Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal.  Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "dse"

STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");
STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
STATISTIC(NumModifiedStores, "Number of stores modified");

static cl::opt<bool>
EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
  cl::init(true), cl::Hidden,
  cl::desc("Enable partial-overwrite tracking in DSE"));

static cl::opt<bool>
EnablePartialStoreMerging("enable-dse-partial-store-merging",
  cl::init(true), cl::Hidden,
  cl::desc("Enable partial store merging in DSE"));

//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
using OverlapIntervalsTy = std::map<int64_t, int64_t>;
using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;

/// Delete this instruction.  Before we do, go through and zero out all the
/// operands of this instruction.  If any of them become dead, delete them and
/// the computation tree that feeds them.
/// If ValueSet is non-null, remove any deleted instructions from it as well.
static void
deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
                      MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
                      InstOverlapIntervalsTy &IOL,
                      DenseMap<Instruction*, size_t> *InstrOrdering,
                      SmallSetVector<Value *, 16> *ValueSet = nullptr) {
  SmallVector<Instruction*, 32> NowDeadInsts;

  NowDeadInsts.push_back(I);
  --NumFastOther;

  // Keeping the iterator straight is a pain, so we let this routine tell the
  // caller what the next instruction is after we're done mucking about.
  BasicBlock::iterator NewIter = *BBI;

  // Before we touch this instruction, remove it from memdep!
  do {
    Instruction *DeadInst = NowDeadInsts.pop_back_val();
    ++NumFastOther;

    // Try to preserve debug information attached to the dead instruction.
    salvageDebugInfo(*DeadInst);

    // This instruction is dead, zap it, in stages.  Start by removing it from
    // MemDep, which needs to know the operands and needs it to be in the
    // function.
    MD.removeInstruction(DeadInst);

    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
      Value *Op = DeadInst->getOperand(op);
      DeadInst->setOperand(op, nullptr);

      // If this operand just became dead, add it to the NowDeadInsts list.
      if (!Op->use_empty()) continue;

      if (Instruction *OpI = dyn_cast<Instruction>(Op))
        if (isInstructionTriviallyDead(OpI, &TLI))
          NowDeadInsts.push_back(OpI);
    }

    if (ValueSet) ValueSet->remove(DeadInst);
    InstrOrdering->erase(DeadInst);
    IOL.erase(DeadInst);

    if (NewIter == DeadInst->getIterator())
      NewIter = DeadInst->eraseFromParent();
    else
      DeadInst->eraseFromParent();
  } while (!NowDeadInsts.empty());
  *BBI = NewIter;
}

/// Does this instruction write some memory?  This only returns true for things
/// that we can analyze with other helpers below.
static bool hasAnalyzableMemoryWrite(Instruction *I,
                                     const TargetLibraryInfo &TLI) {
  if (isa<StoreInst>(I))
    return true;
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::memcpy_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memset_element_unordered_atomic:
    case Intrinsic::init_trampoline:
    case Intrinsic::lifetime_end:
      return true;
    }
  }
  if (auto CS = CallSite(I)) {
    if (Function *F = CS.getCalledFunction()) {
      StringRef FnName = F->getName();
      if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
        return true;
      if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
        return true;
      if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
        return true;
      if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
        return true;
    }
  }
  return false;
}

/// Return a Location stored to by the specified instruction. If isRemovable
/// returns true, this function and getLocForRead completely describe the memory
/// operations for this instruction.
static MemoryLocation getLocForWrite(Instruction *Inst) {
  
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    return MemoryLocation::get(SI);

  if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
    // memcpy/memmove/memset.
    MemoryLocation Loc = MemoryLocation::getForDest(MI);
    return Loc;
  }

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    default:
      return MemoryLocation(); // Unhandled intrinsic.
    case Intrinsic::init_trampoline:
      return MemoryLocation(II->getArgOperand(0));
    case Intrinsic::lifetime_end: {
      uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
      return MemoryLocation(II->getArgOperand(1), Len);
    }
    }
  }
  if (auto CS = CallSite(Inst))
    // All the supported TLI functions so far happen to have dest as their
    // first argument.
    return MemoryLocation(CS.getArgument(0));
  return MemoryLocation();
}

/// Return the location read by the specified "hasAnalyzableMemoryWrite"
/// instruction if any.
static MemoryLocation getLocForRead(Instruction *Inst,
                                    const TargetLibraryInfo &TLI) {
  assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");

  // The only instructions that both read and write are the mem transfer
  // instructions (memcpy/memmove).
  if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
    return MemoryLocation::getForSource(MTI);
  return MemoryLocation();
}

/// If the value of this instruction and the memory it writes to is unused, may
/// we delete this instruction?
static bool isRemovable(Instruction *I) {
  // Don't remove volatile/atomic stores.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
    case Intrinsic::lifetime_end:
      // Never remove dead lifetime_end's, e.g. because it is followed by a
      // free.
      return false;
    case Intrinsic::init_trampoline:
      // Always safe to remove init_trampoline.
      return true;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
      // Don't remove volatile memory intrinsics.
      return !cast<MemIntrinsic>(II)->isVolatile();
    case Intrinsic::memcpy_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memset_element_unordered_atomic:
      return true;
    }
  }

  // note: only get here for calls with analyzable writes - i.e. libcalls
  if (auto CS = CallSite(I))
    return CS.getInstruction()->use_empty();

  return false;
}

/// Returns true if the end of this instruction can be safely shortened in
/// length.
static bool isShortenableAtTheEnd(Instruction *I) {
  // Don't shorten stores for now
  if (isa<StoreInst>(I))
    return false;

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
      default: return false;
      case Intrinsic::memset:
      case Intrinsic::memcpy:
      case Intrinsic::memcpy_element_unordered_atomic:
      case Intrinsic::memset_element_unordered_atomic:
        // Do shorten memory intrinsics.
        // FIXME: Add memmove if it's also safe to transform.
        return true;
    }
  }

  // Don't shorten libcalls calls for now.

  return false;
}

/// Returns true if the beginning of this instruction can be safely shortened
/// in length.
static bool isShortenableAtTheBeginning(Instruction *I) {
  // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
  // easily done by offsetting the source address.
  return isa<AnyMemSetInst>(I);
}

/// Return the pointer that is being written to.
static Value *getStoredPointerOperand(Instruction *I) {
  //TODO: factor this to reuse getLocForWrite
  MemoryLocation Loc = getLocForWrite(I);
  assert(Loc.Ptr &&
         "unable to find pointer written for analyzable instruction?");
  // TODO: most APIs don't expect const Value *
  return const_cast<Value*>(Loc.Ptr);
}

static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
                               const TargetLibraryInfo &TLI,
                               const Function *F) {
  uint64_t Size;
  ObjectSizeOpts Opts;
  Opts.NullIsUnknownSize = NullPointerIsDefined(F);

  if (getObjectSize(V, Size, DL, &TLI, Opts))
    return Size;
  return MemoryLocation::UnknownSize;
}

namespace {

enum OverwriteResult {
  OW_Begin,
  OW_Complete,
  OW_End,
  OW_PartialEarlierWithFullLater,
  OW_Unknown
};

} // end anonymous namespace

/// Return 'OW_Complete' if a store to the 'Later' location completely
/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
/// beginning of the 'Earlier' location is overwritten by 'Later'.
/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
/// overwritten by a latter (smaller) store which doesn't write outside the big
/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
static OverwriteResult isOverwrite(const MemoryLocation &Later,
                                   const MemoryLocation &Earlier,
                                   const DataLayout &DL,
                                   const TargetLibraryInfo &TLI,
                                   int64_t &EarlierOff, int64_t &LaterOff,
                                   Instruction *DepWrite,
                                   InstOverlapIntervalsTy &IOL,
                                   AliasAnalysis &AA,
                                   const Function *F) {
  // If we don't know the sizes of either access, then we can't do a comparison.
  if (Later.Size == MemoryLocation::UnknownSize ||
      Earlier.Size == MemoryLocation::UnknownSize)
    return OW_Unknown;

  const Value *P1 = Earlier.Ptr->stripPointerCasts();
  const Value *P2 = Later.Ptr->stripPointerCasts();

  // If the start pointers are the same, we just have to compare sizes to see if
  // the later store was larger than the earlier store.
  if (P1 == P2 || AA.isMustAlias(P1, P2)) {
    // Make sure that the Later size is >= the Earlier size.
    if (Later.Size >= Earlier.Size)
      return OW_Complete;
  }

  // Check to see if the later store is to the entire object (either a global,
  // an alloca, or a byval/inalloca argument).  If so, then it clearly
  // overwrites any other store to the same object.
  const Value *UO1 = GetUnderlyingObject(P1, DL),
              *UO2 = GetUnderlyingObject(P2, DL);

  // If we can't resolve the same pointers to the same object, then we can't
  // analyze them at all.
  if (UO1 != UO2)
    return OW_Unknown;

  // If the "Later" store is to a recognizable object, get its size.
  uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
  if (ObjectSize != MemoryLocation::UnknownSize)
    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
      return OW_Complete;

  // Okay, we have stores to two completely different pointers.  Try to
  // decompose the pointer into a "base + constant_offset" form.  If the base
  // pointers are equal, then we can reason about the two stores.
  EarlierOff = 0;
  LaterOff = 0;
  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);

  // If the base pointers still differ, we have two completely different stores.
  if (BP1 != BP2)
    return OW_Unknown;

  // The later store completely overlaps the earlier store if:
  //
  // 1. Both start at the same offset and the later one's size is greater than
  //    or equal to the earlier one's, or
  //
  //      |--earlier--|
  //      |--   later   --|
  //
  // 2. The earlier store has an offset greater than the later offset, but which
  //    still lies completely within the later store.
  //
  //        |--earlier--|
  //    |-----  later  ------|
  //
  // We have to be careful here as *Off is signed while *.Size is unsigned.
  if (EarlierOff >= LaterOff &&
      Later.Size >= Earlier.Size &&
      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
    return OW_Complete;

  // We may now overlap, although the overlap is not complete. There might also
  // be other incomplete overlaps, and together, they might cover the complete
  // earlier write.
  // Note: The correctness of this logic depends on the fact that this function
  // is not even called providing DepWrite when there are any intervening reads.
  if (EnablePartialOverwriteTracking &&
      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
      int64_t(LaterOff + Later.Size) >= EarlierOff) {

    // Insert our part of the overlap into the map.
    auto &IM = IOL[DepWrite];
    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
                      << ", " << int64_t(EarlierOff + Earlier.Size)
                      << ") Later [" << LaterOff << ", "
                      << int64_t(LaterOff + Later.Size) << ")\n");

    // Make sure that we only insert non-overlapping intervals and combine
    // adjacent intervals. The intervals are stored in the map with the ending
    // offset as the key (in the half-open sense) and the starting offset as
    // the value.
    int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + Later.Size;

    // Find any intervals ending at, or after, LaterIntStart which start
    // before LaterIntEnd.
    auto ILI = IM.lower_bound(LaterIntStart);
    if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
      // This existing interval is overlapped with the current store somewhere
      // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
      // intervals and adjusting our start and end.
      LaterIntStart = std::min(LaterIntStart, ILI->second);
      LaterIntEnd = std::max(LaterIntEnd, ILI->first);
      ILI = IM.erase(ILI);

      // Continue erasing and adjusting our end in case other previous
      // intervals are also overlapped with the current store.
      //
      // |--- ealier 1 ---|  |--- ealier 2 ---|
      //     |------- later---------|
      //
      while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
        assert(ILI->second > LaterIntStart && "Unexpected interval");
        LaterIntEnd = std::max(LaterIntEnd, ILI->first);
        ILI = IM.erase(ILI);
      }
    }

    IM[LaterIntEnd] = LaterIntStart;

    ILI = IM.begin();
    if (ILI->second <= EarlierOff &&
        ILI->first >= int64_t(EarlierOff + Earlier.Size)) {
      LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
                        << EarlierOff << ", "
                        << int64_t(EarlierOff + Earlier.Size)
                        << ") Composite Later [" << ILI->second << ", "
                        << ILI->first << ")\n");
      ++NumCompletePartials;
      return OW_Complete;
    }
  }

  // Check for an earlier store which writes to all the memory locations that
  // the later store writes to.
  if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
      int64_t(EarlierOff + Earlier.Size) > LaterOff &&
      uint64_t(LaterOff - EarlierOff) + Later.Size <= Earlier.Size) {
    LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
                      << EarlierOff << ", "
                      << int64_t(EarlierOff + Earlier.Size)
                      << ") by a later store [" << LaterOff << ", "
                      << int64_t(LaterOff + Later.Size) << ")\n");
    // TODO: Maybe come up with a better name?
    return OW_PartialEarlierWithFullLater;
  }

  // Another interesting case is if the later store overwrites the end of the
  // earlier store.
  //
  //      |--earlier--|
  //                |--   later   --|
  //
  // In this case we may want to trim the size of earlier to avoid generating
  // writes to addresses which will definitely be overwritten later
  if (!EnablePartialOverwriteTracking &&
      (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + Earlier.Size) &&
       int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size)))
    return OW_End;

  // Finally, we also need to check if the later store overwrites the beginning
  // of the earlier store.
  //
  //                |--earlier--|
  //      |--   later   --|
  //
  // In this case we may want to move the destination address and trim the size
  // of earlier to avoid generating writes to addresses which will definitely
  // be overwritten later.
  if (!EnablePartialOverwriteTracking &&
      (LaterOff <= EarlierOff && int64_t(LaterOff + Later.Size) > EarlierOff)) {
    assert(int64_t(LaterOff + Later.Size) <
               int64_t(EarlierOff + Earlier.Size) &&
           "Expect to be handled as OW_Complete");
    return OW_Begin;
  }
  // Otherwise, they don't completely overlap.
  return OW_Unknown;
}

/// If 'Inst' might be a self read (i.e. a noop copy of a
/// memory region into an identical pointer) then it doesn't actually make its
/// input dead in the traditional sense.  Consider this case:
///
///   memmove(A <- B)
///   memmove(A <- A)
///
/// In this case, the second store to A does not make the first store to A dead.
/// The usual situation isn't an explicit A<-A store like this (which can be
/// trivially removed) but a case where two pointers may alias.
///
/// This function detects when it is unsafe to remove a dependent instruction
/// because the DSE inducing instruction may be a self-read.
static bool isPossibleSelfRead(Instruction *Inst,
                               const MemoryLocation &InstStoreLoc,
                               Instruction *DepWrite,
                               const TargetLibraryInfo &TLI,
                               AliasAnalysis &AA) {
  // Self reads can only happen for instructions that read memory.  Get the
  // location read.
  MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
  if (!InstReadLoc.Ptr)
    return false; // Not a reading instruction.

  // If the read and written loc obviously don't alias, it isn't a read.
  if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
    return false;

  if (isa<AnyMemCpyInst>(Inst)) {
    // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
    // but in practice memcpy(A <- B) either means that A and B are disjoint or
    // are equal (i.e. there are not partial overlaps).  Given that, if we have:
    //
    //   memcpy/memmove(A <- B)  // DepWrite
    //   memcpy(A <- B)  // Inst
    //
    // with Inst reading/writing a >= size than DepWrite, we can reason as
    // follows:
    //
    //   - If A == B then both the copies are no-ops, so the DepWrite can be
    //     removed.
    //   - If A != B then A and B are disjoint locations in Inst.  Since
    //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
    //     Therefore DepWrite can be removed.
    MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);

    if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
      return false;
  }

  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
  // then it can't be considered dead.
  return true;
}

/// Returns true if the memory which is accessed by the second instruction is not
/// modified between the first and the second instruction.
/// Precondition: Second instruction must be dominated by the first
/// instruction.
static bool memoryIsNotModifiedBetween(Instruction *FirstI,
                                       Instruction *SecondI,
                                       AliasAnalysis *AA) {
  SmallVector<BasicBlock *, 16> WorkList;
  SmallPtrSet<BasicBlock *, 8> Visited;
  BasicBlock::iterator FirstBBI(FirstI);
  ++FirstBBI;
  BasicBlock::iterator SecondBBI(SecondI);
  BasicBlock *FirstBB = FirstI->getParent();
  BasicBlock *SecondBB = SecondI->getParent();
  MemoryLocation MemLoc = MemoryLocation::get(SecondI);

  // Start checking the store-block.
  WorkList.push_back(SecondBB);
  bool isFirstBlock = true;

  // Check all blocks going backward until we reach the load-block.
  while (!WorkList.empty()) {
    BasicBlock *B = WorkList.pop_back_val();

    // Ignore instructions before LI if this is the FirstBB.
    BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());

    BasicBlock::iterator EI;
    if (isFirstBlock) {
      // Ignore instructions after SI if this is the first visit of SecondBB.
      assert(B == SecondBB && "first block is not the store block");
      EI = SecondBBI;
      isFirstBlock = false;
    } else {
      // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
      // In this case we also have to look at instructions after SI.
      EI = B->end();
    }
    for (; BI != EI; ++BI) {
      Instruction *I = &*BI;
      if (I->mayWriteToMemory() && I != SecondI)
        if (isModSet(AA->getModRefInfo(I, MemLoc)))
          return false;
    }
    if (B != FirstBB) {
      assert(B != &FirstBB->getParent()->getEntryBlock() &&
          "Should not hit the entry block because SI must be dominated by LI");
      for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
        if (!Visited.insert(*PredI).second)
          continue;
        WorkList.push_back(*PredI);
      }
    }
  }
  return true;
}

/// Find all blocks that will unconditionally lead to the block BB and append
/// them to F.
static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
                                   BasicBlock *BB, DominatorTree *DT) {
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    BasicBlock *Pred = *I;
    if (Pred == BB) continue;
    TerminatorInst *PredTI = Pred->getTerminator();
    if (PredTI->getNumSuccessors() != 1)
      continue;

    if (DT->isReachableFromEntry(Pred))
      Blocks.push_back(Pred);
  }
}

/// Handle frees of entire structures whose dependency is a store
/// to a field of that structure.
static bool handleFree(CallInst *F, AliasAnalysis *AA,
                       MemoryDependenceResults *MD, DominatorTree *DT,
                       const TargetLibraryInfo *TLI,
                       InstOverlapIntervalsTy &IOL,
                       DenseMap<Instruction*, size_t> *InstrOrdering) {
  bool MadeChange = false;

  MemoryLocation Loc = MemoryLocation(F->getOperand(0));
  SmallVector<BasicBlock *, 16> Blocks;
  Blocks.push_back(F->getParent());
  const DataLayout &DL = F->getModule()->getDataLayout();

  while (!Blocks.empty()) {
    BasicBlock *BB = Blocks.pop_back_val();
    Instruction *InstPt = BB->getTerminator();
    if (BB == F->getParent()) InstPt = F;

    MemDepResult Dep =
        MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
    while (Dep.isDef() || Dep.isClobber()) {
      Instruction *Dependency = Dep.getInst();
      if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
          !isRemovable(Dependency))
        break;

      Value *DepPointer =
          GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);

      // Check for aliasing.
      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
        break;

      LLVM_DEBUG(
          dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
                 << *Dependency << '\n');

      // DCE instructions only used to calculate that store.
      BasicBlock::iterator BBI(Dependency);
      deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering);
      ++NumFastStores;
      MadeChange = true;

      // Inst's old Dependency is now deleted. Compute the next dependency,
      // which may also be dead, as in
      //    s[0] = 0;
      //    s[1] = 0; // This has just been deleted.
      //    free(s);
      Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
    }

    if (Dep.isNonLocal())
      findUnconditionalPreds(Blocks, BB, DT);
  }

  return MadeChange;
}

/// Check to see if the specified location may alias any of the stack objects in
/// the DeadStackObjects set. If so, they become live because the location is
/// being loaded.
static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
                                  SmallSetVector<Value *, 16> &DeadStackObjects,
                                  const DataLayout &DL, AliasAnalysis *AA,
                                  const TargetLibraryInfo *TLI,
                                  const Function *F) {
  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);

  // A constant can't be in the dead pointer set.
  if (isa<Constant>(UnderlyingPointer))
    return;

  // If the kill pointer can be easily reduced to an alloca, don't bother doing
  // extraneous AA queries.
  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
    return;
  }

  // Remove objects that could alias LoadedLoc.
  DeadStackObjects.remove_if([&](Value *I) {
    // See if the loaded location could alias the stack location.
    MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
    return !AA->isNoAlias(StackLoc, LoadedLoc);
  });
}

/// Remove dead stores to stack-allocated locations in the function end block.
/// Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
                             MemoryDependenceResults *MD,
                             const TargetLibraryInfo *TLI,
                             InstOverlapIntervalsTy &IOL,
                             DenseMap<Instruction*, size_t> *InstrOrdering) {
  bool MadeChange = false;

  // Keep track of all of the stack objects that are dead at the end of the
  // function.
  SmallSetVector<Value*, 16> DeadStackObjects;

  // Find all of the alloca'd pointers in the entry block.
  BasicBlock &Entry = BB.getParent()->front();
  for (Instruction &I : Entry) {
    if (isa<AllocaInst>(&I))
      DeadStackObjects.insert(&I);

    // Okay, so these are dead heap objects, but if the pointer never escapes
    // then it's leaked by this function anyways.
    else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
      DeadStackObjects.insert(&I);
  }

  // Treat byval or inalloca arguments the same, stores to them are dead at the
  // end of the function.
  for (Argument &AI : BB.getParent()->args())
    if (AI.hasByValOrInAllocaAttr())
      DeadStackObjects.insert(&AI);

  const DataLayout &DL = BB.getModule()->getDataLayout();

  // Scan the basic block backwards
  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    --BBI;

    // If we find a store, check to see if it points into a dead stack value.
    if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
      // See through pointer-to-pointer bitcasts
      SmallVector<Value *, 4> Pointers;
      GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);

      // Stores to stack values are valid candidates for removal.
      bool AllDead = true;
      for (Value *Pointer : Pointers)
        if (!DeadStackObjects.count(Pointer)) {
          AllDead = false;
          break;
        }

      if (AllDead) {
        Instruction *Dead = &*BBI;

        LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
                          << *Dead << "\n  Objects: ";
                   for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
                        E = Pointers.end();
                        I != E; ++I) {
                     dbgs() << **I;
                     if (std::next(I) != E)
                       dbgs() << ", ";
                   } dbgs()
                   << '\n');

        // DCE instructions only used to calculate that store.
        deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
        ++NumFastStores;
        MadeChange = true;
        continue;
      }
    }

    // Remove any dead non-memory-mutating instructions.
    if (isInstructionTriviallyDead(&*BBI, TLI)) {
      LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
                        << *&*BBI << '\n');
      deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
      ++NumFastOther;
      MadeChange = true;
      continue;
    }

    if (isa<AllocaInst>(BBI)) {
      // Remove allocas from the list of dead stack objects; there can't be
      // any references before the definition.
      DeadStackObjects.remove(&*BBI);
      continue;
    }

    if (auto CS = CallSite(&*BBI)) {
      // Remove allocation function calls from the list of dead stack objects;
      // there can't be any references before the definition.
      if (isAllocLikeFn(&*BBI, TLI))
        DeadStackObjects.remove(&*BBI);

      // If this call does not access memory, it can't be loading any of our
      // pointers.
      if (AA->doesNotAccessMemory(CS))
        continue;

      // If the call might load from any of our allocas, then any store above
      // the call is live.
      DeadStackObjects.remove_if([&](Value *I) {
        // See if the call site touches the value.
        return isRefSet(AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI,
                                                                BB.getParent())));
      });

      // If all of the allocas were clobbered by the call then we're not going
      // to find anything else to process.
      if (DeadStackObjects.empty())
        break;

      continue;
    }

    // We can remove the dead stores, irrespective of the fence and its ordering
    // (release/acquire/seq_cst). Fences only constraints the ordering of
    // already visible stores, it does not make a store visible to other
    // threads. So, skipping over a fence does not change a store from being
    // dead.
    if (isa<FenceInst>(*BBI))
      continue;

    MemoryLocation LoadedLoc;

    // If we encounter a use of the pointer, it is no longer considered dead
    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
      if (!L->isUnordered()) // Be conservative with atomic/volatile load
        break;
      LoadedLoc = MemoryLocation::get(L);
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
      LoadedLoc = MemoryLocation::get(V);
    } else if (!BBI->mayReadFromMemory()) {
      // Instruction doesn't read memory.  Note that stores that weren't removed
      // above will hit this case.
      continue;
    } else {
      // Unknown inst; assume it clobbers everything.
      break;
    }

    // Remove any allocas from the DeadPointer set that are loaded, as this
    // makes any stores above the access live.
    removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());

    // If all of the allocas were clobbered by the access then we're not going
    // to find anything else to process.
    if (DeadStackObjects.empty())
      break;
  }

  return MadeChange;
}

static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
                         int64_t &EarlierSize, int64_t LaterOffset,
                         int64_t LaterSize, bool IsOverwriteEnd) {
  // TODO: base this on the target vector size so that if the earlier
  // store was too small to get vector writes anyway then its likely
  // a good idea to shorten it
  // Power of 2 vector writes are probably always a bad idea to optimize
  // as any store/memset/memcpy is likely using vector instructions so
  // shortening it to not vector size is likely to be slower
  auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
  unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
  if (!IsOverwriteEnd)
    LaterOffset = int64_t(LaterOffset + LaterSize);

  if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
      !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
    return false;

  int64_t NewLength = IsOverwriteEnd
                          ? LaterOffset - EarlierOffset
                          : EarlierSize - (LaterOffset - EarlierOffset);

  if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
    // When shortening an atomic memory intrinsic, the newly shortened
    // length must remain an integer multiple of the element size.
    const uint32_t ElementSize = AMI->getElementSizeInBytes();
    if (0 != NewLength % ElementSize)
      return false;
  }

  LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
                    << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
                    << *EarlierWrite << "\n  KILLER (offset " << LaterOffset
                    << ", " << EarlierSize << ")\n");

  Value *EarlierWriteLength = EarlierIntrinsic->getLength();
  Value *TrimmedLength =
      ConstantInt::get(EarlierWriteLength->getType(), NewLength);
  EarlierIntrinsic->setLength(TrimmedLength);

  EarlierSize = NewLength;
  if (!IsOverwriteEnd) {
    int64_t OffsetMoved = (LaterOffset - EarlierOffset);
    Value *Indices[1] = {
        ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
    GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
        EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
    EarlierIntrinsic->setDest(NewDestGEP);
    EarlierOffset = EarlierOffset + OffsetMoved;
  }
  return true;
}

static bool tryToShortenEnd(Instruction *EarlierWrite,
                            OverlapIntervalsTy &IntervalMap,
                            int64_t &EarlierStart, int64_t &EarlierSize) {
  if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
    return false;

  OverlapIntervalsTy::iterator OII = --IntervalMap.end();
  int64_t LaterStart = OII->second;
  int64_t LaterSize = OII->first - LaterStart;

  if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
      LaterStart + LaterSize >= EarlierStart + EarlierSize) {
    if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
                     LaterSize, true)) {
      IntervalMap.erase(OII);
      return true;
    }
  }
  return false;
}

static bool tryToShortenBegin(Instruction *EarlierWrite,
                              OverlapIntervalsTy &IntervalMap,
                              int64_t &EarlierStart, int64_t &EarlierSize) {
  if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
    return false;

  OverlapIntervalsTy::iterator OII = IntervalMap.begin();
  int64_t LaterStart = OII->second;
  int64_t LaterSize = OII->first - LaterStart;

  if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
    assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
           "Should have been handled as OW_Complete");
    if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
                     LaterSize, false)) {
      IntervalMap.erase(OII);
      return true;
    }
  }
  return false;
}

static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
                                            const DataLayout &DL,
                                            InstOverlapIntervalsTy &IOL) {
  bool Changed = false;
  for (auto OI : IOL) {
    Instruction *EarlierWrite = OI.first;
    MemoryLocation Loc = getLocForWrite(EarlierWrite);
    assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
    assert(Loc.Size != MemoryLocation::UnknownSize && "Unexpected mem loc");

    const Value *Ptr = Loc.Ptr->stripPointerCasts();
    int64_t EarlierStart = 0;
    int64_t EarlierSize = int64_t(Loc.Size);
    GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
    OverlapIntervalsTy &IntervalMap = OI.second;
    Changed |=
        tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
    if (IntervalMap.empty())
      continue;
    Changed |=
        tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
  }
  return Changed;
}

static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
                               AliasAnalysis *AA, MemoryDependenceResults *MD,
                               const DataLayout &DL,
                               const TargetLibraryInfo *TLI,
                               InstOverlapIntervalsTy &IOL,
                               DenseMap<Instruction*, size_t> *InstrOrdering) {
  // Must be a store instruction.
  StoreInst *SI = dyn_cast<StoreInst>(Inst);
  if (!SI)
    return false;

  // If we're storing the same value back to a pointer that we just loaded from,
  // then the store can be removed.
  if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
    if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
        isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {

      LLVM_DEBUG(
          dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
                 << *DepLoad << "\n  STORE: " << *SI << '\n');

      deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
      ++NumRedundantStores;
      return true;
    }
  }

  // Remove null stores into the calloc'ed objects
  Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
  if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
    Instruction *UnderlyingPointer =
        dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));

    if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
        memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
      LLVM_DEBUG(
          dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
                 << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');

      deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
      ++NumRedundantStores;
      return true;
    }
  }
  return false;
}

static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
                                MemoryDependenceResults *MD, DominatorTree *DT,
                                const TargetLibraryInfo *TLI) {
  const DataLayout &DL = BB.getModule()->getDataLayout();
  bool MadeChange = false;

  // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock?
  // The current OrderedBasicBlock can't deal with mutation at the moment.
  size_t LastThrowingInstIndex = 0;
  DenseMap<Instruction*, size_t> InstrOrdering;
  size_t InstrIndex = 1;

  // A map of interval maps representing partially-overwritten value parts.
  InstOverlapIntervalsTy IOL;

  // Do a top-down walk on the BB.
  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    // Handle 'free' calls specially.
    if (CallInst *F = isFreeCall(&*BBI, TLI)) {
      MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering);
      // Increment BBI after handleFree has potentially deleted instructions.
      // This ensures we maintain a valid iterator.
      ++BBI;
      continue;
    }

    Instruction *Inst = &*BBI++;

    size_t CurInstNumber = InstrIndex++;
    InstrOrdering.insert(std::make_pair(Inst, CurInstNumber));
    if (Inst->mayThrow()) {
      LastThrowingInstIndex = CurInstNumber;
      continue;
    }

    // Check to see if Inst writes to memory.  If not, continue.
    if (!hasAnalyzableMemoryWrite(Inst, *TLI))
      continue;

    // eliminateNoopStore will update in iterator, if necessary.
    if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) {
      MadeChange = true;
      continue;
    }

    // If we find something that writes memory, get its memory dependence.
    MemDepResult InstDep = MD->getDependency(Inst);

    // Ignore any store where we can't find a local dependence.
    // FIXME: cross-block DSE would be fun. :)
    if (!InstDep.isDef() && !InstDep.isClobber())
      continue;

    // Figure out what location is being stored to.
    MemoryLocation Loc = getLocForWrite(Inst);

    // If we didn't get a useful location, fail.
    if (!Loc.Ptr)
      continue;

    // Loop until we find a store we can eliminate or a load that
    // invalidates the analysis. Without an upper bound on the number of
    // instructions examined, this analysis can become very time-consuming.
    // However, the potential gain diminishes as we process more instructions
    // without eliminating any of them. Therefore, we limit the number of
    // instructions we look at.
    auto Limit = MD->getDefaultBlockScanLimit();
    while (InstDep.isDef() || InstDep.isClobber()) {
      // Get the memory clobbered by the instruction we depend on.  MemDep will
      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
      // end up depending on a may- or must-aliased load, then we can't optimize
      // away the store and we bail out.  However, if we depend on something
      // that overwrites the memory location we *can* potentially optimize it.
      //
      // Find out what memory location the dependent instruction stores.
      Instruction *DepWrite = InstDep.getInst();
      if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
        break;
      MemoryLocation DepLoc = getLocForWrite(DepWrite);
      // If we didn't get a useful location, or if it isn't a size, bail out.
      if (!DepLoc.Ptr)
        break;

      // Make sure we don't look past a call which might throw. This is an
      // issue because MemoryDependenceAnalysis works in the wrong direction:
      // it finds instructions which dominate the current instruction, rather than
      // instructions which are post-dominated by the current instruction.
      //
      // If the underlying object is a non-escaping memory allocation, any store
      // to it is dead along the unwind edge. Otherwise, we need to preserve
      // the store.
      size_t DepIndex = InstrOrdering.lookup(DepWrite);
      assert(DepIndex && "Unexpected instruction");
      if (DepIndex <= LastThrowingInstIndex) {
        const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
        bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
        if (!IsStoreDeadOnUnwind) {
            // We're looking for a call to an allocation function
            // where the allocation doesn't escape before the last
            // throwing instruction; PointerMayBeCaptured
            // reasonably fast approximation.
            IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
                !PointerMayBeCaptured(Underlying, false, true);
        }
        if (!IsStoreDeadOnUnwind)
          break;
      }

      // If we find a write that is a) removable (i.e., non-volatile), b) is
      // completely obliterated by the store to 'Loc', and c) which we know that
      // 'Inst' doesn't load from, then we can remove it.
      // Also try to merge two stores if a later one only touches memory written
      // to by the earlier one.
      if (isRemovable(DepWrite) &&
          !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
        int64_t InstWriteOffset, DepWriteOffset;
        OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
                                         InstWriteOffset, DepWrite, IOL, *AA,
                                         BB.getParent());
        if (OR == OW_Complete) {
          LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DepWrite
                            << "\n  KILLER: " << *Inst << '\n');

          // Delete the store and now-dead instructions that feed it.
          deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering);
          ++NumFastStores;
          MadeChange = true;

          // We erased DepWrite; start over.
          InstDep = MD->getDependency(Inst);
          continue;
        } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
                   ((OR == OW_Begin &&
                     isShortenableAtTheBeginning(DepWrite)))) {
          assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
                                                    "when partial-overwrite "
                                                    "tracking is enabled");
          int64_t EarlierSize = DepLoc.Size;
          int64_t LaterSize = Loc.Size;
          bool IsOverwriteEnd = (OR == OW_End);
          MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
                                    InstWriteOffset, LaterSize, IsOverwriteEnd);
        } else if (EnablePartialStoreMerging &&
                   OR == OW_PartialEarlierWithFullLater) {
          auto *Earlier = dyn_cast<StoreInst>(DepWrite);
          auto *Later = dyn_cast<StoreInst>(Inst);
          if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
              Later && isa<ConstantInt>(Later->getValueOperand()) &&
              memoryIsNotModifiedBetween(Earlier, Later, AA)) {
            // If the store we find is:
            //   a) partially overwritten by the store to 'Loc'
            //   b) the later store is fully contained in the earlier one and
            //   c) they both have a constant value
            // Merge the two stores, replacing the earlier store's value with a
            // merge of both values.
            // TODO: Deal with other constant types (vectors, etc), and probably
            // some mem intrinsics (if needed)

            APInt EarlierValue =
                cast<ConstantInt>(Earlier->getValueOperand())->getValue();
            APInt LaterValue =
                cast<ConstantInt>(Later->getValueOperand())->getValue();
            unsigned LaterBits = LaterValue.getBitWidth();
            assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
            LaterValue = LaterValue.zext(EarlierValue.getBitWidth());

            // Offset of the smaller store inside the larger store
            unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
            unsigned LShiftAmount =
                DL.isBigEndian()
                    ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
                    : BitOffsetDiff;
            APInt Mask =
                APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
                                  LShiftAmount + LaterBits);
            // Clear the bits we'll be replacing, then OR with the smaller
            // store, shifted appropriately.
            APInt Merged =
                (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
            LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *DepWrite
                              << "\n  Later: " << *Inst
                              << "\n  Merged Value: " << Merged << '\n');

            auto *SI = new StoreInst(
                ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
                Earlier->getPointerOperand(), false, Earlier->getAlignment(),
                Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);

            unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
                                   LLVMContext::MD_alias_scope,
                                   LLVMContext::MD_noalias,
                                   LLVMContext::MD_nontemporal};
            SI->copyMetadata(*DepWrite, MDToKeep);
            ++NumModifiedStores;

            // Remove earlier, wider, store
            size_t Idx = InstrOrdering.lookup(DepWrite);
            InstrOrdering.erase(DepWrite);
            InstrOrdering.insert(std::make_pair(SI, Idx));

            // Delete the old stores and now-dead instructions that feed them.
            deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering);
            deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
                                  &InstrOrdering);
            MadeChange = true;

            // We erased DepWrite and Inst (Loc); start over.
            break;
          }
        }
      }

      // If this is a may-aliased store that is clobbering the store value, we
      // can keep searching past it for another must-aliased pointer that stores
      // to the same location.  For example, in:
      //   store -> P
      //   store -> Q
      //   store -> P
      // we can remove the first store to P even though we don't know if P and Q
      // alias.
      if (DepWrite == &BB.front()) break;

      // Can't look past this instruction if it might read 'Loc'.
      if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
        break;

      InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
                                             DepWrite->getIterator(), &BB,
                                             /*QueryInst=*/ nullptr, &Limit);
    }
  }

  if (EnablePartialOverwriteTracking)
    MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);

  // If this block ends in a return, unwind, or unreachable, all allocas are
  // dead at its end, which means stores to them are also dead.
  if (BB.getTerminator()->getNumSuccessors() == 0)
    MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering);

  return MadeChange;
}

static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
                                MemoryDependenceResults *MD, DominatorTree *DT,
                                const TargetLibraryInfo *TLI) {
  bool MadeChange = false;
  for (BasicBlock &BB : F)
    // Only check non-dead blocks.  Dead blocks may have strange pointer
    // cycles that will confuse alias analysis.
    if (DT->isReachableFromEntry(&BB))
      MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);

  return MadeChange;
}

//===----------------------------------------------------------------------===//
// DSE Pass
//===----------------------------------------------------------------------===//
PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
  AliasAnalysis *AA = &AM.getResult<AAManager>(F);
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
  const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);

  if (!eliminateDeadStores(F, AA, MD, DT, TLI))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  PA.preserve<MemoryDependenceAnalysis>();
  return PA;
}

namespace {

/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
class DSELegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  DSELegacyPass() : FunctionPass(ID) {
    initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    MemoryDependenceResults *MD =
        &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();

    return eliminateDeadStores(F, AA, MD, DT, TLI);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<MemoryDependenceWrapperPass>();
  }
};

} // end anonymous namespace

char DSELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
                    false)

FunctionPass *llvm::createDeadStoreEliminationPass() {
  return new DSELegacyPass();
}