#include "test/jemalloc_test.h" static const uint64_t smoothstep_tab[] = { #define STEP(step, h, x, y) \ h, SMOOTHSTEP #undef STEP }; TEST_BEGIN(test_smoothstep_integral) { uint64_t sum, min, max; unsigned i; /* * The integral of smoothstep in the [0..1] range equals 1/2. Verify * that the fixed point representation's integral is no more than * rounding error distant from 1/2. Regarding rounding, each table * element is rounded down to the nearest fixed point value, so the * integral may be off by as much as SMOOTHSTEP_NSTEPS ulps. */ sum = 0; for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) { sum += smoothstep_tab[i]; } max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1); min = max - SMOOTHSTEP_NSTEPS; assert_u64_ge(sum, min, "Integral too small, even accounting for truncation"); assert_u64_le(sum, max, "Integral exceeds 1/2"); if (false) { malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n", max - sum, SMOOTHSTEP_NSTEPS); } } TEST_END TEST_BEGIN(test_smoothstep_monotonic) { uint64_t prev_h; unsigned i; /* * The smoothstep function is monotonic in [0..1], i.e. its slope is * non-negative. In practice we want to parametrize table generation * such that piecewise slope is greater than zero, but do not require * that here. */ prev_h = 0; for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) { uint64_t h = smoothstep_tab[i]; assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i); prev_h = h; } assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1], (KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1"); } TEST_END TEST_BEGIN(test_smoothstep_slope) { uint64_t prev_h, prev_delta; unsigned i; /* * The smoothstep slope strictly increases until x=0.5, and then * strictly decreases until x=1.0. Verify the slightly weaker * requirement of monotonicity, so that inadequate table precision does * not cause false test failures. */ prev_h = 0; prev_delta = 0; for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) { uint64_t h = smoothstep_tab[i]; uint64_t delta = h - prev_h; assert_u64_ge(delta, prev_delta, "Slope must monotonically increase in 0.0 <= x <= 0.5, " "i=%u", i); prev_h = h; prev_delta = delta; } prev_h = KQU(1) << SMOOTHSTEP_BFP; prev_delta = 0; for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) { uint64_t h = smoothstep_tab[i]; uint64_t delta = prev_h - h; assert_u64_ge(delta, prev_delta, "Slope must monotonically decrease in 0.5 <= x <= 1.0, " "i=%u", i); prev_h = h; prev_delta = delta; } } TEST_END int main(void) { return test( test_smoothstep_integral, test_smoothstep_monotonic, test_smoothstep_slope); } |