Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;
using namespace jumpthreading;

#define DEBUG_TYPE "jump-threading"

STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds,   "Number of terminators folded");
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");

static cl::opt<unsigned>
BBDuplicateThreshold("jump-threading-threshold",
          cl::desc("Max block size to duplicate for jump threading"),
          cl::init(6), cl::Hidden);

static cl::opt<unsigned>
ImplicationSearchThreshold(
  "jump-threading-implication-search-threshold",
  cl::desc("The number of predecessors to search for a stronger "
           "condition to use to thread over a weaker condition"),
  cl::init(3), cl::Hidden);

static cl::opt<bool> PrintLVIAfterJumpThreading(
    "print-lvi-after-jump-threading",
    cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
    cl::Hidden);

namespace {

  /// This pass performs 'jump threading', which looks at blocks that have
  /// multiple predecessors and multiple successors.  If one or more of the
  /// predecessors of the block can be proven to always jump to one of the
  /// successors, we forward the edge from the predecessor to the successor by
  /// duplicating the contents of this block.
  ///
  /// An example of when this can occur is code like this:
  ///
  ///   if () { ...
  ///     X = 4;
  ///   }
  ///   if (X < 3) {
  ///
  /// In this case, the unconditional branch at the end of the first if can be
  /// revectored to the false side of the second if.
  class JumpThreading : public FunctionPass {
    JumpThreadingPass Impl;

  public:
    static char ID; // Pass identification

    JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<LazyValueInfoWrapperPass>();
      AU.addPreserved<LazyValueInfoWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
    }

    void releaseMemory() override { Impl.releaseMemory(); }
  };

} // end anonymous namespace

char JumpThreading::ID = 0;

INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                "Jump Threading", false, false)

// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
  return new JumpThreading(Threshold);
}

JumpThreadingPass::JumpThreadingPass(int T) {
  BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
}

// Update branch probability information according to conditional
// branch probability. This is usually made possible for cloned branches
// in inline instances by the context specific profile in the caller.
// For instance,
//
//  [Block PredBB]
//  [Branch PredBr]
//  if (t) {
//     Block A;
//  } else {
//     Block B;
//  }
//
//  [Block BB]
//  cond = PN([true, %A], [..., %B]); // PHI node
//  [Branch CondBr]
//  if (cond) {
//    ...  // P(cond == true) = 1%
//  }
//
//  Here we know that when block A is taken, cond must be true, which means
//      P(cond == true | A) = 1
//
//  Given that P(cond == true) = P(cond == true | A) * P(A) +
//                               P(cond == true | B) * P(B)
//  we get:
//     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
//
//  which gives us:
//     P(A) is less than P(cond == true), i.e.
//     P(t == true) <= P(cond == true)
//
//  In other words, if we know P(cond == true) is unlikely, we know
//  that P(t == true) is also unlikely.
//
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  if (!CondBr)
    return;

  BranchProbability BP;
  uint64_t TrueWeight, FalseWeight;
  if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
    return;

  // Returns the outgoing edge of the dominating predecessor block
  // that leads to the PhiNode's incoming block:
  auto GetPredOutEdge =
      [](BasicBlock *IncomingBB,
         BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
    auto *PredBB = IncomingBB;
    auto *SuccBB = PhiBB;
    while (true) {
      BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
      if (PredBr && PredBr->isConditional())
        return {PredBB, SuccBB};
      auto *SinglePredBB = PredBB->getSinglePredecessor();
      if (!SinglePredBB)
        return {nullptr, nullptr};
      SuccBB = PredBB;
      PredBB = SinglePredBB;
    }
  };

  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *PhiOpnd = PN->getIncomingValue(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);

    if (!CI || !CI->getType()->isIntegerTy(1))
      continue;

    BP = (CI->isOne() ? BranchProbability::getBranchProbability(
                            TrueWeight, TrueWeight + FalseWeight)
                      : BranchProbability::getBranchProbability(
                            FalseWeight, TrueWeight + FalseWeight));

    auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
    if (!PredOutEdge.first)
      return;

    BasicBlock *PredBB = PredOutEdge.first;
    BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());

    uint64_t PredTrueWeight, PredFalseWeight;
    // FIXME: We currently only set the profile data when it is missing.
    // With PGO, this can be used to refine even existing profile data with
    // context information. This needs to be done after more performance
    // testing.
    if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
      continue;

    // We can not infer anything useful when BP >= 50%, because BP is the
    // upper bound probability value.
    if (BP >= BranchProbability(50, 100))
      continue;

    SmallVector<uint32_t, 2> Weights;
    if (PredBr->getSuccessor(0) == PredOutEdge.second) {
      Weights.push_back(BP.getNumerator());
      Weights.push_back(BP.getCompl().getNumerator());
    } else {
      Weights.push_back(BP.getCompl().getNumerator());
      Weights.push_back(BP.getNumerator());
    }
    PredBr->setMetadata(LLVMContext::MD_prof,
                        MDBuilder(PredBr->getParent()->getContext())
                            .createBranchWeights(Weights));
  }
}

/// runOnFunction - Toplevel algorithm.
bool JumpThreading::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;
  auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  // Get DT analysis before LVI. When LVI is initialized it conditionally adds
  // DT if it's available.
  auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DeferredDominance DDT(*DT);
  std::unique_ptr<BlockFrequencyInfo> BFI;
  std::unique_ptr<BranchProbabilityInfo> BPI;
  bool HasProfileData = F.hasProfileData();
  if (HasProfileData) {
    LoopInfo LI{DominatorTree(F)};
    BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
  }

  bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
                              std::move(BFI), std::move(BPI));
  if (PrintLVIAfterJumpThreading) {
    dbgs() << "LVI for function '" << F.getName() << "':\n";
    LVI->printLVI(F, *DT, dbgs());
  }
  return Changed;
}

PreservedAnalyses JumpThreadingPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  // Get DT analysis before LVI. When LVI is initialized it conditionally adds
  // DT if it's available.
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LVI = AM.getResult<LazyValueAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  DeferredDominance DDT(DT);

  std::unique_ptr<BlockFrequencyInfo> BFI;
  std::unique_ptr<BranchProbabilityInfo> BPI;
  if (F.hasProfileData()) {
    LoopInfo LI{DominatorTree(F)};
    BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
  }

  bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
                         std::move(BFI), std::move(BPI));

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LazyValueAnalysis>();
  return PA;
}

bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
                                LazyValueInfo *LVI_, AliasAnalysis *AA_,
                                DeferredDominance *DDT_, bool HasProfileData_,
                                std::unique_ptr<BlockFrequencyInfo> BFI_,
                                std::unique_ptr<BranchProbabilityInfo> BPI_) {
  LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
  TLI = TLI_;
  LVI = LVI_;
  AA = AA_;
  DDT = DDT_;
  BFI.reset();
  BPI.reset();
  // When profile data is available, we need to update edge weights after
  // successful jump threading, which requires both BPI and BFI being available.
  HasProfileData = HasProfileData_;
  auto *GuardDecl = F.getParent()->getFunction(
      Intrinsic::getName(Intrinsic::experimental_guard));
  HasGuards = GuardDecl && !GuardDecl->use_empty();
  if (HasProfileData) {
    BPI = std::move(BPI_);
    BFI = std::move(BFI_);
  }

  // JumpThreading must not processes blocks unreachable from entry. It's a
  // waste of compute time and can potentially lead to hangs.
  SmallPtrSet<BasicBlock *, 16> Unreachable;
  DominatorTree &DT = DDT->flush();
  for (auto &BB : F)
    if (!DT.isReachableFromEntry(&BB))
      Unreachable.insert(&BB);

  FindLoopHeaders(F);

  bool EverChanged = false;
  bool Changed;
  do {
    Changed = false;
    for (auto &BB : F) {
      if (Unreachable.count(&BB))
        continue;
      while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
        Changed = true;
      // Stop processing BB if it's the entry or is now deleted. The following
      // routines attempt to eliminate BB and locating a suitable replacement
      // for the entry is non-trivial.
      if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
        continue;

      if (pred_empty(&BB)) {
        // When ProcessBlock makes BB unreachable it doesn't bother to fix up
        // the instructions in it. We must remove BB to prevent invalid IR.
        LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
                          << "' with terminator: " << *BB.getTerminator()
                          << '\n');
        LoopHeaders.erase(&BB);
        LVI->eraseBlock(&BB);
        DeleteDeadBlock(&BB, DDT);
        Changed = true;
        continue;
      }

      // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
      // is "almost empty", we attempt to merge BB with its sole successor.
      auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
      if (BI && BI->isUnconditional() &&
          // The terminator must be the only non-phi instruction in BB.
          BB.getFirstNonPHIOrDbg()->isTerminator() &&
          // Don't alter Loop headers and latches to ensure another pass can
          // detect and transform nested loops later.
          !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
          TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
        // BB is valid for cleanup here because we passed in DDT. F remains
        // BB's parent until a DDT->flush() event.
        LVI->eraseBlock(&BB);
        Changed = true;
      }
    }
    EverChanged |= Changed;
  } while (Changed);

  LoopHeaders.clear();
  DDT->flush();
  LVI->enableDT();
  return EverChanged;
}

// Replace uses of Cond with ToVal when safe to do so. If all uses are
// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
// because we may incorrectly replace uses when guards/assumes are uses of
// of `Cond` and we used the guards/assume to reason about the `Cond` value
// at the end of block. RAUW unconditionally replaces all uses
// including the guards/assumes themselves and the uses before the
// guard/assume.
static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
  assert(Cond->getType() == ToVal->getType());
  auto *BB = Cond->getParent();
  // We can unconditionally replace all uses in non-local blocks (i.e. uses
  // strictly dominated by BB), since LVI information is true from the
  // terminator of BB.
  replaceNonLocalUsesWith(Cond, ToVal);
  for (Instruction &I : reverse(*BB)) {
    // Reached the Cond whose uses we are trying to replace, so there are no
    // more uses.
    if (&I == Cond)
      break;
    // We only replace uses in instructions that are guaranteed to reach the end
    // of BB, where we know Cond is ToVal.
    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
      break;
    I.replaceUsesOfWith(Cond, ToVal);
  }
  if (Cond->use_empty() && !Cond->mayHaveSideEffects())
    Cond->eraseFromParent();
}

/// Return the cost of duplicating a piece of this block from first non-phi
/// and before StopAt instruction to thread across it. Stop scanning the block
/// when exceeding the threshold. If duplication is impossible, returns ~0U.
static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
                                             Instruction *StopAt,
                                             unsigned Threshold) {
  assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
  /// Ignore PHI nodes, these will be flattened when duplication happens.
  BasicBlock::const_iterator I(BB->getFirstNonPHI());

  // FIXME: THREADING will delete values that are just used to compute the
  // branch, so they shouldn't count against the duplication cost.

  unsigned Bonus = 0;
  if (BB->getTerminator() == StopAt) {
    // Threading through a switch statement is particularly profitable.  If this
    // block ends in a switch, decrease its cost to make it more likely to
    // happen.
    if (isa<SwitchInst>(StopAt))
      Bonus = 6;

    // The same holds for indirect branches, but slightly more so.
    if (isa<IndirectBrInst>(StopAt))
      Bonus = 8;
  }

  // Bump the threshold up so the early exit from the loop doesn't skip the
  // terminator-based Size adjustment at the end.
  Threshold += Bonus;

  // Sum up the cost of each instruction until we get to the terminator.  Don't
  // include the terminator because the copy won't include it.
  unsigned Size = 0;
  for (; &*I != StopAt; ++I) {

    // Stop scanning the block if we've reached the threshold.
    if (Size > Threshold)
      return Size;

    // Debugger intrinsics don't incur code size.
    if (isa<DbgInfoIntrinsic>(I)) continue;

    // If this is a pointer->pointer bitcast, it is free.
    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
      continue;

    // Bail out if this instruction gives back a token type, it is not possible
    // to duplicate it if it is used outside this BB.
    if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
      return ~0U;

    // All other instructions count for at least one unit.
    ++Size;

    // Calls are more expensive.  If they are non-intrinsic calls, we model them
    // as having cost of 4.  If they are a non-vector intrinsic, we model them
    // as having cost of 2 total, and if they are a vector intrinsic, we model
    // them as having cost 1.
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (CI->cannotDuplicate() || CI->isConvergent())
        // Blocks with NoDuplicate are modelled as having infinite cost, so they
        // are never duplicated.
        return ~0U;
      else if (!isa<IntrinsicInst>(CI))
        Size += 3;
      else if (!CI->getType()->isVectorTy())
        Size += 1;
    }
  }

  return Size > Bonus ? Size - Bonus : 0;
}

/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops.  Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations.  To prevent this from
/// happening, we first have to find the loop headers.  Here we approximate this
/// by finding targets of backedges in the CFG.
///
/// Note that there definitely are cases when we want to allow threading of
/// edges across a loop header.  For example, threading a jump from outside the
/// loop (the preheader) to an exit block of the loop is definitely profitable.
/// It is also almost always profitable to thread backedges from within the loop
/// to exit blocks, and is often profitable to thread backedges to other blocks
/// within the loop (forming a nested loop).  This simple analysis is not rich
/// enough to track all of these properties and keep it up-to-date as the CFG
/// mutates, so we don't allow any of these transformations.
void JumpThreadingPass::FindLoopHeaders(Function &F) {
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
  FindFunctionBackedges(F, Edges);

  for (const auto &Edge : Edges)
    LoopHeaders.insert(Edge.second);
}

/// getKnownConstant - Helper method to determine if we can thread over a
/// terminator with the given value as its condition, and if so what value to
/// use for that. What kind of value this is depends on whether we want an
/// integer or a block address, but an undef is always accepted.
/// Returns null if Val is null or not an appropriate constant.
static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
  if (!Val)
    return nullptr;

  // Undef is "known" enough.
  if (UndefValue *U = dyn_cast<UndefValue>(Val))
    return U;

  if (Preference == WantBlockAddress)
    return dyn_cast<BlockAddress>(Val->stripPointerCasts());

  return dyn_cast<ConstantInt>(Val);
}

/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
/// in any of our predecessors.  If so, return the known list of value and pred
/// BB in the result vector.
///
/// This returns true if there were any known values.
bool JumpThreadingPass::ComputeValueKnownInPredecessors(
    Value *V, BasicBlock *BB, PredValueInfo &Result,
    ConstantPreference Preference, Instruction *CxtI) {
  // This method walks up use-def chains recursively.  Because of this, we could
  // get into an infinite loop going around loops in the use-def chain.  To
  // prevent this, keep track of what (value, block) pairs we've already visited
  // and terminate the search if we loop back to them
  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    return false;

  // An RAII help to remove this pair from the recursion set once the recursion
  // stack pops back out again.
  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));

  // If V is a constant, then it is known in all predecessors.
  if (Constant *KC = getKnownConstant(V, Preference)) {
    for (BasicBlock *Pred : predecessors(BB))
      Result.push_back(std::make_pair(KC, Pred));

    return !Result.empty();
  }

  // If V is a non-instruction value, or an instruction in a different block,
  // then it can't be derived from a PHI.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || I->getParent() != BB) {

    // Okay, if this is a live-in value, see if it has a known value at the end
    // of any of our predecessors.
    //
    // FIXME: This should be an edge property, not a block end property.
    /// TODO: Per PR2563, we could infer value range information about a
    /// predecessor based on its terminator.
    //
    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    // "I" is a non-local compare-with-a-constant instruction.  This would be
    // able to handle value inequalities better, for example if the compare is
    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    // Perhaps getConstantOnEdge should be smart enough to do this?

    if (DDT->pending())
      LVI->disableDT();
    else
      LVI->enableDT();
    for (BasicBlock *P : predecessors(BB)) {
      // If the value is known by LazyValueInfo to be a constant in a
      // predecessor, use that information to try to thread this block.
      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
      if (Constant *KC = getKnownConstant(PredCst, Preference))
        Result.push_back(std::make_pair(KC, P));
    }

    return !Result.empty();
  }

  /// If I is a PHI node, then we know the incoming values for any constants.
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    if (DDT->pending())
      LVI->disableDT();
    else
      LVI->enableDT();
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      if (Constant *KC = getKnownConstant(InVal, Preference)) {
        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
      } else {
        Constant *CI = LVI->getConstantOnEdge(InVal,
                                              PN->getIncomingBlock(i),
                                              BB, CxtI);
        if (Constant *KC = getKnownConstant(CI, Preference))
          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
      }
    }

    return !Result.empty();
  }

  // Handle Cast instructions.  Only see through Cast when the source operand is
  // PHI or Cmp to save the compilation time.
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value *Source = CI->getOperand(0);
    if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
      return false;
    ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
    if (Result.empty())
      return false;

    // Convert the known values.
    for (auto &R : Result)
      R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());

    return true;
  }

  // Handle some boolean conditions.
  if (I->getType()->getPrimitiveSizeInBits() == 1) {
    assert(Preference == WantInteger && "One-bit non-integer type?");
    // X | true -> true
    // X & false -> false
    if (I->getOpcode() == Instruction::Or ||
        I->getOpcode() == Instruction::And) {
      PredValueInfoTy LHSVals, RHSVals;

      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
                                      WantInteger, CxtI);
      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
                                      WantInteger, CxtI);

      if (LHSVals.empty() && RHSVals.empty())
        return false;

      ConstantInt *InterestingVal;
      if (I->getOpcode() == Instruction::Or)
        InterestingVal = ConstantInt::getTrue(I->getContext());
      else
        InterestingVal = ConstantInt::getFalse(I->getContext());

      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;

      // Scan for the sentinel.  If we find an undef, force it to the
      // interesting value: x|undef -> true and x&undef -> false.
      for (const auto &LHSVal : LHSVals)
        if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
          Result.emplace_back(InterestingVal, LHSVal.second);
          LHSKnownBBs.insert(LHSVal.second);
        }
      for (const auto &RHSVal : RHSVals)
        if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
          // If we already inferred a value for this block on the LHS, don't
          // re-add it.
          if (!LHSKnownBBs.count(RHSVal.second))
            Result.emplace_back(InterestingVal, RHSVal.second);
        }

      return !Result.empty();
    }

    // Handle the NOT form of XOR.
    if (I->getOpcode() == Instruction::Xor &&
        isa<ConstantInt>(I->getOperand(1)) &&
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
                                      WantInteger, CxtI);
      if (Result.empty())
        return false;

      // Invert the known values.
      for (auto &R : Result)
        R.first = ConstantExpr::getNot(R.first);

      return true;
    }

  // Try to simplify some other binary operator values.
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    assert(Preference != WantBlockAddress
            && "A binary operator creating a block address?");
    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
      PredValueInfoTy LHSVals;
      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
                                      WantInteger, CxtI);

      // Try to use constant folding to simplify the binary operator.
      for (const auto &LHSVal : LHSVals) {
        Constant *V = LHSVal.first;
        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);

        if (Constant *KC = getKnownConstant(Folded, WantInteger))
          Result.push_back(std::make_pair(KC, LHSVal.second));
      }
    }

    return !Result.empty();
  }

  // Handle compare with phi operand, where the PHI is defined in this block.
  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    assert(Preference == WantInteger && "Compares only produce integers");
    Type *CmpType = Cmp->getType();
    Value *CmpLHS = Cmp->getOperand(0);
    Value *CmpRHS = Cmp->getOperand(1);
    CmpInst::Predicate Pred = Cmp->getPredicate();

    PHINode *PN = dyn_cast<PHINode>(CmpLHS);
    if (!PN)
      PN = dyn_cast<PHINode>(CmpRHS);
    if (PN && PN->getParent() == BB) {
      const DataLayout &DL = PN->getModule()->getDataLayout();
      // We can do this simplification if any comparisons fold to true or false.
      // See if any do.
      if (DDT->pending())
        LVI->disableDT();
      else
        LVI->enableDT();
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        BasicBlock *PredBB = PN->getIncomingBlock(i);
        Value *LHS, *RHS;
        if (PN == CmpLHS) {
          LHS = PN->getIncomingValue(i);
          RHS = CmpRHS->DoPHITranslation(BB, PredBB);
        } else {
          LHS = CmpLHS->DoPHITranslation(BB, PredBB);
          RHS = PN->getIncomingValue(i);
        }
        Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
        if (!Res) {
          if (!isa<Constant>(RHS))
            continue;

          // getPredicateOnEdge call will make no sense if LHS is defined in BB.
          auto LHSInst = dyn_cast<Instruction>(LHS);
          if (LHSInst && LHSInst->getParent() == BB)
            continue;

          LazyValueInfo::Tristate
            ResT = LVI->getPredicateOnEdge(Pred, LHS,
                                           cast<Constant>(RHS), PredBB, BB,
                                           CxtI ? CxtI : Cmp);
          if (ResT == LazyValueInfo::Unknown)
            continue;
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
        }

        if (Constant *KC = getKnownConstant(Res, WantInteger))
          Result.push_back(std::make_pair(KC, PredBB));
      }

      return !Result.empty();
    }

    // If comparing a live-in value against a constant, see if we know the
    // live-in value on any predecessors.
    if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
      Constant *CmpConst = cast<Constant>(CmpRHS);

      if (!isa<Instruction>(CmpLHS) ||
          cast<Instruction>(CmpLHS)->getParent() != BB) {
        if (DDT->pending())
          LVI->disableDT();
        else
          LVI->enableDT();
        for (BasicBlock *P : predecessors(BB)) {
          // If the value is known by LazyValueInfo to be a constant in a
          // predecessor, use that information to try to thread this block.
          LazyValueInfo::Tristate Res =
            LVI->getPredicateOnEdge(Pred, CmpLHS,
                                    CmpConst, P, BB, CxtI ? CxtI : Cmp);
          if (Res == LazyValueInfo::Unknown)
            continue;

          Constant *ResC = ConstantInt::get(CmpType, Res);
          Result.push_back(std::make_pair(ResC, P));
        }

        return !Result.empty();
      }

      // InstCombine can fold some forms of constant range checks into
      // (icmp (add (x, C1)), C2). See if we have we have such a thing with
      // x as a live-in.
      {
        using namespace PatternMatch;

        Value *AddLHS;
        ConstantInt *AddConst;
        if (isa<ConstantInt>(CmpConst) &&
            match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
          if (!isa<Instruction>(AddLHS) ||
              cast<Instruction>(AddLHS)->getParent() != BB) {
            if (DDT->pending())
              LVI->disableDT();
            else
              LVI->enableDT();
            for (BasicBlock *P : predecessors(BB)) {
              // If the value is known by LazyValueInfo to be a ConstantRange in
              // a predecessor, use that information to try to thread this
              // block.
              ConstantRange CR = LVI->getConstantRangeOnEdge(
                  AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
              // Propagate the range through the addition.
              CR = CR.add(AddConst->getValue());

              // Get the range where the compare returns true.
              ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
                  Pred, cast<ConstantInt>(CmpConst)->getValue());

              Constant *ResC;
              if (CmpRange.contains(CR))
                ResC = ConstantInt::getTrue(CmpType);
              else if (CmpRange.inverse().contains(CR))
                ResC = ConstantInt::getFalse(CmpType);
              else
                continue;

              Result.push_back(std::make_pair(ResC, P));
            }

            return !Result.empty();
          }
        }
      }

      // Try to find a constant value for the LHS of a comparison,
      // and evaluate it statically if we can.
      PredValueInfoTy LHSVals;
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
                                      WantInteger, CxtI);

      for (const auto &LHSVal : LHSVals) {
        Constant *V = LHSVal.first;
        Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
          Result.push_back(std::make_pair(KC, LHSVal.second));
      }

      return !Result.empty();
    }
  }

  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    // Handle select instructions where at least one operand is a known constant
    // and we can figure out the condition value for any predecessor block.
    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    PredValueInfoTy Conds;
    if ((TrueVal || FalseVal) &&
        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
                                        WantInteger, CxtI)) {
      for (auto &C : Conds) {
        Constant *Cond = C.first;

        // Figure out what value to use for the condition.
        bool KnownCond;
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
          // A known boolean.
          KnownCond = CI->isOne();
        } else {
          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
          // Either operand will do, so be sure to pick the one that's a known
          // constant.
          // FIXME: Do this more cleverly if both values are known constants?
          KnownCond = (TrueVal != nullptr);
        }

        // See if the select has a known constant value for this predecessor.
        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
          Result.push_back(std::make_pair(Val, C.second));
      }

      return !Result.empty();
    }
  }

  // If all else fails, see if LVI can figure out a constant value for us.
  if (DDT->pending())
    LVI->disableDT();
  else
    LVI->enableDT();
  Constant *CI = LVI->getConstant(V, BB, CxtI);
  if (Constant *KC = getKnownConstant(CI, Preference)) {
    for (BasicBlock *Pred : predecessors(BB))
      Result.push_back(std::make_pair(KC, Pred));
  }

  return !Result.empty();
}

/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to.
///
/// Since we can pick an arbitrary destination, we pick the successor with the
/// fewest predecessors.  This should reduce the in-degree of the others.
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
  TerminatorInst *BBTerm = BB->getTerminator();
  unsigned MinSucc = 0;
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
  // Compute the successor with the minimum number of predecessors.
  unsigned MinNumPreds = pred_size(TestBB);
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    TestBB = BBTerm->getSuccessor(i);
    unsigned NumPreds = pred_size(TestBB);
    if (NumPreds < MinNumPreds) {
      MinSucc = i;
      MinNumPreds = NumPreds;
    }
  }

  return MinSucc;
}

static bool hasAddressTakenAndUsed(BasicBlock *BB) {
  if (!BB->hasAddressTaken()) return false;

  // If the block has its address taken, it may be a tree of dead constants
  // hanging off of it.  These shouldn't keep the block alive.
  BlockAddress *BA = BlockAddress::get(BB);
  BA->removeDeadConstantUsers();
  return !BA->use_empty();
}

/// ProcessBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
  // If the block is trivially dead, just return and let the caller nuke it.
  // This simplifies other transformations.
  if (DDT->pendingDeletedBB(BB) ||
      (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
    return false;

  // If this block has a single predecessor, and if that pred has a single
  // successor, merge the blocks.  This encourages recursive jump threading
  // because now the condition in this block can be threaded through
  // predecessors of our predecessor block.
  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    const TerminatorInst *TI = SinglePred->getTerminator();
    if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
      // If SinglePred was a loop header, BB becomes one.
      if (LoopHeaders.erase(SinglePred))
        LoopHeaders.insert(BB);

      LVI->eraseBlock(SinglePred);
      MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);

      // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
      // BB code within one basic block `BB`), we need to invalidate the LVI
      // information associated with BB, because the LVI information need not be
      // true for all of BB after the merge. For example,
      // Before the merge, LVI info and code is as follows:
      // SinglePred: <LVI info1 for %p val>
      // %y = use of %p
      // call @exit() // need not transfer execution to successor.
      // assume(%p) // from this point on %p is true
      // br label %BB
      // BB: <LVI info2 for %p val, i.e. %p is true>
      // %x = use of %p
      // br label exit
      //
      // Note that this LVI info for blocks BB and SinglPred is correct for %p
      // (info2 and info1 respectively). After the merge and the deletion of the
      // LVI info1 for SinglePred. We have the following code:
      // BB: <LVI info2 for %p val>
      // %y = use of %p
      // call @exit()
      // assume(%p)
      // %x = use of %p <-- LVI info2 is correct from here onwards.
      // br label exit
      // LVI info2 for BB is incorrect at the beginning of BB.

      // Invalidate LVI information for BB if the LVI is not provably true for
      // all of BB.
      if (!isGuaranteedToTransferExecutionToSuccessor(BB))
        LVI->eraseBlock(BB);
      return true;
    }
  }

  if (TryToUnfoldSelectInCurrBB(BB))
    return true;

  // Look if we can propagate guards to predecessors.
  if (HasGuards && ProcessGuards(BB))
    return true;

  // What kind of constant we're looking for.
  ConstantPreference Preference = WantInteger;

  // Look to see if the terminator is a conditional branch, switch or indirect
  // branch, if not we can't thread it.
  Value *Condition;
  Instruction *Terminator = BB->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
    // Can't thread an unconditional jump.
    if (BI->isUnconditional()) return false;
    Condition = BI->getCondition();
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    Condition = SI->getCondition();
  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
    // Can't thread indirect branch with no successors.
    if (IB->getNumSuccessors() == 0) return false;
    Condition = IB->getAddress()->stripPointerCasts();
    Preference = WantBlockAddress;
  } else {
    return false; // Must be an invoke.
  }

  // Run constant folding to see if we can reduce the condition to a simple
  // constant.
  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    Value *SimpleVal =
        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
    if (SimpleVal) {
      I->replaceAllUsesWith(SimpleVal);
      if (isInstructionTriviallyDead(I, TLI))
        I->eraseFromParent();
      Condition = SimpleVal;
    }
  }

  // If the terminator is branching on an undef, we can pick any of the
  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
  if (isa<UndefValue>(Condition)) {
    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    std::vector<DominatorTree::UpdateType> Updates;

    // Fold the branch/switch.
    TerminatorInst *BBTerm = BB->getTerminator();
    Updates.reserve(BBTerm->getNumSuccessors());
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
      if (i == BestSucc) continue;
      BasicBlock *Succ = BBTerm->getSuccessor(i);
      Succ->removePredecessor(BB, true);
      Updates.push_back({DominatorTree::Delete, BB, Succ});
    }

    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
                      << "' folding undef terminator: " << *BBTerm << '\n');
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    BBTerm->eraseFromParent();
    DDT->applyUpdates(Updates);
    return true;
  }

  // If the terminator of this block is branching on a constant, simplify the
  // terminator to an unconditional branch.  This can occur due to threading in
  // other blocks.
  if (getKnownConstant(Condition, Preference)) {
    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
                      << "' folding terminator: " << *BB->getTerminator()
                      << '\n');
    ++NumFolds;
    ConstantFoldTerminator(BB, true, nullptr, DDT);
    return true;
  }

  Instruction *CondInst = dyn_cast<Instruction>(Condition);

  // All the rest of our checks depend on the condition being an instruction.
  if (!CondInst) {
    // FIXME: Unify this with code below.
    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
      return true;
    return false;
  }

  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    // If we're branching on a conditional, LVI might be able to determine
    // it's value at the branch instruction.  We only handle comparisons
    // against a constant at this time.
    // TODO: This should be extended to handle switches as well.
    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    if (CondBr && CondConst) {
      // We should have returned as soon as we turn a conditional branch to
      // unconditional. Because its no longer interesting as far as jump
      // threading is concerned.
      assert(CondBr->isConditional() && "Threading on unconditional terminator");

      if (DDT->pending())
        LVI->disableDT();
      else
        LVI->enableDT();
      LazyValueInfo::Tristate Ret =
        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
                            CondConst, CondBr);
      if (Ret != LazyValueInfo::Unknown) {
        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
        BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
        ToRemoveSucc->removePredecessor(BB, true);
        BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
        CondBr->eraseFromParent();
        if (CondCmp->use_empty())
          CondCmp->eraseFromParent();
        // We can safely replace *some* uses of the CondInst if it has
        // exactly one value as returned by LVI. RAUW is incorrect in the
        // presence of guards and assumes, that have the `Cond` as the use. This
        // is because we use the guards/assume to reason about the `Cond` value
        // at the end of block, but RAUW unconditionally replaces all uses
        // including the guards/assumes themselves and the uses before the
        // guard/assume.
        else if (CondCmp->getParent() == BB) {
          auto *CI = Ret == LazyValueInfo::True ?
            ConstantInt::getTrue(CondCmp->getType()) :
            ConstantInt::getFalse(CondCmp->getType());
          ReplaceFoldableUses(CondCmp, CI);
        }
        DDT->deleteEdge(BB, ToRemoveSucc);
        return true;
      }

      // We did not manage to simplify this branch, try to see whether
      // CondCmp depends on a known phi-select pattern.
      if (TryToUnfoldSelect(CondCmp, BB))
        return true;
    }
  }

  // Check for some cases that are worth simplifying.  Right now we want to look
  // for loads that are used by a switch or by the condition for the branch.  If
  // we see one, check to see if it's partially redundant.  If so, insert a PHI
  // which can then be used to thread the values.
  Value *SimplifyValue = CondInst;
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    if (isa<Constant>(CondCmp->getOperand(1)))
      SimplifyValue = CondCmp->getOperand(0);

  // TODO: There are other places where load PRE would be profitable, such as
  // more complex comparisons.
  if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
    if (SimplifyPartiallyRedundantLoad(LoadI))
      return true;

  // Before threading, try to propagate profile data backwards:
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
      updatePredecessorProfileMetadata(PN, BB);

  // Handle a variety of cases where we are branching on something derived from
  // a PHI node in the current block.  If we can prove that any predecessors
  // compute a predictable value based on a PHI node, thread those predecessors.
  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
    return true;

  // If this is an otherwise-unfoldable branch on a phi node in the current
  // block, see if we can simplify.
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
      return ProcessBranchOnPHI(PN);

  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
  if (CondInst->getOpcode() == Instruction::Xor &&
      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));

  // Search for a stronger dominating condition that can be used to simplify a
  // conditional branch leaving BB.
  if (ProcessImpliedCondition(BB))
    return true;

  return false;
}

bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
  auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  BasicBlock *CurrentBB = BB;
  BasicBlock *CurrentPred = BB->getSinglePredecessor();
  unsigned Iter = 0;

  auto &DL = BB->getModule()->getDataLayout();

  while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
    auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
    if (!PBI || !PBI->isConditional())
      return false;
    if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
      return false;

    bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
    Optional<bool> Implication =
        isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
    if (Implication) {
      BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
      BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
      RemoveSucc->removePredecessor(BB);
      BranchInst::Create(KeepSucc, BI);
      BI->eraseFromParent();
      DDT->deleteEdge(BB, RemoveSucc);
      return true;
    }
    CurrentBB = CurrentPred;
    CurrentPred = CurrentBB->getSinglePredecessor();
  }

  return false;
}

/// Return true if Op is an instruction defined in the given block.
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
  if (Instruction *OpInst = dyn_cast<Instruction>(Op))
    if (OpInst->getParent() == BB)
      return true;
  return false;
}

/// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
/// redundant load instruction, eliminate it by replacing it with a PHI node.
/// This is an important optimization that encourages jump threading, and needs
/// to be run interlaced with other jump threading tasks.
bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
  // Don't hack volatile and ordered loads.
  if (!LoadI->isUnordered()) return false;

  // If the load is defined in a block with exactly one predecessor, it can't be
  // partially redundant.
  BasicBlock *LoadBB = LoadI->getParent();
  if (LoadBB->getSinglePredecessor())
    return false;

  // If the load is defined in an EH pad, it can't be partially redundant,
  // because the edges between the invoke and the EH pad cannot have other
  // instructions between them.
  if (LoadBB->isEHPad())
    return false;

  Value *LoadedPtr = LoadI->getOperand(0);

  // If the loaded operand is defined in the LoadBB and its not a phi,
  // it can't be available in predecessors.
  if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
    return false;

  // Scan a few instructions up from the load, to see if it is obviously live at
  // the entry to its block.
  BasicBlock::iterator BBIt(LoadI);
  bool IsLoadCSE;
  if (Value *AvailableVal = FindAvailableLoadedValue(
          LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
    // If the value of the load is locally available within the block, just use
    // it.  This frequently occurs for reg2mem'd allocas.

    if (IsLoadCSE) {
      LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
      combineMetadataForCSE(NLoadI, LoadI);
    };

    // If the returned value is the load itself, replace with an undef. This can
    // only happen in dead loops.
    if (AvailableVal == LoadI)
      AvailableVal = UndefValue::get(LoadI->getType());
    if (AvailableVal->getType() != LoadI->getType())
      AvailableVal = CastInst::CreateBitOrPointerCast(
          AvailableVal, LoadI->getType(), "", LoadI);
    LoadI->replaceAllUsesWith(AvailableVal);
    LoadI->eraseFromParent();
    return true;
  }

  // Otherwise, if we scanned the whole block and got to the top of the block,
  // we know the block is locally transparent to the load.  If not, something
  // might clobber its value.
  if (BBIt != LoadBB->begin())
    return false;

  // If all of the loads and stores that feed the value have the same AA tags,
  // then we can propagate them onto any newly inserted loads.
  AAMDNodes AATags;
  LoadI->getAAMetadata(AATags);

  SmallPtrSet<BasicBlock*, 8> PredsScanned;

  using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;

  AvailablePredsTy AvailablePreds;
  BasicBlock *OneUnavailablePred = nullptr;
  SmallVector<LoadInst*, 8> CSELoads;

  // If we got here, the loaded value is transparent through to the start of the
  // block.  Check to see if it is available in any of the predecessor blocks.
  for (BasicBlock *PredBB : predecessors(LoadBB)) {
    // If we already scanned this predecessor, skip it.
    if (!PredsScanned.insert(PredBB).second)
      continue;

    BBIt = PredBB->end();
    unsigned NumScanedInst = 0;
    Value *PredAvailable = nullptr;
    // NOTE: We don't CSE load that is volatile or anything stronger than
    // unordered, that should have been checked when we entered the function.
    assert(LoadI->isUnordered() &&
           "Attempting to CSE volatile or atomic loads");
    // If this is a load on a phi pointer, phi-translate it and search
    // for available load/store to the pointer in predecessors.
    Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
    PredAvailable = FindAvailablePtrLoadStore(
        Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
        DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);

    // If PredBB has a single predecessor, continue scanning through the
    // single predecessor.
    BasicBlock *SinglePredBB = PredBB;
    while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
           NumScanedInst < DefMaxInstsToScan) {
      SinglePredBB = SinglePredBB->getSinglePredecessor();
      if (SinglePredBB) {
        BBIt = SinglePredBB->end();
        PredAvailable = FindAvailablePtrLoadStore(
            Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
            (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
            &NumScanedInst);
      }
    }

    if (!PredAvailable) {
      OneUnavailablePred = PredBB;
      continue;
    }

    if (IsLoadCSE)
      CSELoads.push_back(cast<LoadInst>(PredAvailable));

    // If so, this load is partially redundant.  Remember this info so that we
    // can create a PHI node.
    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
  }

  // If the loaded value isn't available in any predecessor, it isn't partially
  // redundant.
  if (AvailablePreds.empty()) return false;

  // Okay, the loaded value is available in at least one (and maybe all!)
  // predecessors.  If the value is unavailable in more than one unique
  // predecessor, we want to insert a merge block for those common predecessors.
  // This ensures that we only have to insert one reload, thus not increasing
  // code size.
  BasicBlock *UnavailablePred = nullptr;

  // If the value is unavailable in one of predecessors, we will end up
  // inserting a new instruction into them. It is only valid if all the
  // instructions before LoadI are guaranteed to pass execution to its
  // successor, or if LoadI is safe to speculate.
  // TODO: If this logic becomes more complex, and we will perform PRE insertion
  // farther than to a predecessor, we need to reuse the code from GVN's PRE.
  // It requires domination tree analysis, so for this simple case it is an
  // overkill.
  if (PredsScanned.size() != AvailablePreds.size() &&
      !isSafeToSpeculativelyExecute(LoadI))
    for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
      if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
        return false;

  // If there is exactly one predecessor where the value is unavailable, the
  // already computed 'OneUnavailablePred' block is it.  If it ends in an
  // unconditional branch, we know that it isn't a critical edge.
  if (PredsScanned.size() == AvailablePreds.size()+1 &&
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    UnavailablePred = OneUnavailablePred;
  } else if (PredsScanned.size() != AvailablePreds.size()) {
    // Otherwise, we had multiple unavailable predecessors or we had a critical
    // edge from the one.
    SmallVector<BasicBlock*, 8> PredsToSplit;
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;

    for (const auto &AvailablePred : AvailablePreds)
      AvailablePredSet.insert(AvailablePred.first);

    // Add all the unavailable predecessors to the PredsToSplit list.
    for (BasicBlock *P : predecessors(LoadBB)) {
      // If the predecessor is an indirect goto, we can't split the edge.
      if (isa<IndirectBrInst>(P->getTerminator()))
        return false;

      if (!AvailablePredSet.count(P))
        PredsToSplit.push_back(P);
    }

    // Split them out to their own block.
    UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
  }

  // If the value isn't available in all predecessors, then there will be
  // exactly one where it isn't available.  Insert a load on that edge and add
  // it to the AvailablePreds list.
  if (UnavailablePred) {
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
           "Can't handle critical edge here!");
    LoadInst *NewVal =
        new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
                     LoadI->getName() + ".pr", false, LoadI->getAlignment(),
                     LoadI->getOrdering(), LoadI->getSyncScopeID(),
                     UnavailablePred->getTerminator());
    NewVal->setDebugLoc(LoadI->getDebugLoc());
    if (AATags)
      NewVal->setAAMetadata(AATags);

    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
  }

  // Now we know that each predecessor of this block has a value in
  // AvailablePreds, sort them for efficient access as we're walking the preds.
  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());

  // Create a PHI node at the start of the block for the PRE'd load value.
  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
  PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
                                &LoadBB->front());
  PN->takeName(LoadI);
  PN->setDebugLoc(LoadI->getDebugLoc());

  // Insert new entries into the PHI for each predecessor.  A single block may
  // have multiple entries here.
  for (pred_iterator PI = PB; PI != PE; ++PI) {
    BasicBlock *P = *PI;
    AvailablePredsTy::iterator I =
      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
                       std::make_pair(P, (Value*)nullptr));

    assert(I != AvailablePreds.end() && I->first == P &&
           "Didn't find entry for predecessor!");

    // If we have an available predecessor but it requires casting, insert the
    // cast in the predecessor and use the cast. Note that we have to update the
    // AvailablePreds vector as we go so that all of the PHI entries for this
    // predecessor use the same bitcast.
    Value *&PredV = I->second;
    if (PredV->getType() != LoadI->getType())
      PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
                                               P->getTerminator());

    PN->addIncoming(PredV, I->first);
  }

  for (LoadInst *PredLoadI : CSELoads) {
    combineMetadataForCSE(PredLoadI, LoadI);
  }

  LoadI->replaceAllUsesWith(PN);
  LoadI->eraseFromParent();

  return true;
}

/// FindMostPopularDest - The specified list contains multiple possible
/// threadable destinations.  Pick the one that occurs the most frequently in
/// the list.
static BasicBlock *
FindMostPopularDest(BasicBlock *BB,
                    const SmallVectorImpl<std::pair<BasicBlock *,
                                          BasicBlock *>> &PredToDestList) {
  assert(!PredToDestList.empty());

  // Determine popularity.  If there are multiple possible destinations, we
  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
  // blocks with known and real destinations to threading undef.  We'll handle
  // them later if interesting.
  DenseMap<BasicBlock*, unsigned> DestPopularity;
  for (const auto &PredToDest : PredToDestList)
    if (PredToDest.second)
      DestPopularity[PredToDest.second]++;

  if (DestPopularity.empty())
    return nullptr;

  // Find the most popular dest.
  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
  BasicBlock *MostPopularDest = DPI->first;
  unsigned Popularity = DPI->second;
  SmallVector<BasicBlock*, 4> SamePopularity;

  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
    // If the popularity of this entry isn't higher than the popularity we've
    // seen so far, ignore it.
    if (DPI->second < Popularity)
      ; // ignore.
    else if (DPI->second == Popularity) {
      // If it is the same as what we've seen so far, keep track of it.
      SamePopularity.push_back(DPI->first);
    } else {
      // If it is more popular, remember it.
      SamePopularity.clear();
      MostPopularDest = DPI->first;
      Popularity = DPI->second;
    }
  }

  // Okay, now we know the most popular destination.  If there is more than one
  // destination, we need to determine one.  This is arbitrary, but we need
  // to make a deterministic decision.  Pick the first one that appears in the
  // successor list.
  if (!SamePopularity.empty()) {
    SamePopularity.push_back(MostPopularDest);
    TerminatorInst *TI = BB->getTerminator();
    for (unsigned i = 0; ; ++i) {
      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");

      if (!is_contained(SamePopularity, TI->getSuccessor(i)))
        continue;

      MostPopularDest = TI->getSuccessor(i);
      break;
    }
  }

  // Okay, we have finally picked the most popular destination.
  return MostPopularDest;
}

bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
                                               ConstantPreference Preference,
                                               Instruction *CxtI) {
  // If threading this would thread across a loop header, don't even try to
  // thread the edge.
  if (LoopHeaders.count(BB))
    return false;

  PredValueInfoTy PredValues;
  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
    return false;

  assert(!PredValues.empty() &&
         "ComputeValueKnownInPredecessors returned true with no values");

  LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
             for (const auto &PredValue : PredValues) {
               dbgs() << "  BB '" << BB->getName()
                      << "': FOUND condition = " << *PredValue.first
                      << " for pred '" << PredValue.second->getName() << "'.\n";
  });

  // Decide what we want to thread through.  Convert our list of known values to
  // a list of known destinations for each pred.  This also discards duplicate
  // predecessors and keeps track of the undefined inputs (which are represented
  // as a null dest in the PredToDestList).
  SmallPtrSet<BasicBlock*, 16> SeenPreds;
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;

  BasicBlock *OnlyDest = nullptr;
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
  Constant *OnlyVal = nullptr;
  Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;

  unsigned PredWithKnownDest = 0;
  for (const auto &PredValue : PredValues) {
    BasicBlock *Pred = PredValue.second;
    if (!SeenPreds.insert(Pred).second)
      continue;  // Duplicate predecessor entry.

    Constant *Val = PredValue.first;

    BasicBlock *DestBB;
    if (isa<UndefValue>(Val))
      DestBB = nullptr;
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
      DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
    } else {
      assert(isa<IndirectBrInst>(BB->getTerminator())
              && "Unexpected terminator");
      assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
    }

    // If we have exactly one destination, remember it for efficiency below.
    if (PredToDestList.empty()) {
      OnlyDest = DestBB;
      OnlyVal = Val;
    } else {
      if (OnlyDest != DestBB)
        OnlyDest = MultipleDestSentinel;
      // It possible we have same destination, but different value, e.g. default
      // case in switchinst.
      if (Val != OnlyVal)
        OnlyVal = MultipleVal;
    }

    // We know where this predecessor is going.
    ++PredWithKnownDest;

    // If the predecessor ends with an indirect goto, we can't change its
    // destination.
    if (isa<IndirectBrInst>(Pred->getTerminator()))
      continue;

    PredToDestList.push_back(std::make_pair(Pred, DestBB));
  }

  // If all edges were unthreadable, we fail.
  if (PredToDestList.empty())
    return false;

  // If all the predecessors go to a single known successor, we want to fold,
  // not thread. By doing so, we do not need to duplicate the current block and
  // also miss potential opportunities in case we dont/cant duplicate.
  if (OnlyDest && OnlyDest != MultipleDestSentinel) {
    if (PredWithKnownDest == (size_t)pred_size(BB)) {
      bool SeenFirstBranchToOnlyDest = false;
      std::vector <DominatorTree::UpdateType> Updates;
      Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
      for (BasicBlock *SuccBB : successors(BB)) {
        if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
          SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
        } else {
          SuccBB->removePredecessor(BB, true); // This is unreachable successor.
          Updates.push_back({DominatorTree::Delete, BB, SuccBB});
        }
      }

      // Finally update the terminator.
      TerminatorInst *Term = BB->getTerminator();
      BranchInst::Create(OnlyDest, Term);
      Term->eraseFromParent();
      DDT->applyUpdates(Updates);

      // If the condition is now dead due to the removal of the old terminator,
      // erase it.
      if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
        if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
          CondInst->eraseFromParent();
        // We can safely replace *some* uses of the CondInst if it has
        // exactly one value as returned by LVI. RAUW is incorrect in the
        // presence of guards and assumes, that have the `Cond` as the use. This
        // is because we use the guards/assume to reason about the `Cond` value
        // at the end of block, but RAUW unconditionally replaces all uses
        // including the guards/assumes themselves and the uses before the
        // guard/assume.
        else if (OnlyVal && OnlyVal != MultipleVal &&
                 CondInst->getParent() == BB)
          ReplaceFoldableUses(CondInst, OnlyVal);
      }
      return true;
    }
  }

  // Determine which is the most common successor.  If we have many inputs and
  // this block is a switch, we want to start by threading the batch that goes
  // to the most popular destination first.  If we only know about one
  // threadable destination (the common case) we can avoid this.
  BasicBlock *MostPopularDest = OnlyDest;

  if (MostPopularDest == MultipleDestSentinel) {
    // Remove any loop headers from the Dest list, ThreadEdge conservatively
    // won't process them, but we might have other destination that are eligible
    // and we still want to process.
    erase_if(PredToDestList,
             [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
               return LoopHeaders.count(PredToDest.second) != 0;
             });

    if (PredToDestList.empty())
      return false;

    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
  }

  // Now that we know what the most popular destination is, factor all
  // predecessors that will jump to it into a single predecessor.
  SmallVector<BasicBlock*, 16> PredsToFactor;
  for (const auto &PredToDest : PredToDestList)
    if (PredToDest.second == MostPopularDest) {
      BasicBlock *Pred = PredToDest.first;

      // This predecessor may be a switch or something else that has multiple
      // edges to the block.  Factor each of these edges by listing them
      // according to # occurrences in PredsToFactor.
      for (BasicBlock *Succ : successors(Pred))
        if (Succ == BB)
          PredsToFactor.push_back(Pred);
    }

  // If the threadable edges are branching on an undefined value, we get to pick
  // the destination that these predecessors should get to.
  if (!MostPopularDest)
    MostPopularDest = BB->getTerminator()->
                            getSuccessor(GetBestDestForJumpOnUndef(BB));

  // Ok, try to thread it!
  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
}

/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
/// a PHI node in the current block.  See if there are any simplifications we
/// can do based on inputs to the phi node.
bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
  BasicBlock *BB = PN->getParent();

  // TODO: We could make use of this to do it once for blocks with common PHI
  // values.
  SmallVector<BasicBlock*, 1> PredBBs;
  PredBBs.resize(1);

  // If any of the predecessor blocks end in an unconditional branch, we can
  // *duplicate* the conditional branch into that block in order to further
  // encourage jump threading and to eliminate cases where we have branch on a
  // phi of an icmp (branch on icmp is much better).
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *PredBB = PN->getIncomingBlock(i);
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
      if (PredBr->isUnconditional()) {
        PredBBs[0] = PredBB;
        // Try to duplicate BB into PredBB.
        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
          return true;
      }
  }

  return false;
}

/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
/// a xor instruction in the current block.  See if there are any
/// simplifications we can do based on inputs to the xor.
bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
  BasicBlock *BB = BO->getParent();

  // If either the LHS or RHS of the xor is a constant, don't do this
  // optimization.
  if (isa<ConstantInt>(BO->getOperand(0)) ||
      isa<ConstantInt>(BO->getOperand(1)))
    return false;

  // If the first instruction in BB isn't a phi, we won't be able to infer
  // anything special about any particular predecessor.
  if (!isa<PHINode>(BB->front()))
    return false;

  // If this BB is a landing pad, we won't be able to split the edge into it.
  if (BB->isEHPad())
    return false;

  // If we have a xor as the branch input to this block, and we know that the
  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
  // the condition into the predecessor and fix that value to true, saving some
  // logical ops on that path and encouraging other paths to simplify.
  //
  // This copies something like this:
  //
  //  BB:
  //    %X = phi i1 [1],  [%X']
  //    %Y = icmp eq i32 %A, %B
  //    %Z = xor i1 %X, %Y
  //    br i1 %Z, ...
  //
  // Into:
  //  BB':
  //    %Y = icmp ne i32 %A, %B
  //    br i1 %Y, ...

  PredValueInfoTy XorOpValues;
  bool isLHS = true;
  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
                                       WantInteger, BO)) {
    assert(XorOpValues.empty());
    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
                                         WantInteger, BO))
      return false;
    isLHS = false;
  }

  assert(!XorOpValues.empty() &&
         "ComputeValueKnownInPredecessors returned true with no values");

  // Scan the information to see which is most popular: true or false.  The
  // predecessors can be of the set true, false, or undef.
  unsigned NumTrue = 0, NumFalse = 0;
  for (const auto &XorOpValue : XorOpValues) {
    if (isa<UndefValue>(XorOpValue.first))
      // Ignore undefs for the count.
      continue;
    if (cast<ConstantInt>(XorOpValue.first)->isZero())
      ++NumFalse;
    else
      ++NumTrue;
  }

  // Determine which value to split on, true, false, or undef if neither.
  ConstantInt *SplitVal = nullptr;
  if (NumTrue > NumFalse)
    SplitVal = ConstantInt::getTrue(BB->getContext());
  else if (NumTrue != 0 || NumFalse != 0)
    SplitVal = ConstantInt::getFalse(BB->getContext());

  // Collect all of the blocks that this can be folded into so that we can
  // factor this once and clone it once.
  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
  for (const auto &XorOpValue : XorOpValues) {
    if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
      continue;

    BlocksToFoldInto.push_back(XorOpValue.second);
  }

  // If we inferred a value for all of the predecessors, then duplication won't
  // help us.  However, we can just replace the LHS or RHS with the constant.
  if (BlocksToFoldInto.size() ==
      cast<PHINode>(BB->front()).getNumIncomingValues()) {
    if (!SplitVal) {
      // If all preds provide undef, just nuke the xor, because it is undef too.
      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
      BO->eraseFromParent();
    } else if (SplitVal->isZero()) {
      // If all preds provide 0, replace the xor with the other input.
      BO->replaceAllUsesWith(BO->getOperand(isLHS));
      BO->eraseFromParent();
    } else {
      // If all preds provide 1, set the computed value to 1.
      BO->setOperand(!isLHS, SplitVal);
    }

    return true;
  }

  // Try to duplicate BB into PredBB.
  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
}

/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
/// NewPred using the entries from OldPred (suitably mapped).
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
                                            BasicBlock *OldPred,
                                            BasicBlock *NewPred,
                                     DenseMap<Instruction*, Value*> &ValueMap) {
  for (PHINode &PN : PHIBB->phis()) {
    // Ok, we have a PHI node.  Figure out what the incoming value was for the
    // DestBlock.
    Value *IV = PN.getIncomingValueForBlock(OldPred);

    // Remap the value if necessary.
    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
      if (I != ValueMap.end())
        IV = I->second;
    }

    PN.addIncoming(IV, NewPred);
  }
}

/// ThreadEdge - We have decided that it is safe and profitable to factor the
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
/// across BB.  Transform the IR to reflect this change.
bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
                                   const SmallVectorImpl<BasicBlock *> &PredBBs,
                                   BasicBlock *SuccBB) {
  // If threading to the same block as we come from, we would infinite loop.
  if (SuccBB == BB) {
    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
                      << "' - would thread to self!\n");
    return false;
  }

  // If threading this would thread across a loop header, don't thread the edge.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
    LLVM_DEBUG({
      bool BBIsHeader = LoopHeaders.count(BB);
      bool SuccIsHeader = LoopHeaders.count(SuccBB);
      dbgs() << "  Not threading across "
          << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
          << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
          << SuccBB->getName() << "' - it might create an irreducible loop!\n";
    });
    return false;
  }

  unsigned JumpThreadCost =
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
  if (JumpThreadCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
                      << "' - Cost is too high: " << JumpThreadCost << "\n");
    return false;
  }

  // And finally, do it!  Start by factoring the predecessors if needed.
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
                      << " common predecessors.\n");
    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
  }

  // And finally, do it!
  LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
                    << "' to '" << SuccBB->getName()
                    << "' with cost: " << JumpThreadCost
                    << ", across block:\n    " << *BB << "\n");

  if (DDT->pending())
    LVI->disableDT();
  else
    LVI->enableDT();
  LVI->threadEdge(PredBB, BB, SuccBB);

  // We are going to have to map operands from the original BB block to the new
  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
  // account for entry from PredBB.
  DenseMap<Instruction*, Value*> ValueMapping;

  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
                                         BB->getName()+".thread",
                                         BB->getParent(), BB);
  NewBB->moveAfter(PredBB);

  // Set the block frequency of NewBB.
  if (HasProfileData) {
    auto NewBBFreq =
        BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }

  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);

  // Clone the non-phi instructions of BB into NewBB, keeping track of the
  // mapping and using it to remap operands in the cloned instructions.
  for (; !isa<TerminatorInst>(BI); ++BI) {
    Instruction *New = BI->clone();
    New->setName(BI->getName());
    NewBB->getInstList().push_back(New);
    ValueMapping[&*BI] = New;

    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }
  }

  // We didn't copy the terminator from BB over to NewBB, because there is now
  // an unconditional jump to SuccBB.  Insert the unconditional jump.
  BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());

  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
  // PHI nodes for NewBB now.
  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);

  // Update the terminator of PredBB to jump to NewBB instead of BB.  This
  // eliminates predecessors from BB, which requires us to simplify any PHI
  // nodes in BB.
  TerminatorInst *PredTerm = PredBB->getTerminator();
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
    if (PredTerm->getSuccessor(i) == BB) {
      BB->removePredecessor(PredBB, true);
      PredTerm->setSuccessor(i, NewBB);
    }

  // Enqueue required DT updates.
  DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
                     {DominatorTree::Insert, PredBB, NewBB},
                     {DominatorTree::Delete, PredBB, BB}});

  // If there were values defined in BB that are used outside the block, then we
  // now have to update all uses of the value to use either the original value,
  // the cloned value, or some PHI derived value.  This can require arbitrary
  // PHI insertion, of which we are prepared to do, clean these up now.
  SSAUpdater SSAUpdate;
  SmallVector<Use*, 16> UsesToRename;

  for (Instruction &I : *BB) {
    // Scan all uses of this instruction to see if their uses are no longer
    // dominated by the previous def and if so, record them in UsesToRename.
    // Also, skip phi operands from PredBB - we'll remove them anyway.
    for (Use &U : I.uses()) {
      Instruction *User = cast<Instruction>(U.getUser());
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (UserPN->getIncomingBlock(U) == BB)
          continue;
      } else if (User->getParent() == BB)
        continue;

      UsesToRename.push_back(&U);
    }

    // If there are no uses outside the block, we're done with this instruction.
    if (UsesToRename.empty())
      continue;
    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");

    // We found a use of I outside of BB.  Rename all uses of I that are outside
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
    // with the two values we know.
    SSAUpdate.Initialize(I.getType(), I.getName());
    SSAUpdate.AddAvailableValue(BB, &I);
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);

    while (!UsesToRename.empty())
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
    LLVM_DEBUG(dbgs() << "\n");
  }

  // At this point, the IR is fully up to date and consistent.  Do a quick scan
  // over the new instructions and zap any that are constants or dead.  This
  // frequently happens because of phi translation.
  SimplifyInstructionsInBlock(NewBB, TLI);

  // Update the edge weight from BB to SuccBB, which should be less than before.
  UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);

  // Threaded an edge!
  ++NumThreads;
  return true;
}

/// Create a new basic block that will be the predecessor of BB and successor of
/// all blocks in Preds. When profile data is available, update the frequency of
/// this new block.
BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
                                               ArrayRef<BasicBlock *> Preds,
                                               const char *Suffix) {
  SmallVector<BasicBlock *, 2> NewBBs;

  // Collect the frequencies of all predecessors of BB, which will be used to
  // update the edge weight of the result of splitting predecessors.
  DenseMap<BasicBlock *, BlockFrequency> FreqMap;
  if (HasProfileData)
    for (auto Pred : Preds)
      FreqMap.insert(std::make_pair(
          Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));

  // In the case when BB is a LandingPad block we create 2 new predecessors
  // instead of just one.
  if (BB->isLandingPad()) {
    std::string NewName = std::string(Suffix) + ".split-lp";
    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
  } else {
    NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
  }

  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve((2 * Preds.size()) + NewBBs.size());
  for (auto NewBB : NewBBs) {
    BlockFrequency NewBBFreq(0);
    Updates.push_back({DominatorTree::Insert, NewBB, BB});
    for (auto Pred : predecessors(NewBB)) {
      Updates.push_back({DominatorTree::Delete, Pred, BB});
      Updates.push_back({DominatorTree::Insert, Pred, NewBB});
      if (HasProfileData) // Update frequencies between Pred -> NewBB.
        NewBBFreq += FreqMap.lookup(Pred);
    }
    if (HasProfileData) // Apply the summed frequency to NewBB.
      BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }

  DDT->applyUpdates(Updates);
  return NewBBs[0];
}

bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
  const TerminatorInst *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "not a split");

  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
  if (!WeightsNode)
    return false;

  MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
  if (MDName->getString() != "branch_weights")
    return false;

  // Ensure there are weights for all of the successors. Note that the first
  // operand to the metadata node is a name, not a weight.
  return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
}

/// Update the block frequency of BB and branch weight and the metadata on the
/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
/// Freq(PredBB->BB) / Freq(BB->SuccBB).
void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
                                                     BasicBlock *BB,
                                                     BasicBlock *NewBB,
                                                     BasicBlock *SuccBB) {
  if (!HasProfileData)
    return;

  assert(BFI && BPI && "BFI & BPI should have been created here");

  // As the edge from PredBB to BB is deleted, we have to update the block
  // frequency of BB.
  auto BBOrigFreq = BFI->getBlockFreq(BB);
  auto NewBBFreq = BFI->getBlockFreq(NewBB);
  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
  auto BBNewFreq = BBOrigFreq - NewBBFreq;
  BFI->setBlockFreq(BB, BBNewFreq.getFrequency());

  // Collect updated outgoing edges' frequencies from BB and use them to update
  // edge probabilities.
  SmallVector<uint64_t, 4> BBSuccFreq;
  for (BasicBlock *Succ : successors(BB)) {
    auto SuccFreq = (Succ == SuccBB)
                        ? BB2SuccBBFreq - NewBBFreq
                        : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
    BBSuccFreq.push_back(SuccFreq.getFrequency());
  }

  uint64_t MaxBBSuccFreq =
      *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());

  SmallVector<BranchProbability, 4> BBSuccProbs;
  if (MaxBBSuccFreq == 0)
    BBSuccProbs.assign(BBSuccFreq.size(),
                       {1, static_cast<unsigned>(BBSuccFreq.size())});
  else {
    for (uint64_t Freq : BBSuccFreq)
      BBSuccProbs.push_back(
          BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
    // Normalize edge probabilities so that they sum up to one.
    BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
                                              BBSuccProbs.end());
  }

  // Update edge probabilities in BPI.
  for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
    BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);

  // Update the profile metadata as well.
  //
  // Don't do this if the profile of the transformed blocks was statically
  // estimated.  (This could occur despite the function having an entry
  // frequency in completely cold parts of the CFG.)
  //
  // In this case we don't want to suggest to subsequent passes that the
  // calculated weights are fully consistent.  Consider this graph:
  //
  //                 check_1
  //             50% /  |
  //             eq_1   | 50%
  //                 \  |
  //                 check_2
  //             50% /  |
  //             eq_2   | 50%
  //                 \  |
  //                 check_3
  //             50% /  |
  //             eq_3   | 50%
  //                 \  |
  //
  // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
  // the overall probabilities are inconsistent; the total probability that the
  // value is either 1, 2 or 3 is 150%.
  //
  // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
  // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
  // the loop exit edge.  Then based solely on static estimation we would assume
  // the loop was extremely hot.
  //
  // FIXME this locally as well so that BPI and BFI are consistent as well.  We
  // shouldn't make edges extremely likely or unlikely based solely on static
  // estimation.
  if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
    SmallVector<uint32_t, 4> Weights;
    for (auto Prob : BBSuccProbs)
      Weights.push_back(Prob.getNumerator());

    auto TI = BB->getTerminator();
    TI->setMetadata(
        LLVMContext::MD_prof,
        MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
  }
}

/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
/// If we can duplicate the contents of BB up into PredBB do so now, this
/// improves the odds that the branch will be on an analyzable instruction like
/// a compare.
bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
  assert(!PredBBs.empty() && "Can't handle an empty set");

  // If BB is a loop header, then duplicating this block outside the loop would
  // cause us to transform this into an irreducible loop, don't do this.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB)) {
    LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
                      << "' into predecessor block '" << PredBBs[0]->getName()
                      << "' - it might create an irreducible loop!\n");
    return false;
  }

  unsigned DuplicationCost =
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
  if (DuplicationCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
                      << "' - Cost is too high: " << DuplicationCost << "\n");
    return false;
  }

  // And finally, do it!  Start by factoring the predecessors if needed.
  std::vector<DominatorTree::UpdateType> Updates;
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
                      << " common predecessors.\n");
    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
  }
  Updates.push_back({DominatorTree::Delete, PredBB, BB});

  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
  // of PredBB.
  LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
                    << "' into end of '" << PredBB->getName()
                    << "' to eliminate branch on phi.  Cost: "
                    << DuplicationCost << " block is:" << *BB << "\n");

  // Unless PredBB ends with an unconditional branch, split the edge so that we
  // can just clone the bits from BB into the end of the new PredBB.
  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());

  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
    BasicBlock *OldPredBB = PredBB;
    PredBB = SplitEdge(OldPredBB, BB);
    Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
    Updates.push_back({DominatorTree::Insert, PredBB, BB});
    Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
  }

  // We are going to have to map operands from the original BB block into the
  // PredBB block.  Evaluate PHI nodes in BB.
  DenseMap<Instruction*, Value*> ValueMapping;

  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
  // Clone the non-phi instructions of BB into PredBB, keeping track of the
  // mapping and using it to remap operands in the cloned instructions.
  for (; BI != BB->end(); ++BI) {
    Instruction *New = BI->clone();

    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }

    // If this instruction can be simplified after the operands are updated,
    // just use the simplified value instead.  This frequently happens due to
    // phi translation.
    if (Value *IV = SimplifyInstruction(
            New,
            {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
      ValueMapping[&*BI] = IV;
      if (!New->mayHaveSideEffects()) {
        New->deleteValue();
        New = nullptr;
      }
    } else {
      ValueMapping[&*BI] = New;
    }
    if (New) {
      // Otherwise, insert the new instruction into the block.
      New->setName(BI->getName());
      PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
      // Update Dominance from simplified New instruction operands.
      for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
        if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
          Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
    }
  }

  // Check to see if the targets of the branch had PHI nodes. If so, we need to
  // add entries to the PHI nodes for branch from PredBB now.
  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
                                  ValueMapping);
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
                                  ValueMapping);

  // If there were values defined in BB that are used outside the block, then we
  // now have to update all uses of the value to use either the original value,
  // the cloned value, or some PHI derived value.  This can require arbitrary
  // PHI insertion, of which we are prepared to do, clean these up now.
  SSAUpdater SSAUpdate;
  SmallVector<Use*, 16> UsesToRename;
  for (Instruction &I : *BB) {
    // Scan all uses of this instruction to see if it is used outside of its
    // block, and if so, record them in UsesToRename.
    for (Use &U : I.uses()) {
      Instruction *User = cast<Instruction>(U.getUser());
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (UserPN->getIncomingBlock(U) == BB)
          continue;
      } else if (User->getParent() == BB)
        continue;

      UsesToRename.push_back(&U);
    }

    // If there are no uses outside the block, we're done with this instruction.
    if (UsesToRename.empty())
      continue;

    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");

    // We found a use of I outside of BB.  Rename all uses of I that are outside
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
    // with the two values we know.
    SSAUpdate.Initialize(I.getType(), I.getName());
    SSAUpdate.AddAvailableValue(BB, &I);
    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);

    while (!UsesToRename.empty())
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
    LLVM_DEBUG(dbgs() << "\n");
  }

  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
  // that we nuked.
  BB->removePredecessor(PredBB, true);

  // Remove the unconditional branch at the end of the PredBB block.
  OldPredBranch->eraseFromParent();
  DDT->applyUpdates(Updates);

  ++NumDupes;
  return true;
}

/// TryToUnfoldSelect - Look for blocks of the form
/// bb1:
///   %a = select
///   br bb2
///
/// bb2:
///   %p = phi [%a, %bb1] ...
///   %c = icmp %p
///   br i1 %c
///
/// And expand the select into a branch structure if one of its arms allows %c
/// to be folded. This later enables threading from bb1 over bb2.
bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));

  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
      CondLHS->getParent() != BB)
    return false;

  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));

    // Look if one of the incoming values is a select in the corresponding
    // predecessor.
    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
      continue;

    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredTerm || !PredTerm->isUnconditional())
      continue;

    // Now check if one of the select values would allow us to constant fold the
    // terminator in BB. We don't do the transform if both sides fold, those
    // cases will be threaded in any case.
    if (DDT->pending())
      LVI->disableDT();
    else
      LVI->enableDT();
    LazyValueInfo::Tristate LHSFolds =
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
                                CondRHS, Pred, BB, CondCmp);
    LazyValueInfo::Tristate RHSFolds =
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
                                CondRHS, Pred, BB, CondCmp);
    if ((LHSFolds != LazyValueInfo::Unknown ||
         RHSFolds != LazyValueInfo::Unknown) &&
        LHSFolds != RHSFolds) {
      // Expand the select.
      //
      // Pred --
      //  |    v
      //  |  NewBB
      //  |    |
      //  |-----
      //  v
      // BB
      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
                                             BB->getParent(), BB);
      // Move the unconditional branch to NewBB.
      PredTerm->removeFromParent();
      NewBB->getInstList().insert(NewBB->end(), PredTerm);
      // Create a conditional branch and update PHI nodes.
      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
      CondLHS->setIncomingValue(I, SI->getFalseValue());
      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
      // The select is now dead.
      SI->eraseFromParent();

      DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
                         {DominatorTree::Insert, Pred, NewBB}});
      // Update any other PHI nodes in BB.
      for (BasicBlock::iterator BI = BB->begin();
           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
        if (Phi != CondLHS)
          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
      return true;
    }
  }
  return false;
}

/// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
/// same BB in the form
/// bb:
///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
///   %s = select %p, trueval, falseval
///
/// or
///
/// bb:
///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
///   %c = cmp %p, 0
///   %s = select %c, trueval, falseval
///
/// And expand the select into a branch structure. This later enables
/// jump-threading over bb in this pass.
///
/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
/// select if the associated PHI has at least one constant.  If the unfolded
/// select is not jump-threaded, it will be folded again in the later
/// optimizations.
bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
  // If threading this would thread across a loop header, don't thread the edge.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB))
    return false;

  for (BasicBlock::iterator BI = BB->begin();
       PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
    // Look for a Phi having at least one constant incoming value.
    if (llvm::all_of(PN->incoming_values(),
                     [](Value *V) { return !isa<ConstantInt>(V); }))
      continue;

    auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
      // Check if SI is in BB and use V as condition.
      if (SI->getParent() != BB)
        return false;
      Value *Cond = SI->getCondition();
      return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
    };

    SelectInst *SI = nullptr;
    for (Use &U : PN->uses()) {
      if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
        // Look for a ICmp in BB that compares PN with a constant and is the
        // condition of a Select.
        if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
            isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
          if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
            if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
              SI = SelectI;
              break;
            }
      } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
        // Look for a Select in BB that uses PN as condition.
        if (isUnfoldCandidate(SelectI, U.get())) {
          SI = SelectI;
          break;
        }
      }
    }

    if (!SI)
      continue;
    // Expand the select.
    TerminatorInst *Term =
        SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
    BasicBlock *SplitBB = SI->getParent();
    BasicBlock *NewBB = Term->getParent();
    PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
    NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
    NewPN->addIncoming(SI->getFalseValue(), BB);
    SI->replaceAllUsesWith(NewPN);
    SI->eraseFromParent();
    // NewBB and SplitBB are newly created blocks which require insertion.
    std::vector<DominatorTree::UpdateType> Updates;
    Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
    Updates.push_back({DominatorTree::Insert, BB, SplitBB});
    Updates.push_back({DominatorTree::Insert, BB, NewBB});
    Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
    // BB's successors were moved to SplitBB, update DDT accordingly.
    for (auto *Succ : successors(SplitBB)) {
      Updates.push_back({DominatorTree::Delete, BB, Succ});
      Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
    }
    DDT->applyUpdates(Updates);
    return true;
  }
  return false;
}

/// Try to propagate a guard from the current BB into one of its predecessors
/// in case if another branch of execution implies that the condition of this
/// guard is always true. Currently we only process the simplest case that
/// looks like:
///
/// Start:
///   %cond = ...
///   br i1 %cond, label %T1, label %F1
/// T1:
///   br label %Merge
/// F1:
///   br label %Merge
/// Merge:
///   %condGuard = ...
///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
///
/// And cond either implies condGuard or !condGuard. In this case all the
/// instructions before the guard can be duplicated in both branches, and the
/// guard is then threaded to one of them.
bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
  using namespace PatternMatch;

  // We only want to deal with two predecessors.
  BasicBlock *Pred1, *Pred2;
  auto PI = pred_begin(BB), PE = pred_end(BB);
  if (PI == PE)
    return false;
  Pred1 = *PI++;
  if (PI == PE)
    return false;
  Pred2 = *PI++;
  if (PI != PE)
    return false;
  if (Pred1 == Pred2)
    return false;

  // Try to thread one of the guards of the block.
  // TODO: Look up deeper than to immediate predecessor?
  auto *Parent = Pred1->getSinglePredecessor();
  if (!Parent || Parent != Pred2->getSinglePredecessor())
    return false;

  if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
    for (auto &I : *BB)
      if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
        if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
          return true;

  return false;
}

/// Try to propagate the guard from BB which is the lower block of a diamond
/// to one of its branches, in case if diamond's condition implies guard's
/// condition.
bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
                                    BranchInst *BI) {
  assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
  assert(BI->isConditional() && "Unconditional branch has 2 successors?");
  Value *GuardCond = Guard->getArgOperand(0);
  Value *BranchCond = BI->getCondition();
  BasicBlock *TrueDest = BI->getSuccessor(0);
  BasicBlock *FalseDest = BI->getSuccessor(1);

  auto &DL = BB->getModule()->getDataLayout();
  bool TrueDestIsSafe = false;
  bool FalseDestIsSafe = false;

  // True dest is safe if BranchCond => GuardCond.
  auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
  if (Impl && *Impl)
    TrueDestIsSafe = true;
  else {
    // False dest is safe if !BranchCond => GuardCond.
    Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
    if (Impl && *Impl)
      FalseDestIsSafe = true;
  }

  if (!TrueDestIsSafe && !FalseDestIsSafe)
    return false;

  BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
  BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;

  ValueToValueMapTy UnguardedMapping, GuardedMapping;
  Instruction *AfterGuard = Guard->getNextNode();
  unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
  if (Cost > BBDupThreshold)
    return false;
  // Duplicate all instructions before the guard and the guard itself to the
  // branch where implication is not proved.
  BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
      BB, PredGuardedBlock, AfterGuard, GuardedMapping);
  assert(GuardedBlock && "Could not create the guarded block?");
  // Duplicate all instructions before the guard in the unguarded branch.
  // Since we have successfully duplicated the guarded block and this block
  // has fewer instructions, we expect it to succeed.
  BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
      BB, PredUnguardedBlock, Guard, UnguardedMapping);
  assert(UnguardedBlock && "Could not create the unguarded block?");
  LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
                    << GuardedBlock->getName() << "\n");
  // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
  // PredBB and BB. We need to perform two inserts and one delete for each of
  // the above calls to update Dominators.
  DDT->applyUpdates(
      {// Guarded block split.
       {DominatorTree::Delete, PredGuardedBlock, BB},
       {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
       {DominatorTree::Insert, GuardedBlock, BB},
       // Unguarded block split.
       {DominatorTree::Delete, PredUnguardedBlock, BB},
       {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
       {DominatorTree::Insert, UnguardedBlock, BB}});
  // Some instructions before the guard may still have uses. For them, we need
  // to create Phi nodes merging their copies in both guarded and unguarded
  // branches. Those instructions that have no uses can be just removed.
  SmallVector<Instruction *, 4> ToRemove;
  for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
    if (!isa<PHINode>(&*BI))
      ToRemove.push_back(&*BI);

  Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
  assert(InsertionPoint && "Empty block?");
  // Substitute with Phis & remove.
  for (auto *Inst : reverse(ToRemove)) {
    if (!Inst->use_empty()) {
      PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
      NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
      NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
      NewPN->insertBefore(InsertionPoint);
      Inst->replaceAllUsesWith(NewPN);
    }
    Inst->eraseFromParent();
  }
  return true;
}