Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Copyright 2012 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors
//   may be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "utils/config/nodes.ipp"

#include <memory>

#include <lutok/state.ipp>

#include "utils/config/exceptions.hpp"
#include "utils/config/keys.hpp"
#include "utils/format/macros.hpp"

namespace config = utils::config;


/// Destructor.
config::detail::base_node::~base_node(void)
{
}


/// Constructor.
///
/// \param dynamic_ Whether the node is dynamic or not.
config::detail::inner_node::inner_node(const bool dynamic_) :
    _dynamic(dynamic_)
{
}


/// Destructor.
config::detail::inner_node::~inner_node(void)
{
    for (children_map::const_iterator iter = _children.begin();
         iter != _children.end(); ++iter)
        delete (*iter).second;
}


/// Fills the given node with a copy of this node's data.
///
/// \param node The node to fill.  Should be the fresh return value of a
///     deep_copy() operation.
void
config::detail::inner_node::copy_into(inner_node* node) const
{
    node->_dynamic = _dynamic;
    for (children_map::const_iterator iter = _children.begin();
         iter != _children.end(); ++iter) {
        base_node* new_node = (*iter).second->deep_copy();
        try {
            node->_children[(*iter).first] = new_node;
        } catch (...) {
            delete new_node;
            throw;
        }
    }
}


/// Finds a node without creating it if not found.
///
/// This recursive algorithm traverses the tree searching for a particular key.
/// The returned node is constant, so this can only be used for querying
/// purposes.  For this reason, this algorithm does not create intermediate
/// nodes if they don't exist (as would be necessary to set a new node).
///
/// \param key The key to be queried.
/// \param key_pos The current level within the key to be examined.
///
/// \return A reference to the located node, if successful.
///
/// \throw unknown_key_error If the provided key is unknown.
const config::detail::base_node*
config::detail::inner_node::lookup_ro(const tree_key& key,
                                      const tree_key::size_type key_pos) const
{
    PRE(key_pos < key.size());

    const children_map::const_iterator child_iter = _children.find(
        key[key_pos]);
    if (child_iter == _children.end())
        throw unknown_key_error(key);

    if (key_pos == key.size() - 1) {
        return (*child_iter).second;
    } else {
        PRE(key_pos < key.size() - 1);
        try {
            const inner_node& child = dynamic_cast< const inner_node& >(
                *(*child_iter).second);
            return child.lookup_ro(key, key_pos + 1);
        } catch (const std::bad_cast& e) {
            throw unknown_key_error(
                key, "Cannot address incomplete configuration property '%s'");
        }
    }
}


/// Finds a node and creates it if not found.
///
/// This recursive algorithm traverses the tree searching for a particular key,
/// creating any intermediate nodes if they do not already exist (for the case
/// of dynamic inner nodes).  The returned node is non-constant, so this can be
/// used by the algorithms that set key values.
///
/// \param key The key to be queried.
/// \param key_pos The current level within the key to be examined.
/// \param new_node A function that returns a new leaf node of the desired
///     type.  This is only called if the leaf cannot be found, but it has
///     already been defined.
///
/// \return A reference to the located node, if successful.
///
/// \throw unknown_key_error If the provided key is unknown.
/// \throw value_error If the resulting node of the search would be an inner
///     node.
config::leaf_node*
config::detail::inner_node::lookup_rw(const tree_key& key,
                                      const tree_key::size_type key_pos,
                                      new_node_hook new_node)
{
    PRE(key_pos < key.size());

    children_map::const_iterator child_iter = _children.find(key[key_pos]);
    if (child_iter == _children.end()) {
        if (_dynamic) {
            base_node* const child = (key_pos == key.size() - 1) ?
                static_cast< base_node* >(new_node()) :
                static_cast< base_node* >(new dynamic_inner_node());
            _children.insert(children_map::value_type(key[key_pos], child));
            child_iter = _children.find(key[key_pos]);
        } else {
            throw unknown_key_error(key);
        }
    }

    if (key_pos == key.size() - 1) {
        try {
            leaf_node& child = dynamic_cast< leaf_node& >(
                *(*child_iter).second);
            return &child;
        } catch (const std::bad_cast& unused_error) {
            throw value_error(F("Invalid value for key '%s'") %
                              flatten_key(key));
        }
    } else {
        PRE(key_pos < key.size() - 1);
        try {
            inner_node& child = dynamic_cast< inner_node& >(
                *(*child_iter).second);
            return child.lookup_rw(key, key_pos + 1, new_node);
        } catch (const std::bad_cast& e) {
            throw unknown_key_error(
                key, "Cannot address incomplete configuration property '%s'");
        }
    }
}


/// Converts the subtree to a collection of key/value string pairs.
///
/// \param [out] properties The accumulator for the generated properties.  The
///     contents of the map are only extended.
/// \param key The path to the current node.
void
config::detail::inner_node::all_properties(properties_map& properties,
                                           const tree_key& key) const
{
    for (children_map::const_iterator iter = _children.begin();
         iter != _children.end(); ++iter) {
        tree_key child_key = key;
        child_key.push_back((*iter).first);
        try {
            leaf_node& child = dynamic_cast< leaf_node& >(*(*iter).second);
            if (child.is_set())
                properties[flatten_key(child_key)] = child.to_string();
        } catch (const std::bad_cast& unused_error) {
            inner_node& child = dynamic_cast< inner_node& >(*(*iter).second);
            child.all_properties(properties, child_key);
        }
    }
}


/// Constructor.
config::detail::static_inner_node::static_inner_node(void) :
    inner_node(false)
{
}


/// Copies the node.
///
/// \return A dynamically-allocated node.
config::detail::base_node*
config::detail::static_inner_node::deep_copy(void) const
{
    std::auto_ptr< inner_node > new_node(new static_inner_node());
    copy_into(new_node.get());
    return new_node.release();
}


/// Registers a key as valid and having a specific type.
///
/// This method does not raise errors on invalid/unknown keys or other
/// tree-related issues.  The reasons is that define() is a method that does not
/// depend on user input: it is intended to pre-populate the tree with a
/// specific structure, and that happens once at coding time.
///
/// \param key The key to be registered.
/// \param key_pos The current level within the key to be examined.
/// \param new_node A function that returns a new leaf node of the desired
///     type.
void
config::detail::static_inner_node::define(const tree_key& key,
                                          const tree_key::size_type key_pos,
                                          new_node_hook new_node)
{
    PRE(key_pos < key.size());

    if (key_pos == key.size() - 1) {
        PRE_MSG(_children.find(key[key_pos]) == _children.end(),
                "Key already defined");
        _children.insert(children_map::value_type(key[key_pos], new_node()));
    } else {
        PRE(key_pos < key.size() - 1);
        const children_map::const_iterator child_iter = _children.find(
            key[key_pos]);

        if (child_iter == _children.end()) {
            static_inner_node* const child_ptr = new static_inner_node();
            _children.insert(children_map::value_type(key[key_pos], child_ptr));
            child_ptr->define(key, key_pos + 1, new_node);
        } else {
            try {
                static_inner_node& child = dynamic_cast< static_inner_node& >(
                    *(*child_iter).second);
                child.define(key, key_pos + 1, new_node);
            } catch (const std::bad_cast& e) {
                UNREACHABLE;
            }
        }
    }
}


/// Constructor.
config::detail::dynamic_inner_node::dynamic_inner_node(void) :
    inner_node(true)
{
}


/// Copies the node.
///
/// \return A dynamically-allocated node.
config::detail::base_node*
config::detail::dynamic_inner_node::deep_copy(void) const
{
    std::auto_ptr< inner_node > new_node(new dynamic_inner_node());
    copy_into(new_node.get());
    return new_node.release();
}


/// Destructor.
config::leaf_node::~leaf_node(void)
{
}


/// Copies the node.
///
/// \return A dynamically-allocated node.
config::detail::base_node*
config::bool_node::deep_copy(void) const
{
    std::auto_ptr< bool_node > new_node(new bool_node());
    new_node->_value = _value;
    return new_node.release();
}


/// Pushes the node's value onto the Lua stack.
///
/// \param state The Lua state onto which to push the value.
void
config::bool_node::push_lua(lutok::state& state) const
{
    state.push_boolean(value());
}


/// Sets the value of the node from an entry in the Lua stack.
///
/// \param state The Lua state from which to get the value.
/// \param value_index The stack index in which the value resides.
///
/// \throw value_error If the value in state(value_index) cannot be
///     processed by this node.
void
config::bool_node::set_lua(lutok::state& state, const int value_index)
{
    if (state.is_boolean(value_index))
        set(state.to_boolean(value_index));
    else
        throw value_error("Not a boolean");
}


/// Copies the node.
///
/// \return A dynamically-allocated node.
config::detail::base_node*
config::int_node::deep_copy(void) const
{
    std::auto_ptr< int_node > new_node(new int_node());
    new_node->_value = _value;
    return new_node.release();
}


/// Pushes the node's value onto the Lua stack.
///
/// \param state The Lua state onto which to push the value.
void
config::int_node::push_lua(lutok::state& state) const
{
    state.push_integer(value());
}


/// Sets the value of the node from an entry in the Lua stack.
///
/// \param state The Lua state from which to get the value.
/// \param value_index The stack index in which the value resides.
///
/// \throw value_error If the value in state(value_index) cannot be
///     processed by this node.
void
config::int_node::set_lua(lutok::state& state, const int value_index)
{
    if (state.is_number(value_index))
        set(state.to_integer(value_index));
    else
        throw value_error("Not an integer");
}


/// Copies the node.
///
/// \return A dynamically-allocated node.
config::detail::base_node*
config::string_node::deep_copy(void) const
{
    std::auto_ptr< string_node > new_node(new string_node());
    new_node->_value = _value;
    return new_node.release();
}


/// Pushes the node's value onto the Lua stack.
///
/// \param state The Lua state onto which to push the value.
void
config::string_node::push_lua(lutok::state& state) const
{
    state.push_string(value());
}


/// Sets the value of the node from an entry in the Lua stack.
///
/// \param state The Lua state from which to get the value.
/// \param value_index The stack index in which the value resides.
///
/// \throw value_error If the value in state(value_index) cannot be
///     processed by this node.
void
config::string_node::set_lua(lutok::state& state, const int value_index)
{
    if (state.is_string(value_index))
        set(state.to_string(value_index));
    else
        throw value_error("Not a string");
}


/// Copies the node.
///
/// \return A dynamically-allocated node.
config::detail::base_node*
config::strings_set_node::deep_copy(void) const
{
    std::auto_ptr< strings_set_node > new_node(new strings_set_node());
    new_node->_value = _value;
    return new_node.release();
}


/// Converts a single word to the native type.
///
/// \param raw_value The value to parse.
///
/// \return The parsed value.
std::string
config::strings_set_node::parse_one(const std::string& raw_value) const
{
    return raw_value;
}