- > 0) {
			l = TAILQ_FIRST(sq);
			KASSERT(l != NULL);
			turnstile_remove(ts, l, q);
		}
	}
	mutex_spin_exit(tc->tc_mutex);
}

/*
 * turnstile_unsleep:
 *
 *	Remove an LWP from the turnstile.  This is called when the LWP has
 *	not been awoken normally but instead interrupted: for example, if it
 *	has received a signal.  It's not a valid action for turnstiles,
 *	since LWPs blocking on a turnstile are not interruptable.
 */
void
turnstile_unsleep(lwp_t *l, bool cleanup)
{

	lwp_unlock(l);
	panic("turnstile_unsleep");
}

/*
 * turnstile_changepri:
 *
 *	Adjust the priority of an LWP residing on a turnstile.
 */
void
turnstile_changepri(lwp_t *l, pri_t pri)
{

	/* XXX priority inheritance */
	sleepq_changepri(l, pri);
}

#if defined(LOCKDEBUG)
/*
 * turnstile_print:
 *
 *	Given the address of a lock object, print the contents of a
 *	turnstile.
 */
void
turnstile_print(volatile void *obj, void (*pr)(const char *, ...))
{
	turnstile_t *ts;
	tschain_t *tc;
	sleepq_t *rsq, *wsq;
	lwp_t *l;

	tc = &turnstile_tab[TS_HASH(obj)];

	LIST_FOREACH(ts, &tc->tc_chain, ts_chain)
		if (ts->ts_obj == obj)
			break;

	(*pr)("Turnstile chain at %p.\n", tc);
	if (ts == NULL) {
		(*pr)("=> No active turnstile for this lock.\n");
		return;
	}

	rsq = &ts->ts_sleepq[TS_READER_Q];
	wsq = &ts->ts_sleepq[TS_WRITER_Q];

	(*pr)("=> Turnstile at %p (wrq=%p, rdq=%p).\n", ts, rsq, wsq);

	(*pr)("=> %d waiting readers:", TS_WAITERS(ts, TS_READER_Q));
	TAILQ_FOREACH(l, rsq, l_sleepchain) {
		(*pr)(" %p", l);
	}
	(*pr)("\n");

	(*pr)("=> %d waiting writers:", TS_WAITERS(ts, TS_WRITER_Q));
	TAILQ_FOREACH(l, wsq, l_sleepchain) {
		(*pr)(" %p", l);
	}
	(*pr)("\n");
}
#endif	/* LOCKDEBUG */