Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT;  SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CodeGenCoverage.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
#include <string>
using namespace llvm;

#define DEBUG_TYPE "gisel-emitter"

STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");

cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");

static cl::opt<bool> WarnOnSkippedPatterns(
    "warn-on-skipped-patterns",
    cl::desc("Explain why a pattern was skipped for inclusion "
             "in the GlobalISel selector"),
    cl::init(false), cl::cat(GlobalISelEmitterCat));

static cl::opt<bool> GenerateCoverage(
    "instrument-gisel-coverage",
    cl::desc("Generate coverage instrumentation for GlobalISel"),
    cl::init(false), cl::cat(GlobalISelEmitterCat));

static cl::opt<std::string> UseCoverageFile(
    "gisel-coverage-file", cl::init(""),
    cl::desc("Specify file to retrieve coverage information from"),
    cl::cat(GlobalISelEmitterCat));

static cl::opt<bool> OptimizeMatchTable(
    "optimize-match-table",
    cl::desc("Generate an optimized version of the match table"),
    cl::init(true), cl::cat(GlobalISelEmitterCat));

namespace {
//===- Helper functions ---------------------------------------------------===//

/// Get the name of the enum value used to number the predicate function.
std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
  if (Predicate.hasGISelPredicateCode())
    return "GIPFP_MI_" + Predicate.getFnName();
  return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
         Predicate.getFnName();
}

/// Get the opcode used to check this predicate.
std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
  return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
}

/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
  LLT Ty;

public:
  LLTCodeGen() = default;
  LLTCodeGen(const LLT &Ty) : Ty(Ty) {}

  std::string getCxxEnumValue() const {
    std::string Str;
    raw_string_ostream OS(Str);

    emitCxxEnumValue(OS);
    return OS.str();
  }

  void emitCxxEnumValue(raw_ostream &OS) const {
    if (Ty.isScalar()) {
      OS << "GILLT_s" << Ty.getSizeInBits();
      return;
    }
    if (Ty.isVector()) {
      OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
      return;
    }
    if (Ty.isPointer()) {
      OS << "GILLT_p" << Ty.getAddressSpace();
      if (Ty.getSizeInBits() > 0)
        OS << "s" << Ty.getSizeInBits();
      return;
    }
    llvm_unreachable("Unhandled LLT");
  }

  void emitCxxConstructorCall(raw_ostream &OS) const {
    if (Ty.isScalar()) {
      OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
      return;
    }
    if (Ty.isVector()) {
      OS << "LLT::vector(" << Ty.getNumElements() << ", "
         << Ty.getScalarSizeInBits() << ")";
      return;
    }
    if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
      OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
         << Ty.getSizeInBits() << ")";
      return;
    }
    llvm_unreachable("Unhandled LLT");
  }

  const LLT &get() const { return Ty; }

  /// This ordering is used for std::unique() and llvm::sort(). There's no
  /// particular logic behind the order but either A < B or B < A must be
  /// true if A != B.
  bool operator<(const LLTCodeGen &Other) const {
    if (Ty.isValid() != Other.Ty.isValid())
      return Ty.isValid() < Other.Ty.isValid();
    if (!Ty.isValid())
      return false;

    if (Ty.isVector() != Other.Ty.isVector())
      return Ty.isVector() < Other.Ty.isVector();
    if (Ty.isScalar() != Other.Ty.isScalar())
      return Ty.isScalar() < Other.Ty.isScalar();
    if (Ty.isPointer() != Other.Ty.isPointer())
      return Ty.isPointer() < Other.Ty.isPointer();

    if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
      return Ty.getAddressSpace() < Other.Ty.getAddressSpace();

    if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
      return Ty.getNumElements() < Other.Ty.getNumElements();

    return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
  }

  bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
};

// Track all types that are used so we can emit the corresponding enum.
std::set<LLTCodeGen> KnownTypes;

class InstructionMatcher;
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
  MVT VT(SVT);

  if (VT.isVector() && VT.getVectorNumElements() != 1)
    return LLTCodeGen(
        LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));

  if (VT.isInteger() || VT.isFloatingPoint())
    return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
  return None;
}

static std::string explainPredicates(const TreePatternNode *N) {
  std::string Explanation = "";
  StringRef Separator = "";
  for (const auto &P : N->getPredicateFns()) {
    Explanation +=
        (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
    Separator = ", ";

    if (P.isAlwaysTrue())
      Explanation += " always-true";
    if (P.isImmediatePattern())
      Explanation += " immediate";

    if (P.isUnindexed())
      Explanation += " unindexed";

    if (P.isNonExtLoad())
      Explanation += " non-extload";
    if (P.isAnyExtLoad())
      Explanation += " extload";
    if (P.isSignExtLoad())
      Explanation += " sextload";
    if (P.isZeroExtLoad())
      Explanation += " zextload";

    if (P.isNonTruncStore())
      Explanation += " non-truncstore";
    if (P.isTruncStore())
      Explanation += " truncstore";

    if (Record *VT = P.getMemoryVT())
      Explanation += (" MemVT=" + VT->getName()).str();
    if (Record *VT = P.getScalarMemoryVT())
      Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();

    if (P.isAtomicOrderingMonotonic())
      Explanation += " monotonic";
    if (P.isAtomicOrderingAcquire())
      Explanation += " acquire";
    if (P.isAtomicOrderingRelease())
      Explanation += " release";
    if (P.isAtomicOrderingAcquireRelease())
      Explanation += " acq_rel";
    if (P.isAtomicOrderingSequentiallyConsistent())
      Explanation += " seq_cst";
    if (P.isAtomicOrderingAcquireOrStronger())
      Explanation += " >=acquire";
    if (P.isAtomicOrderingWeakerThanAcquire())
      Explanation += " <acquire";
    if (P.isAtomicOrderingReleaseOrStronger())
      Explanation += " >=release";
    if (P.isAtomicOrderingWeakerThanRelease())
      Explanation += " <release";
  }
  return Explanation;
}

std::string explainOperator(Record *Operator) {
  if (Operator->isSubClassOf("SDNode"))
    return (" (" + Operator->getValueAsString("Opcode") + ")").str();

  if (Operator->isSubClassOf("Intrinsic"))
    return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();

  if (Operator->isSubClassOf("ComplexPattern"))
    return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
            ")")
        .str();

  if (Operator->isSubClassOf("SDNodeXForm"))
    return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
            ")")
        .str();

  return (" (Operator " + Operator->getName() + " not understood)").str();
}

/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
  return make_error<StringError>(Reason, inconvertibleErrorCode());
}

static Error isTrivialOperatorNode(const TreePatternNode *N) {
  std::string Explanation = "";
  std::string Separator = "";

  bool HasUnsupportedPredicate = false;
  for (const auto &Predicate : N->getPredicateFns()) {
    if (Predicate.isAlwaysTrue())
      continue;

    if (Predicate.isImmediatePattern())
      continue;

    if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
        Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
      continue;

    if (Predicate.isNonTruncStore())
      continue;

    if (Predicate.isLoad() && Predicate.getMemoryVT())
      continue;

    if (Predicate.isLoad() || Predicate.isStore()) {
      if (Predicate.isUnindexed())
        continue;
    }

    if (Predicate.isAtomic() && Predicate.getMemoryVT())
      continue;

    if (Predicate.isAtomic() &&
        (Predicate.isAtomicOrderingMonotonic() ||
         Predicate.isAtomicOrderingAcquire() ||
         Predicate.isAtomicOrderingRelease() ||
         Predicate.isAtomicOrderingAcquireRelease() ||
         Predicate.isAtomicOrderingSequentiallyConsistent() ||
         Predicate.isAtomicOrderingAcquireOrStronger() ||
         Predicate.isAtomicOrderingWeakerThanAcquire() ||
         Predicate.isAtomicOrderingReleaseOrStronger() ||
         Predicate.isAtomicOrderingWeakerThanRelease()))
      continue;

    if (Predicate.hasGISelPredicateCode())
      continue;

    HasUnsupportedPredicate = true;
    Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
    Separator = ", ";
    Explanation += (Separator + "first-failing:" +
                    Predicate.getOrigPatFragRecord()->getRecord()->getName())
                       .str();
    break;
  }

  if (!HasUnsupportedPredicate)
    return Error::success();

  return failedImport(Explanation);
}

static Record *getInitValueAsRegClass(Init *V) {
  if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
    if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
      return VDefInit->getDef()->getValueAsDef("RegClass");
    if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
      return VDefInit->getDef();
  }
  return nullptr;
}

std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
  std::string Name = "GIFBS";
  for (const auto &Feature : FeatureBitset)
    Name += ("_" + Feature->getName()).str();
  return Name;
}

//===- MatchTable Helpers -------------------------------------------------===//

class MatchTable;

/// A record to be stored in a MatchTable.
///
/// This class represents any and all output that may be required to emit the
/// MatchTable. Instances  are most often configured to represent an opcode or
/// value that will be emitted to the table with some formatting but it can also
/// represent commas, comments, and other formatting instructions.
struct MatchTableRecord {
  enum RecordFlagsBits {
    MTRF_None = 0x0,
    /// Causes EmitStr to be formatted as comment when emitted.
    MTRF_Comment = 0x1,
    /// Causes the record value to be followed by a comma when emitted.
    MTRF_CommaFollows = 0x2,
    /// Causes the record value to be followed by a line break when emitted.
    MTRF_LineBreakFollows = 0x4,
    /// Indicates that the record defines a label and causes an additional
    /// comment to be emitted containing the index of the label.
    MTRF_Label = 0x8,
    /// Causes the record to be emitted as the index of the label specified by
    /// LabelID along with a comment indicating where that label is.
    MTRF_JumpTarget = 0x10,
    /// Causes the formatter to add a level of indentation before emitting the
    /// record.
    MTRF_Indent = 0x20,
    /// Causes the formatter to remove a level of indentation after emitting the
    /// record.
    MTRF_Outdent = 0x40,
  };

  /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
  /// reference or define.
  unsigned LabelID;
  /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
  /// value, a label name.
  std::string EmitStr;

private:
  /// The number of MatchTable elements described by this record. Comments are 0
  /// while values are typically 1. Values >1 may occur when we need to emit
  /// values that exceed the size of a MatchTable element.
  unsigned NumElements;

public:
  /// A bitfield of RecordFlagsBits flags.
  unsigned Flags;

  /// The actual run-time value, if known
  int64_t RawValue;

  MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
                   unsigned NumElements, unsigned Flags,
                   int64_t RawValue = std::numeric_limits<int64_t>::min())
      : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
        EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
        RawValue(RawValue) {

    assert((!LabelID_.hasValue() || LabelID != ~0u) &&
           "This value is reserved for non-labels");
  }
  MatchTableRecord(const MatchTableRecord &Other) = default;
  MatchTableRecord(MatchTableRecord &&Other) = default;

  /// Useful if a Match Table Record gets optimized out
  void turnIntoComment() {
    Flags |= MTRF_Comment;
    Flags &= ~MTRF_CommaFollows;
    NumElements = 0;
  }

  /// For Jump Table generation purposes
  bool operator<(const MatchTableRecord &Other) const {
    return RawValue < Other.RawValue;
  }
  int64_t getRawValue() const { return RawValue; }

  void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
            const MatchTable &Table) const;
  unsigned size() const { return NumElements; }
};

class Matcher;

/// Holds the contents of a generated MatchTable to enable formatting and the
/// necessary index tracking needed to support GIM_Try.
class MatchTable {
  /// An unique identifier for the table. The generated table will be named
  /// MatchTable${ID}.
  unsigned ID;
  /// The records that make up the table. Also includes comments describing the
  /// values being emitted and line breaks to format it.
  std::vector<MatchTableRecord> Contents;
  /// The currently defined labels.
  DenseMap<unsigned, unsigned> LabelMap;
  /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
  unsigned CurrentSize = 0;
  /// A unique identifier for a MatchTable label.
  unsigned CurrentLabelID = 0;
  /// Determines if the table should be instrumented for rule coverage tracking.
  bool IsWithCoverage;

public:
  static MatchTableRecord LineBreak;
  static MatchTableRecord Comment(StringRef Comment) {
    return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
  }
  static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
    unsigned ExtraFlags = 0;
    if (IndentAdjust > 0)
      ExtraFlags |= MatchTableRecord::MTRF_Indent;
    if (IndentAdjust < 0)
      ExtraFlags |= MatchTableRecord::MTRF_Outdent;

    return MatchTableRecord(None, Opcode, 1,
                            MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
  }
  static MatchTableRecord NamedValue(StringRef NamedValue) {
    return MatchTableRecord(None, NamedValue, 1,
                            MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
    return MatchTableRecord(None, NamedValue, 1,
                            MatchTableRecord::MTRF_CommaFollows, RawValue);
  }
  static MatchTableRecord NamedValue(StringRef Namespace,
                                     StringRef NamedValue) {
    return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
                            MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
                                     int64_t RawValue) {
    return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
                            MatchTableRecord::MTRF_CommaFollows, RawValue);
  }
  static MatchTableRecord IntValue(int64_t IntValue) {
    return MatchTableRecord(None, llvm::to_string(IntValue), 1,
                            MatchTableRecord::MTRF_CommaFollows);
  }
  static MatchTableRecord Label(unsigned LabelID) {
    return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
                            MatchTableRecord::MTRF_Label |
                                MatchTableRecord::MTRF_Comment |
                                MatchTableRecord::MTRF_LineBreakFollows);
  }
  static MatchTableRecord JumpTarget(unsigned LabelID) {
    return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
                            MatchTableRecord::MTRF_JumpTarget |
                                MatchTableRecord::MTRF_Comment |
                                MatchTableRecord::MTRF_CommaFollows);
  }

  static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);

  MatchTable(bool WithCoverage, unsigned ID = 0)
      : ID(ID), IsWithCoverage(WithCoverage) {}

  bool isWithCoverage() const { return IsWithCoverage; }

  void push_back(const MatchTableRecord &Value) {
    if (Value.Flags & MatchTableRecord::MTRF_Label)
      defineLabel(Value.LabelID);
    Contents.push_back(Value);
    CurrentSize += Value.size();
  }

  unsigned allocateLabelID() { return CurrentLabelID++; }

  void defineLabel(unsigned LabelID) {
    LabelMap.insert(std::make_pair(LabelID, CurrentSize));
  }

  unsigned getLabelIndex(unsigned LabelID) const {
    const auto I = LabelMap.find(LabelID);
    assert(I != LabelMap.end() && "Use of undeclared label");
    return I->second;
  }

  void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }

  void emitDeclaration(raw_ostream &OS) const {
    unsigned Indentation = 4;
    OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
    LineBreak.emit(OS, true, *this);
    OS << std::string(Indentation, ' ');

    for (auto I = Contents.begin(), E = Contents.end(); I != E;
         ++I) {
      bool LineBreakIsNext = false;
      const auto &NextI = std::next(I);

      if (NextI != E) {
        if (NextI->EmitStr == "" &&
            NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
          LineBreakIsNext = true;
      }

      if (I->Flags & MatchTableRecord::MTRF_Indent)
        Indentation += 2;

      I->emit(OS, LineBreakIsNext, *this);
      if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
        OS << std::string(Indentation, ' ');

      if (I->Flags & MatchTableRecord::MTRF_Outdent)
        Indentation -= 2;
    }
    OS << "};\n";
  }
};

MatchTableRecord MatchTable::LineBreak = {
    None, "" /* Emit String */, 0 /* Elements */,
    MatchTableRecord::MTRF_LineBreakFollows};

void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
                            const MatchTable &Table) const {
  bool UseLineComment =
      LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
  if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
    UseLineComment = false;

  if (Flags & MTRF_Comment)
    OS << (UseLineComment ? "// " : "/*");

  OS << EmitStr;
  if (Flags & MTRF_Label)
    OS << ": @" << Table.getLabelIndex(LabelID);

  if (Flags & MTRF_Comment && !UseLineComment)
    OS << "*/";

  if (Flags & MTRF_JumpTarget) {
    if (Flags & MTRF_Comment)
      OS << " ";
    OS << Table.getLabelIndex(LabelID);
  }

  if (Flags & MTRF_CommaFollows) {
    OS << ",";
    if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
      OS << " ";
  }

  if (Flags & MTRF_LineBreakFollows)
    OS << "\n";
}

MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
  Table.push_back(Value);
  return Table;
}

//===- Matchers -----------------------------------------------------------===//

class OperandMatcher;
class MatchAction;
class PredicateMatcher;
class RuleMatcher;

class Matcher {
public:
  virtual ~Matcher() = default;
  virtual void optimize() {}
  virtual void emit(MatchTable &Table) = 0;

  virtual bool hasFirstCondition() const = 0;
  virtual const PredicateMatcher &getFirstCondition() const = 0;
  virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
};

MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
                                  bool WithCoverage) {
  MatchTable Table(WithCoverage);
  for (Matcher *Rule : Rules)
    Rule->emit(Table);

  return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
}

class GroupMatcher final : public Matcher {
  /// Conditions that form a common prefix of all the matchers contained.
  SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;

  /// All the nested matchers, sharing a common prefix.
  std::vector<Matcher *> Matchers;

  /// An owning collection for any auxiliary matchers created while optimizing
  /// nested matchers contained.
  std::vector<std::unique_ptr<Matcher>> MatcherStorage;

public:
  /// Add a matcher to the collection of nested matchers if it meets the
  /// requirements, and return true. If it doesn't, do nothing and return false.
  ///
  /// Expected to preserve its argument, so it could be moved out later on.
  bool addMatcher(Matcher &Candidate);

  /// Mark the matcher as fully-built and ensure any invariants expected by both
  /// optimize() and emit(...) methods. Generally, both sequences of calls
  /// are expected to lead to a sensible result:
  ///
  /// addMatcher(...)*; finalize(); optimize(); emit(...); and
  /// addMatcher(...)*; finalize(); emit(...);
  ///
  /// or generally
  ///
  /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
  ///
  /// Multiple calls to optimize() are expected to be handled gracefully, though
  /// optimize() is not expected to be idempotent. Multiple calls to finalize()
  /// aren't generally supported. emit(...) is expected to be non-mutating and
  /// producing the exact same results upon repeated calls.
  ///
  /// addMatcher() calls after the finalize() call are not supported.
  ///
  /// finalize() and optimize() are both allowed to mutate the contained
  /// matchers, so moving them out after finalize() is not supported.
  void finalize();
  void optimize() override;
  void emit(MatchTable &Table) override;

  /// Could be used to move out the matchers added previously, unless finalize()
  /// has been already called. If any of the matchers are moved out, the group
  /// becomes safe to destroy, but not safe to re-use for anything else.
  iterator_range<std::vector<Matcher *>::iterator> matchers() {
    return make_range(Matchers.begin(), Matchers.end());
  }
  size_t size() const { return Matchers.size(); }
  bool empty() const { return Matchers.empty(); }

  std::unique_ptr<PredicateMatcher> popFirstCondition() override {
    assert(!Conditions.empty() &&
           "Trying to pop a condition from a condition-less group");
    std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
    Conditions.erase(Conditions.begin());
    return P;
  }
  const PredicateMatcher &getFirstCondition() const override {
    assert(!Conditions.empty() &&
           "Trying to get a condition from a condition-less group");
    return *Conditions.front();
  }
  bool hasFirstCondition() const override { return !Conditions.empty(); }

private:
  /// See if a candidate matcher could be added to this group solely by
  /// analyzing its first condition.
  bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
};

class SwitchMatcher : public Matcher {
  /// All the nested matchers, representing distinct switch-cases. The first
  /// conditions (as Matcher::getFirstCondition() reports) of all the nested
  /// matchers must share the same type and path to a value they check, in other
  /// words, be isIdenticalDownToValue, but have different values they check
  /// against.
  std::vector<Matcher *> Matchers;

  /// The representative condition, with a type and a path (InsnVarID and OpIdx
  /// in most cases)  shared by all the matchers contained.
  std::unique_ptr<PredicateMatcher> Condition = nullptr;

  /// Temporary set used to check that the case values don't repeat within the
  /// same switch.
  std::set<MatchTableRecord> Values;

  /// An owning collection for any auxiliary matchers created while optimizing
  /// nested matchers contained.
  std::vector<std::unique_ptr<Matcher>> MatcherStorage;

public:
  bool addMatcher(Matcher &Candidate);

  void finalize();
  void emit(MatchTable &Table) override;

  iterator_range<std::vector<Matcher *>::iterator> matchers() {
    return make_range(Matchers.begin(), Matchers.end());
  }
  size_t size() const { return Matchers.size(); }
  bool empty() const { return Matchers.empty(); }

  std::unique_ptr<PredicateMatcher> popFirstCondition() override {
    // SwitchMatcher doesn't have a common first condition for its cases, as all
    // the cases only share a kind of a value (a type and a path to it) they
    // match, but deliberately differ in the actual value they match.
    llvm_unreachable("Trying to pop a condition from a condition-less group");
  }
  const PredicateMatcher &getFirstCondition() const override {
    llvm_unreachable("Trying to pop a condition from a condition-less group");
  }
  bool hasFirstCondition() const override { return false; }

private:
  /// See if the predicate type has a Switch-implementation for it.
  static bool isSupportedPredicateType(const PredicateMatcher &Predicate);

  bool candidateConditionMatches(const PredicateMatcher &Predicate) const;

  /// emit()-helper
  static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
                                           MatchTable &Table);
};

/// Generates code to check that a match rule matches.
class RuleMatcher : public Matcher {
public:
  using ActionList = std::list<std::unique_ptr<MatchAction>>;
  using action_iterator = ActionList::iterator;

protected:
  /// A list of matchers that all need to succeed for the current rule to match.
  /// FIXME: This currently supports a single match position but could be
  /// extended to support multiple positions to support div/rem fusion or
  /// load-multiple instructions.
  using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
  MatchersTy Matchers;

  /// A list of actions that need to be taken when all predicates in this rule
  /// have succeeded.
  ActionList Actions;

  using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;

  /// A map of instruction matchers to the local variables
  DefinedInsnVariablesMap InsnVariableIDs;

  using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;

  // The set of instruction matchers that have not yet been claimed for mutation
  // by a BuildMI.
  MutatableInsnSet MutatableInsns;

  /// A map of named operands defined by the matchers that may be referenced by
  /// the renderers.
  StringMap<OperandMatcher *> DefinedOperands;

  /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
  unsigned NextInsnVarID;

  /// ID for the next output instruction allocated with allocateOutputInsnID()
  unsigned NextOutputInsnID;

  /// ID for the next temporary register ID allocated with allocateTempRegID()
  unsigned NextTempRegID;

  std::vector<Record *> RequiredFeatures;
  std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;

  ArrayRef<SMLoc> SrcLoc;

  typedef std::tuple<Record *, unsigned, unsigned>
      DefinedComplexPatternSubOperand;
  typedef StringMap<DefinedComplexPatternSubOperand>
      DefinedComplexPatternSubOperandMap;
  /// A map of Symbolic Names to ComplexPattern sub-operands.
  DefinedComplexPatternSubOperandMap ComplexSubOperands;

  uint64_t RuleID;
  static uint64_t NextRuleID;

public:
  RuleMatcher(ArrayRef<SMLoc> SrcLoc)
      : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
        DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
        NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
        RuleID(NextRuleID++) {}
  RuleMatcher(RuleMatcher &&Other) = default;
  RuleMatcher &operator=(RuleMatcher &&Other) = default;

  uint64_t getRuleID() const { return RuleID; }

  InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
  void addRequiredFeature(Record *Feature);
  const std::vector<Record *> &getRequiredFeatures() const;

  template <class Kind, class... Args> Kind &addAction(Args &&... args);
  template <class Kind, class... Args>
  action_iterator insertAction(action_iterator InsertPt, Args &&... args);

  /// Define an instruction without emitting any code to do so.
  unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);

  unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
  DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
    return InsnVariableIDs.begin();
  }
  DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
    return InsnVariableIDs.end();
  }
  iterator_range<typename DefinedInsnVariablesMap::const_iterator>
  defined_insn_vars() const {
    return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
  }

  MutatableInsnSet::const_iterator mutatable_insns_begin() const {
    return MutatableInsns.begin();
  }
  MutatableInsnSet::const_iterator mutatable_insns_end() const {
    return MutatableInsns.end();
  }
  iterator_range<typename MutatableInsnSet::const_iterator>
  mutatable_insns() const {
    return make_range(mutatable_insns_begin(), mutatable_insns_end());
  }
  void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
    bool R = MutatableInsns.erase(InsnMatcher);
    assert(R && "Reserving a mutatable insn that isn't available");
    (void)R;
  }

  action_iterator actions_begin() { return Actions.begin(); }
  action_iterator actions_end() { return Actions.end(); }
  iterator_range<action_iterator> actions() {
    return make_range(actions_begin(), actions_end());
  }

  void defineOperand(StringRef SymbolicName, OperandMatcher &OM);

  void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
                               unsigned RendererID, unsigned SubOperandID) {
    assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
    ComplexSubOperands[SymbolicName] =
        std::make_tuple(ComplexPattern, RendererID, SubOperandID);
  }
  Optional<DefinedComplexPatternSubOperand>
  getComplexSubOperand(StringRef SymbolicName) const {
    const auto &I = ComplexSubOperands.find(SymbolicName);
    if (I == ComplexSubOperands.end())
      return None;
    return I->second;
  }

  InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
  const OperandMatcher &getOperandMatcher(StringRef Name) const;

  void optimize() override;
  void emit(MatchTable &Table) override;

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool isHigherPriorityThan(const RuleMatcher &B) const;

  /// Report the maximum number of temporary operands needed by the rule
  /// matcher.
  unsigned countRendererFns() const;

  std::unique_ptr<PredicateMatcher> popFirstCondition() override;
  const PredicateMatcher &getFirstCondition() const override;
  LLTCodeGen getFirstConditionAsRootType();
  bool hasFirstCondition() const override;
  unsigned getNumOperands() const;
  StringRef getOpcode() const;

  // FIXME: Remove this as soon as possible
  InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }

  unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
  unsigned allocateTempRegID() { return NextTempRegID++; }

  iterator_range<MatchersTy::iterator> insnmatchers() {
    return make_range(Matchers.begin(), Matchers.end());
  }
  bool insnmatchers_empty() const { return Matchers.empty(); }
  void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
};

uint64_t RuleMatcher::NextRuleID = 0;

using action_iterator = RuleMatcher::action_iterator;

template <class PredicateTy> class PredicateListMatcher {
private:
  /// Template instantiations should specialize this to return a string to use
  /// for the comment emitted when there are no predicates.
  std::string getNoPredicateComment() const;

protected:
  using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
  PredicatesTy Predicates;

  /// Track if the list of predicates was manipulated by one of the optimization
  /// methods.
  bool Optimized = false;

public:
  /// Construct a new predicate and add it to the matcher.
  template <class Kind, class... Args>
  Optional<Kind *> addPredicate(Args &&... args);

  typename PredicatesTy::iterator predicates_begin() {
    return Predicates.begin();
  }
  typename PredicatesTy::iterator predicates_end() {
    return Predicates.end();
  }
  iterator_range<typename PredicatesTy::iterator> predicates() {
    return make_range(predicates_begin(), predicates_end());
  }
  typename PredicatesTy::size_type predicates_size() const {
    return Predicates.size();
  }
  bool predicates_empty() const { return Predicates.empty(); }

  std::unique_ptr<PredicateTy> predicates_pop_front() {
    std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
    Predicates.pop_front();
    Optimized = true;
    return Front;
  }

  void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
    Predicates.push_front(std::move(Predicate));
  }

  void eraseNullPredicates() {
    const auto NewEnd =
        std::stable_partition(Predicates.begin(), Predicates.end(),
                              std::logical_not<std::unique_ptr<PredicateTy>>());
    if (NewEnd != Predicates.begin()) {
      Predicates.erase(Predicates.begin(), NewEnd);
      Optimized = true;
    }
  }

  /// Emit MatchTable opcodes that tests whether all the predicates are met.
  template <class... Args>
  void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
    if (Predicates.empty() && !Optimized) {
      Table << MatchTable::Comment(getNoPredicateComment())
            << MatchTable::LineBreak;
      return;
    }

    for (const auto &Predicate : predicates())
      Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
  }
};

class PredicateMatcher {
public:
  /// This enum is used for RTTI and also defines the priority that is given to
  /// the predicate when generating the matcher code. Kinds with higher priority
  /// must be tested first.
  ///
  /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
  /// but OPM_Int must have priority over OPM_RegBank since constant integers
  /// are represented by a virtual register defined by a G_CONSTANT instruction.
  ///
  /// Note: The relative priority between IPM_ and OPM_ does not matter, they
  /// are currently not compared between each other.
  enum PredicateKind {
    IPM_Opcode,
    IPM_NumOperands,
    IPM_ImmPredicate,
    IPM_AtomicOrderingMMO,
    IPM_MemoryLLTSize,
    IPM_MemoryVsLLTSize,
    IPM_GenericPredicate,
    OPM_SameOperand,
    OPM_ComplexPattern,
    OPM_IntrinsicID,
    OPM_Instruction,
    OPM_Int,
    OPM_LiteralInt,
    OPM_LLT,
    OPM_PointerToAny,
    OPM_RegBank,
    OPM_MBB,
  };

protected:
  PredicateKind Kind;
  unsigned InsnVarID;
  unsigned OpIdx;

public:
  PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
      : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}

  unsigned getInsnVarID() const { return InsnVarID; }
  unsigned getOpIdx() const { return OpIdx; }

  virtual ~PredicateMatcher() = default;
  /// Emit MatchTable opcodes that check the predicate for the given operand.
  virtual void emitPredicateOpcodes(MatchTable &Table,
                                    RuleMatcher &Rule) const = 0;

  PredicateKind getKind() const { return Kind; }

  virtual bool isIdentical(const PredicateMatcher &B) const {
    return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
           OpIdx == B.OpIdx;
  }

  virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
    return hasValue() && PredicateMatcher::isIdentical(B);
  }

  virtual MatchTableRecord getValue() const {
    assert(hasValue() && "Can not get a value of a value-less predicate!");
    llvm_unreachable("Not implemented yet");
  }
  virtual bool hasValue() const { return false; }

  /// Report the maximum number of temporary operands needed by the predicate
  /// matcher.
  virtual unsigned countRendererFns() const { return 0; }
};

/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher : public PredicateMatcher {
public:
  OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
                          unsigned OpIdx)
      : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
  virtual ~OperandPredicateMatcher() {}

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
};

template <>
std::string
PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
  return "No operand predicates";
}

/// Generates code to check that a register operand is defined by the same exact
/// one as another.
class SameOperandMatcher : public OperandPredicateMatcher {
  std::string MatchingName;

public:
  SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
      : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
        MatchingName(MatchingName) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_SameOperand;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override;

  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
  }
};

/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
  LLTCodeGen Ty;

public:
  static std::map<LLTCodeGen, unsigned> TypeIDValues;

  static void initTypeIDValuesMap() {
    TypeIDValues.clear();

    unsigned ID = 0;
    for (const LLTCodeGen LLTy : KnownTypes)
      TypeIDValues[LLTy] = ID++;
  }

  LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
      : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
    KnownTypes.insert(Ty);
  }

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_LLT;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Ty == cast<LLTOperandMatcher>(&B)->Ty;
  }
  MatchTableRecord getValue() const override {
    const auto VI = TypeIDValues.find(Ty);
    if (VI == TypeIDValues.end())
      return MatchTable::NamedValue(getTy().getCxxEnumValue());
    return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
  }
  bool hasValue() const override {
    if (TypeIDValues.size() != KnownTypes.size())
      initTypeIDValuesMap();
    return TypeIDValues.count(Ty);
  }

  LLTCodeGen getTy() const { return Ty; }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
          << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
          << getValue() << MatchTable::LineBreak;
  }
};

std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;

/// Generates code to check that an operand is a pointer to any address space.
///
/// In SelectionDAG, the types did not describe pointers or address spaces. As a
/// result, iN is used to describe a pointer of N bits to any address space and
/// PatFrag predicates are typically used to constrain the address space. There's
/// no reliable means to derive the missing type information from the pattern so
/// imported rules must test the components of a pointer separately.
///
/// If SizeInBits is zero, then the pointer size will be obtained from the
/// subtarget.
class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
protected:
  unsigned SizeInBits;

public:
  PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             unsigned SizeInBits)
      : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
        SizeInBits(SizeInBits) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_PointerToAny;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckPointerToAny")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("SizeInBits")
          << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
  }
};

/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
  const OperandMatcher &Operand;
  const Record &TheDef;

  unsigned getAllocatedTemporariesBaseID() const;

public:
  bool isIdentical(const PredicateMatcher &B) const override { return false; }

  ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                               const OperandMatcher &Operand,
                               const Record &TheDef)
      : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
        Operand(Operand), TheDef(TheDef) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_ComplexPattern;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    unsigned ID = getAllocatedTemporariesBaseID();
    Table << MatchTable::Opcode("GIM_CheckComplexPattern")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
          << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
          << MatchTable::LineBreak;
  }

  unsigned countRendererFns() const override {
    return 1;
  }
};

/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
  const CodeGenRegisterClass &RC;

public:
  RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                             const CodeGenRegisterClass &RC)
      : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}

  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
  }

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_RegBank;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("RC")
          << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
          << MatchTable::LineBreak;
  }
};

/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
  MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
      : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_MBB;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
          << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
  }
};

/// Generates code to check that an operand is a G_CONSTANT with a particular
/// int.
class ConstantIntOperandMatcher : public OperandPredicateMatcher {
protected:
  int64_t Value;

public:
  ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
      : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}

  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Value == cast<ConstantIntOperandMatcher>(&B)->Value;
  }

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_Int;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckConstantInt")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::IntValue(Value) << MatchTable::LineBreak;
  }
};

/// Generates code to check that an operand is a raw int (where MO.isImm() or
/// MO.isCImm() is true).
class LiteralIntOperandMatcher : public OperandPredicateMatcher {
protected:
  int64_t Value;

public:
  LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
      : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
        Value(Value) {}

  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           Value == cast<LiteralIntOperandMatcher>(&B)->Value;
  }

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_LiteralInt;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckLiteralInt")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::IntValue(Value) << MatchTable::LineBreak;
  }
};

/// Generates code to check that an operand is an intrinsic ID.
class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
protected:
  const CodeGenIntrinsic *II;

public:
  IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                            const CodeGenIntrinsic *II)
      : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}

  bool isIdentical(const PredicateMatcher &B) const override {
    return OperandPredicateMatcher::isIdentical(B) &&
           II == cast<IntrinsicIDOperandMatcher>(&B)->II;
  }

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_IntrinsicID;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
          << MatchTable::LineBreak;
  }
};

/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
  InstructionMatcher &Insn;
  unsigned OpIdx;
  std::string SymbolicName;

  /// The index of the first temporary variable allocated to this operand. The
  /// number of allocated temporaries can be found with
  /// countRendererFns().
  unsigned AllocatedTemporariesBaseID;

public:
  OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
                 const std::string &SymbolicName,
                 unsigned AllocatedTemporariesBaseID)
      : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
        AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}

  bool hasSymbolicName() const { return !SymbolicName.empty(); }
  const StringRef getSymbolicName() const { return SymbolicName; }
  void setSymbolicName(StringRef Name) {
    assert(SymbolicName.empty() && "Operand already has a symbolic name");
    SymbolicName = Name;
  }

  /// Construct a new operand predicate and add it to the matcher.
  template <class Kind, class... Args>
  Optional<Kind *> addPredicate(Args &&... args) {
    if (isSameAsAnotherOperand())
      return None;
    Predicates.emplace_back(llvm::make_unique<Kind>(
        getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
    return static_cast<Kind *>(Predicates.back().get());
  }

  unsigned getOpIdx() const { return OpIdx; }
  unsigned getInsnVarID() const;

  std::string getOperandExpr(unsigned InsnVarID) const {
    return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
           llvm::to_string(OpIdx) + ")";
  }

  InstructionMatcher &getInstructionMatcher() const { return Insn; }

  Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
                              bool OperandIsAPointer);

  /// Emit MatchTable opcodes that test whether the instruction named in
  /// InsnVarID matches all the predicates and all the operands.
  void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
    if (!Optimized) {
      std::string Comment;
      raw_string_ostream CommentOS(Comment);
      CommentOS << "MIs[" << getInsnVarID() << "] ";
      if (SymbolicName.empty())
        CommentOS << "Operand " << OpIdx;
      else
        CommentOS << SymbolicName;
      Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
    }

    emitPredicateListOpcodes(Table, Rule);
  }

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool isHigherPriorityThan(OperandMatcher &B) {
    // Operand matchers involving more predicates have higher priority.
    if (predicates_size() > B.predicates_size())
      return true;
    if (predicates_size() < B.predicates_size())
      return false;

    // This assumes that predicates are added in a consistent order.
    for (auto &&Predicate : zip(predicates(), B.predicates())) {
      if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
        return true;
      if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
        return false;
    }

    return false;
  };

  /// Report the maximum number of temporary operands needed by the operand
  /// matcher.
  unsigned countRendererFns() {
    return std::accumulate(
        predicates().begin(), predicates().end(), 0,
        [](unsigned A,
           const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
          return A + Predicate->countRendererFns();
        });
  }

  unsigned getAllocatedTemporariesBaseID() const {
    return AllocatedTemporariesBaseID;
  }

  bool isSameAsAnotherOperand() {
    for (const auto &Predicate : predicates())
      if (isa<SameOperandMatcher>(Predicate))
        return true;
    return false;
  }
};

Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
                                            bool OperandIsAPointer) {
  if (!VTy.isMachineValueType())
    return failedImport("unsupported typeset");

  if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
    addPredicate<PointerToAnyOperandMatcher>(0);
    return Error::success();
  }

  auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
  if (!OpTyOrNone)
    return failedImport("unsupported type");

  if (OperandIsAPointer)
    addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
  else
    addPredicate<LLTOperandMatcher>(*OpTyOrNone);
  return Error::success();
}

unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
  return Operand.getAllocatedTemporariesBaseID();
}

/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher : public PredicateMatcher {
public:
  InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
      : PredicateMatcher(Kind, InsnVarID) {}
  virtual ~InstructionPredicateMatcher() {}

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  virtual bool
  isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
    return Kind < B.Kind;
  };
};

template <>
std::string
PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
  return "No instruction predicates";
}

/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
  const CodeGenInstruction *I;

  static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;

public:
  static void initOpcodeValuesMap(const CodeGenTarget &Target) {
    OpcodeValues.clear();

    unsigned OpcodeValue = 0;
    for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
      OpcodeValues[I] = OpcodeValue++;
  }

  InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
      : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_Opcode;
  }

  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           I == cast<InstructionOpcodeMatcher>(&B)->I;
  }
  MatchTableRecord getValue() const override {
    const auto VI = OpcodeValues.find(I);
    if (VI != OpcodeValues.end())
      return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
                                    VI->second);
    return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
  }
  bool hasValue() const override { return OpcodeValues.count(I); }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << getValue()
          << MatchTable::LineBreak;
  }

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool
  isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
    if (InstructionPredicateMatcher::isHigherPriorityThan(B))
      return true;
    if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
      return false;

    // Prioritize opcodes for cosmetic reasons in the generated source. Although
    // this is cosmetic at the moment, we may want to drive a similar ordering
    // using instruction frequency information to improve compile time.
    if (const InstructionOpcodeMatcher *BO =
            dyn_cast<InstructionOpcodeMatcher>(&B))
      return I->TheDef->getName() < BO->I->TheDef->getName();

    return false;
  };

  bool isConstantInstruction() const {
    return I->TheDef->getName() == "G_CONSTANT";
  }

  StringRef getOpcode() const { return I->TheDef->getName(); }
  unsigned getNumOperands() const { return I->Operands.size(); }

  StringRef getOperandType(unsigned OpIdx) const {
    return I->Operands[OpIdx].OperandType;
  }
};

DenseMap<const CodeGenInstruction *, unsigned>
    InstructionOpcodeMatcher::OpcodeValues;

class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
  unsigned NumOperands = 0;

public:
  InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
      : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
        NumOperands(NumOperands) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_NumOperands;
  }

  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckNumOperands")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Expected")
          << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
  }
};

/// Generates code to check that this instruction is a constant whose value
/// meets an immediate predicate.
///
/// Immediates are slightly odd since they are typically used like an operand
/// but are represented as an operator internally. We typically write simm8:$src
/// in a tablegen pattern, but this is just syntactic sugar for
/// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
/// that will be matched and the predicate (which is attached to the imm
/// operator) that will be tested. In SelectionDAG this describes a
/// ConstantSDNode whose internal value will be tested using the simm8 predicate.
///
/// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
/// this representation, the immediate could be tested with an
/// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
/// OperandPredicateMatcher-subclass to check the Value meets the predicate but
/// there are two implementation issues with producing that matcher
/// configuration from the SelectionDAG pattern:
/// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
///   were we to sink the immediate predicate to the operand we would have to
///   have two partial implementations of PatFrag support, one for immediates
///   and one for non-immediates.
/// * At the point we handle the predicate, the OperandMatcher hasn't been
///   created yet. If we were to sink the predicate to the OperandMatcher we
///   would also have to complicate (or duplicate) the code that descends and
///   creates matchers for the subtree.
/// Overall, it's simpler to handle it in the place it was found.
class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
protected:
  TreePredicateFn Predicate;

public:
  InstructionImmPredicateMatcher(unsigned InsnVarID,
                                 const TreePredicateFn &Predicate)
      : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
        Predicate(Predicate) {}

  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           Predicate.getOrigPatFragRecord() ==
               cast<InstructionImmPredicateMatcher>(&B)
                   ->Predicate.getOrigPatFragRecord();
  }

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_ImmPredicate;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("Predicate")
          << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
          << MatchTable::LineBreak;
  }
};

/// Generates code to check that a memory instruction has a atomic ordering
/// MachineMemoryOperand.
class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
public:
  enum AOComparator {
    AO_Exactly,
    AO_OrStronger,
    AO_WeakerThan,
  };

protected:
  StringRef Order;
  AOComparator Comparator;

public:
  AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
                                    AOComparator Comparator = AO_Exactly)
      : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
        Order(Order), Comparator(Comparator) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_AtomicOrderingMMO;
  }

  bool isIdentical(const PredicateMatcher &B) const override {
    if (!InstructionPredicateMatcher::isIdentical(B))
      return false;
    const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
    return Order == R.Order && Comparator == R.Comparator;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    StringRef Opcode = "GIM_CheckAtomicOrdering";

    if (Comparator == AO_OrStronger)
      Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
    if (Comparator == AO_WeakerThan)
      Opcode = "GIM_CheckAtomicOrderingWeakerThan";

    Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
          << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
          << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
          << MatchTable::LineBreak;
  }
};

/// Generates code to check that the size of an MMO is exactly N bytes.
class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
protected:
  unsigned MMOIdx;
  uint64_t Size;

public:
  MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
      : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
        MMOIdx(MMOIdx), Size(Size) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_MemoryLLTSize;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
           Size == cast<MemorySizePredicateMatcher>(&B)->Size;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
          << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
          << MatchTable::LineBreak;
  }
};

/// Generates code to check that the size of an MMO is less-than, equal-to, or
/// greater than a given LLT.
class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
public:
  enum RelationKind {
    GreaterThan,
    EqualTo,
    LessThan,
  };

protected:
  unsigned MMOIdx;
  RelationKind Relation;
  unsigned OpIdx;

public:
  MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
                                  enum RelationKind Relation,
                                  unsigned OpIdx)
      : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
        MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == IPM_MemoryVsLLTSize;
  }
  bool isIdentical(const PredicateMatcher &B) const override {
    return InstructionPredicateMatcher::isIdentical(B) &&
           MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
           Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
           OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode(Relation == EqualTo
                                    ? "GIM_CheckMemorySizeEqualToLLT"
                                    : Relation == GreaterThan
                                          ? "GIM_CheckMemorySizeGreaterThanLLT"
                                          : "GIM_CheckMemorySizeLessThanLLT")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
          << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
          << MatchTable::LineBreak;
  }
};

/// Generates code to check an arbitrary C++ instruction predicate.
class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
protected:
  TreePredicateFn Predicate;

public:
  GenericInstructionPredicateMatcher(unsigned InsnVarID,
                                     TreePredicateFn Predicate)
      : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
        Predicate(Predicate) {}

  static bool classof(const InstructionPredicateMatcher *P) {
    return P->getKind() == IPM_GenericPredicate;
  }
  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
          << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
          << MatchTable::Comment("FnId")
          << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
          << MatchTable::LineBreak;
  }
};

/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
protected:
  typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;

  RuleMatcher &Rule;

  /// The operands to match. All rendered operands must be present even if the
  /// condition is always true.
  OperandVec Operands;
  bool NumOperandsCheck = true;

  std::string SymbolicName;
  unsigned InsnVarID;

public:
  InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
      : Rule(Rule), SymbolicName(SymbolicName) {
    // We create a new instruction matcher.
    // Get a new ID for that instruction.
    InsnVarID = Rule.implicitlyDefineInsnVar(*this);
  }

  /// Construct a new instruction predicate and add it to the matcher.
  template <class Kind, class... Args>
  Optional<Kind *> addPredicate(Args &&... args) {
    Predicates.emplace_back(
        llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
    return static_cast<Kind *>(Predicates.back().get());
  }

  RuleMatcher &getRuleMatcher() const { return Rule; }

  unsigned getInsnVarID() const { return InsnVarID; }

  /// Add an operand to the matcher.
  OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
                             unsigned AllocatedTemporariesBaseID) {
    Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
                                             AllocatedTemporariesBaseID));
    if (!SymbolicName.empty())
      Rule.defineOperand(SymbolicName, *Operands.back());

    return *Operands.back();
  }

  OperandMatcher &getOperand(unsigned OpIdx) {
    auto I = std::find_if(Operands.begin(), Operands.end(),
                          [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
                            return X->getOpIdx() == OpIdx;
                          });
    if (I != Operands.end())
      return **I;
    llvm_unreachable("Failed to lookup operand");
  }

  StringRef getSymbolicName() const { return SymbolicName; }
  unsigned getNumOperands() const { return Operands.size(); }
  OperandVec::iterator operands_begin() { return Operands.begin(); }
  OperandVec::iterator operands_end() { return Operands.end(); }
  iterator_range<OperandVec::iterator> operands() {
    return make_range(operands_begin(), operands_end());
  }
  OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
  OperandVec::const_iterator operands_end() const { return Operands.end(); }
  iterator_range<OperandVec::const_iterator> operands() const {
    return make_range(operands_begin(), operands_end());
  }
  bool operands_empty() const { return Operands.empty(); }

  void pop_front() { Operands.erase(Operands.begin()); }

  void optimize();

  /// Emit MatchTable opcodes that test whether the instruction named in
  /// InsnVarName matches all the predicates and all the operands.
  void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
    if (NumOperandsCheck)
      InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
          .emitPredicateOpcodes(Table, Rule);

    emitPredicateListOpcodes(Table, Rule);

    for (const auto &Operand : Operands)
      Operand->emitPredicateOpcodes(Table, Rule);
  }

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool isHigherPriorityThan(InstructionMatcher &B) {
    // Instruction matchers involving more operands have higher priority.
    if (Operands.size() > B.Operands.size())
      return true;
    if (Operands.size() < B.Operands.size())
      return false;

    for (auto &&P : zip(predicates(), B.predicates())) {
      auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
      auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
      if (L->isHigherPriorityThan(*R))
        return true;
      if (R->isHigherPriorityThan(*L))
        return false;
    }

    for (const auto &Operand : zip(Operands, B.Operands)) {
      if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
        return true;
      if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
        return false;
    }

    return false;
  };

  /// Report the maximum number of temporary operands needed by the instruction
  /// matcher.
  unsigned countRendererFns() {
    return std::accumulate(
               predicates().begin(), predicates().end(), 0,
               [](unsigned A,
                  const std::unique_ptr<PredicateMatcher> &Predicate) {
                 return A + Predicate->countRendererFns();
               }) +
           std::accumulate(
               Operands.begin(), Operands.end(), 0,
               [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
                 return A + Operand->countRendererFns();
               });
  }

  InstructionOpcodeMatcher &getOpcodeMatcher() {
    for (auto &P : predicates())
      if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
        return *OpMatcher;
    llvm_unreachable("Didn't find an opcode matcher");
  }

  bool isConstantInstruction() {
    return getOpcodeMatcher().isConstantInstruction();
  }

  StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
};

StringRef RuleMatcher::getOpcode() const {
  return Matchers.front()->getOpcode();
}

unsigned RuleMatcher::getNumOperands() const {
  return Matchers.front()->getNumOperands();
}

LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
  InstructionMatcher &InsnMatcher = *Matchers.front();
  if (!InsnMatcher.predicates_empty())
    if (const auto *TM =
            dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
      if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
        return TM->getTy();
  return {};
}

/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
/// For example, the pattern:
///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
/// the:
///   (G_ADD $src1, $src2)
/// subpattern.
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
  std::unique_ptr<InstructionMatcher> InsnMatcher;

public:
  InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
                            RuleMatcher &Rule, StringRef SymbolicName)
      : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
        InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}

  static bool classof(const PredicateMatcher *P) {
    return P->getKind() == OPM_Instruction;
  }

  InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }

  void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
    const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
    Table << MatchTable::Opcode("GIM_RecordInsn")
          << MatchTable::Comment("DefineMI")
          << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
          << MatchTable::IntValue(getInsnVarID())
          << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
          << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
          << MatchTable::LineBreak;
  }

  void emitPredicateOpcodes(MatchTable &Table,
                            RuleMatcher &Rule) const override {
    emitCaptureOpcodes(Table, Rule);
    InsnMatcher->emitPredicateOpcodes(Table, Rule);
  }

  bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
    if (OperandPredicateMatcher::isHigherPriorityThan(B))
      return true;
    if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
      return false;

    if (const InstructionOperandMatcher *BP =
            dyn_cast<InstructionOperandMatcher>(&B))
      if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
        return true;
    return false;
  }
};

void InstructionMatcher::optimize() {
  SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
  const auto &OpcMatcher = getOpcodeMatcher();

  Stash.push_back(predicates_pop_front());
  if (Stash.back().get() == &OpcMatcher) {
    if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
      Stash.emplace_back(
          new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
    NumOperandsCheck = false;

    for (auto &OM : Operands)
      for (auto &OP : OM->predicates())
        if (isa<IntrinsicIDOperandMatcher>(OP)) {
          Stash.push_back(std::move(OP));
          OM->eraseNullPredicates();
          break;
        }
  }

  if (InsnVarID > 0) {
    assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
    for (auto &OP : Operands[0]->predicates())
      OP.reset();
    Operands[0]->eraseNullPredicates();
  }
  for (auto &OM : Operands) {
    for (auto &OP : OM->predicates())
      if (isa<LLTOperandMatcher>(OP))
        Stash.push_back(std::move(OP));
    OM->eraseNullPredicates();
  }
  while (!Stash.empty())
    prependPredicate(Stash.pop_back_val());
}

//===- Actions ------------------------------------------------------------===//
class OperandRenderer {
public:
  enum RendererKind {
    OR_Copy,
    OR_CopyOrAddZeroReg,
    OR_CopySubReg,
    OR_CopyConstantAsImm,
    OR_CopyFConstantAsFPImm,
    OR_Imm,
    OR_Register,
    OR_TempRegister,
    OR_ComplexPattern,
    OR_Custom
  };

protected:
  RendererKind Kind;

public:
  OperandRenderer(RendererKind Kind) : Kind(Kind) {}
  virtual ~OperandRenderer() {}

  RendererKind getKind() const { return Kind; }

  virtual void emitRenderOpcodes(MatchTable &Table,
                                 RuleMatcher &Rule) const = 0;
};

/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
  /// The name of the operand.
  const StringRef SymbolicName;

public:
  CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
      : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName) {
    assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
  }

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Copy;
  }

  const StringRef getSymbolicName() const { return SymbolicName; }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
          << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

/// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
/// existing instruction to the one being built. If the operand turns out to be
/// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
class CopyOrAddZeroRegRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
  /// The name of the operand.
  const StringRef SymbolicName;
  const Record *ZeroRegisterDef;

public:
  CopyOrAddZeroRegRenderer(unsigned NewInsnID,
                           StringRef SymbolicName, Record *ZeroRegisterDef)
      : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
    assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
  }

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyOrAddZeroReg;
  }

  const StringRef getSymbolicName() const { return SymbolicName; }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::NamedValue(
                 (ZeroRegisterDef->getValue("Namespace")
                      ? ZeroRegisterDef->getValueAsString("Namespace")
                      : ""),
                 ZeroRegisterDef->getName())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

/// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
/// an extended immediate operand.
class CopyConstantAsImmRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
  /// The name of the operand.
  const std::string SymbolicName;
  bool Signed;

public:
  CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
      : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName), Signed(true) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyConstantAsImm;
  }

  const StringRef getSymbolicName() const { return SymbolicName; }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
    Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
                                       : "GIR_CopyConstantAsUImm")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID)
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

/// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
/// instruction to an extended immediate operand.
class CopyFConstantAsFPImmRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
  /// The name of the operand.
  const std::string SymbolicName;

public:
  CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
      : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopyFConstantAsFPImm;
  }

  const StringRef getSymbolicName() const { return SymbolicName; }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
    Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID)
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

/// A CopySubRegRenderer emits code to copy a single register operand from an
/// existing instruction to the one being built and indicate that only a
/// subregister should be copied.
class CopySubRegRenderer : public OperandRenderer {
protected:
  unsigned NewInsnID;
  /// The name of the operand.
  const StringRef SymbolicName;
  /// The subregister to extract.
  const CodeGenSubRegIndex *SubReg;

public:
  CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
                     const CodeGenSubRegIndex *SubReg)
      : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
        SymbolicName(SymbolicName), SubReg(SubReg) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_CopySubReg;
  }

  const StringRef getSymbolicName() const { return SymbolicName; }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
    Table << MatchTable::Opcode("GIR_CopySubReg")
          << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
          << MatchTable::IntValue(Operand.getOpIdx())
          << MatchTable::Comment("SubRegIdx")
          << MatchTable::IntValue(SubReg->EnumValue)
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  const Record *RegisterDef;

public:
  AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
      : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
  }

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Register;
  }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_AddRegister")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::NamedValue(
                 (RegisterDef->getValue("Namespace")
                      ? RegisterDef->getValueAsString("Namespace")
                      : ""),
                 RegisterDef->getName())
          << MatchTable::LineBreak;
  }
};

/// Adds a specific temporary virtual register to the instruction being built.
/// This is used to chain instructions together when emitting multiple
/// instructions.
class TempRegRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  unsigned TempRegID;
  bool IsDef;

public:
  TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
      : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
        IsDef(IsDef) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_TempRegister;
  }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_AddTempRegister")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
          << MatchTable::Comment("TempRegFlags");
    if (IsDef)
      Table << MatchTable::NamedValue("RegState::Define");
    else
      Table << MatchTable::IntValue(0);
    Table << MatchTable::LineBreak;
  }
};

/// Adds a specific immediate to the instruction being built.
class ImmRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  int64_t Imm;

public:
  ImmRenderer(unsigned InsnID, int64_t Imm)
      : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Imm;
  }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
          << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
          << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
  }
};

/// Adds operands by calling a renderer function supplied by the ComplexPattern
/// matcher function.
class RenderComplexPatternOperand : public OperandRenderer {
private:
  unsigned InsnID;
  const Record &TheDef;
  /// The name of the operand.
  const StringRef SymbolicName;
  /// The renderer number. This must be unique within a rule since it's used to
  /// identify a temporary variable to hold the renderer function.
  unsigned RendererID;
  /// When provided, this is the suboperand of the ComplexPattern operand to
  /// render. Otherwise all the suboperands will be rendered.
  Optional<unsigned> SubOperand;

  unsigned getNumOperands() const {
    return TheDef.getValueAsDag("Operands")->getNumArgs();
  }

public:
  RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
                              StringRef SymbolicName, unsigned RendererID,
                              Optional<unsigned> SubOperand = None)
      : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
        SymbolicName(SymbolicName), RendererID(RendererID),
        SubOperand(SubOperand) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_ComplexPattern;
  }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
                                                      : "GIR_ComplexRenderer")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("RendererID")
          << MatchTable::IntValue(RendererID);
    if (SubOperand.hasValue())
      Table << MatchTable::Comment("SubOperand")
            << MatchTable::IntValue(SubOperand.getValue());
    Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

class CustomRenderer : public OperandRenderer {
protected:
  unsigned InsnID;
  const Record &Renderer;
  /// The name of the operand.
  const std::string SymbolicName;

public:
  CustomRenderer(unsigned InsnID, const Record &Renderer,
                 StringRef SymbolicName)
      : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
        SymbolicName(SymbolicName) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Custom;
  }

  void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
    unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
    Table << MatchTable::Opcode("GIR_CustomRenderer")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("OldInsnID")
          << MatchTable::IntValue(OldInsnVarID)
          << MatchTable::Comment("Renderer")
          << MatchTable::NamedValue(
                 "GICR_" + Renderer.getValueAsString("RendererFn").str())
          << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
  }
};

/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
  virtual ~MatchAction() {}

  /// Emit the MatchTable opcodes to implement the action.
  virtual void emitActionOpcodes(MatchTable &Table,
                                 RuleMatcher &Rule) const = 0;
};

/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
  std::string S;

public:
  DebugCommentAction(StringRef S) : S(S) {}

  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Comment(S) << MatchTable::LineBreak;
  }
};

/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
  unsigned InsnID;
  const CodeGenInstruction *I;
  InstructionMatcher *Matched;
  std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;

  /// True if the instruction can be built solely by mutating the opcode.
  bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
    if (!Insn)
      return false;

    if (OperandRenderers.size() != Insn->getNumOperands())
      return false;

    for (const auto &Renderer : enumerate(OperandRenderers)) {
      if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
        const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
        if (Insn != &OM.getInstructionMatcher() ||
            OM.getOpIdx() != Renderer.index())
          return false;
      } else
        return false;
    }

    return true;
  }

public:
  BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
      : InsnID(InsnID), I(I), Matched(nullptr) {}

  unsigned getInsnID() const { return InsnID; }
  const CodeGenInstruction *getCGI() const { return I; }

  void chooseInsnToMutate(RuleMatcher &Rule) {
    for (auto *MutateCandidate : Rule.mutatable_insns()) {
      if (canMutate(Rule, MutateCandidate)) {
        // Take the first one we're offered that we're able to mutate.
        Rule.reserveInsnMatcherForMutation(MutateCandidate);
        Matched = MutateCandidate;
        return;
      }
    }
  }

  template <class Kind, class... Args>
  Kind &addRenderer(Args&&... args) {
    OperandRenderers.emplace_back(
        llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
    return *static_cast<Kind *>(OperandRenderers.back().get());
  }

  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    if (Matched) {
      assert(canMutate(Rule, Matched) &&
             "Arranged to mutate an insn that isn't mutatable");

      unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
      Table << MatchTable::Opcode("GIR_MutateOpcode")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::Comment("RecycleInsnID")
            << MatchTable::IntValue(RecycleInsnID)
            << MatchTable::Comment("Opcode")
            << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
            << MatchTable::LineBreak;

      if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
        for (auto Def : I->ImplicitDefs) {
          auto Namespace = Def->getValue("Namespace")
                               ? Def->getValueAsString("Namespace")
                               : "";
          Table << MatchTable::Opcode("GIR_AddImplicitDef")
                << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
                << MatchTable::NamedValue(Namespace, Def->getName())
                << MatchTable::LineBreak;
        }
        for (auto Use : I->ImplicitUses) {
          auto Namespace = Use->getValue("Namespace")
                               ? Use->getValueAsString("Namespace")
                               : "";
          Table << MatchTable::Opcode("GIR_AddImplicitUse")
                << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
                << MatchTable::NamedValue(Namespace, Use->getName())
                << MatchTable::LineBreak;
        }
      }
      return;
    }

    // TODO: Simple permutation looks like it could be almost as common as
    //       mutation due to commutative operations.

    Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
          << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
          << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
          << MatchTable::LineBreak;
    for (const auto &Renderer : OperandRenderers)
      Renderer->emitRenderOpcodes(Table, Rule);

    if (I->mayLoad || I->mayStore) {
      Table << MatchTable::Opcode("GIR_MergeMemOperands")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::Comment("MergeInsnID's");
      // Emit the ID's for all the instructions that are matched by this rule.
      // TODO: Limit this to matched instructions that mayLoad/mayStore or have
      //       some other means of having a memoperand. Also limit this to
      //       emitted instructions that expect to have a memoperand too. For
      //       example, (G_SEXT (G_LOAD x)) that results in separate load and
      //       sign-extend instructions shouldn't put the memoperand on the
      //       sign-extend since it has no effect there.
      std::vector<unsigned> MergeInsnIDs;
      for (const auto &IDMatcherPair : Rule.defined_insn_vars())
        MergeInsnIDs.push_back(IDMatcherPair.second);
      llvm::sort(MergeInsnIDs.begin(), MergeInsnIDs.end());
      for (const auto &MergeInsnID : MergeInsnIDs)
        Table << MatchTable::IntValue(MergeInsnID);
      Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
            << MatchTable::LineBreak;
    }

    // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
    //        better for combines. Particularly when there are multiple match
    //        roots.
    if (InsnID == 0)
      Table << MatchTable::Opcode("GIR_EraseFromParent")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::LineBreak;
  }
};

/// Generates code to constrain the operands of an output instruction to the
/// register classes specified by the definition of that instruction.
class ConstrainOperandsToDefinitionAction : public MatchAction {
  unsigned InsnID;

public:
  ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}

  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::LineBreak;
  }
};

/// Generates code to constrain the specified operand of an output instruction
/// to the specified register class.
class ConstrainOperandToRegClassAction : public MatchAction {
  unsigned InsnID;
  unsigned OpIdx;
  const CodeGenRegisterClass &RC;

public:
  ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
                                   const CodeGenRegisterClass &RC)
      : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}

  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
          << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
          << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
          << MatchTable::Comment("RC " + RC.getName())
          << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
  }
};

/// Generates code to create a temporary register which can be used to chain
/// instructions together.
class MakeTempRegisterAction : public MatchAction {
private:
  LLTCodeGen Ty;
  unsigned TempRegID;

public:
  MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
      : Ty(Ty), TempRegID(TempRegID) {}

  void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
    Table << MatchTable::Opcode("GIR_MakeTempReg")
          << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
          << MatchTable::Comment("TypeID")
          << MatchTable::NamedValue(Ty.getCxxEnumValue())
          << MatchTable::LineBreak;
  }
};

InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
  Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
  MutatableInsns.insert(Matchers.back().get());
  return *Matchers.back();
}

void RuleMatcher::addRequiredFeature(Record *Feature) {
  RequiredFeatures.push_back(Feature);
}

const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
  return RequiredFeatures;
}

// Emplaces an action of the specified Kind at the end of the action list.
//
// Returns a reference to the newly created action.
//
// Like std::vector::emplace_back(), may invalidate all iterators if the new
// size exceeds the capacity. Otherwise, only invalidates the past-the-end
// iterator.
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
  Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
  return *static_cast<Kind *>(Actions.back().get());
}

// Emplaces an action of the specified Kind before the given insertion point.
//
// Returns an iterator pointing at the newly created instruction.
//
// Like std::vector::insert(), may invalidate all iterators if the new size
// exceeds the capacity. Otherwise, only invalidates the iterators from the
// insertion point onwards.
template <class Kind, class... Args>
action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
                                          Args &&... args) {
  return Actions.emplace(InsertPt,
                         llvm::make_unique<Kind>(std::forward<Args>(args)...));
}

unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
  unsigned NewInsnVarID = NextInsnVarID++;
  InsnVariableIDs[&Matcher] = NewInsnVarID;
  return NewInsnVarID;
}

unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
  const auto &I = InsnVariableIDs.find(&InsnMatcher);
  if (I != InsnVariableIDs.end())
    return I->second;
  llvm_unreachable("Matched Insn was not captured in a local variable");
}

void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
  if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
    DefinedOperands[SymbolicName] = &OM;
    return;
  }

  // If the operand is already defined, then we must ensure both references in
  // the matcher have the exact same node.
  OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
}

InstructionMatcher &
RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
  for (const auto &I : InsnVariableIDs)
    if (I.first->getSymbolicName() == SymbolicName)
      return *I.first;
  llvm_unreachable(
      ("Failed to lookup instruction " + SymbolicName).str().c_str());
}

const OperandMatcher &
RuleMatcher::getOperandMatcher(StringRef Name) const {
  const auto &I = DefinedOperands.find(Name);

  if (I == DefinedOperands.end())
    PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");

  return *I->second;
}

void RuleMatcher::emit(MatchTable &Table) {
  if (Matchers.empty())
    llvm_unreachable("Unexpected empty matcher!");

  // The representation supports rules that require multiple roots such as:
  //    %ptr(p0) = ...
  //    %elt0(s32) = G_LOAD %ptr
  //    %1(p0) = G_ADD %ptr, 4
  //    %elt1(s32) = G_LOAD p0 %1
  // which could be usefully folded into:
  //    %ptr(p0) = ...
  //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
  // on some targets but we don't need to make use of that yet.
  assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");

  unsigned LabelID = Table.allocateLabelID();
  Table << MatchTable::Opcode("GIM_Try", +1)
        << MatchTable::Comment("On fail goto")
        << MatchTable::JumpTarget(LabelID)
        << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
        << MatchTable::LineBreak;

  if (!RequiredFeatures.empty()) {
    Table << MatchTable::Opcode("GIM_CheckFeatures")
          << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
          << MatchTable::LineBreak;
  }

  Matchers.front()->emitPredicateOpcodes(Table, *this);

  // We must also check if it's safe to fold the matched instructions.
  if (InsnVariableIDs.size() >= 2) {
    // Invert the map to create stable ordering (by var names)
    SmallVector<unsigned, 2> InsnIDs;
    for (const auto &Pair : InsnVariableIDs) {
      // Skip the root node since it isn't moving anywhere. Everything else is
      // sinking to meet it.
      if (Pair.first == Matchers.front().get())
        continue;

      InsnIDs.push_back(Pair.second);
    }
    llvm::sort(InsnIDs.begin(), InsnIDs.end());

    for (const auto &InsnID : InsnIDs) {
      // Reject the difficult cases until we have a more accurate check.
      Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
            << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
            << MatchTable::LineBreak;

      // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
      //        account for unsafe cases.
      //
      //        Example:
      //          MI1--> %0 = ...
      //                 %1 = ... %0
      //          MI0--> %2 = ... %0
      //          It's not safe to erase MI1. We currently handle this by not
      //          erasing %0 (even when it's dead).
      //
      //        Example:
      //          MI1--> %0 = load volatile @a
      //                 %1 = load volatile @a
      //          MI0--> %2 = ... %0
      //          It's not safe to sink %0's def past %1. We currently handle
      //          this by rejecting all loads.
      //
      //        Example:
      //          MI1--> %0 = load @a
      //                 %1 = store @a
      //          MI0--> %2 = ... %0
      //          It's not safe to sink %0's def past %1. We currently handle
      //          this by rejecting all loads.
      //
      //        Example:
      //                   G_CONDBR %cond, @BB1
      //                 BB0:
      //          MI1-->   %0 = load @a
      //                   G_BR @BB1
      //                 BB1:
      //          MI0-->   %2 = ... %0
      //          It's not always safe to sink %0 across control flow. In this
      //          case it may introduce a memory fault. We currentl handle this
      //          by rejecting all loads.
    }
  }

  for (const auto &PM : EpilogueMatchers)
    PM->emitPredicateOpcodes(Table, *this);

  for (const auto &MA : Actions)
    MA->emitActionOpcodes(Table, *this);

  if (Table.isWithCoverage())
    Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
          << MatchTable::LineBreak;
  else
    Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
          << MatchTable::LineBreak;

  Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
        << MatchTable::Label(LabelID);
  ++NumPatternEmitted;
}

bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
  // Rules involving more match roots have higher priority.
  if (Matchers.size() > B.Matchers.size())
    return true;
  if (Matchers.size() < B.Matchers.size())
    return false;

  for (const auto &Matcher : zip(Matchers, B.Matchers)) {
    if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
      return true;
    if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
      return false;
  }

  return false;
}

unsigned RuleMatcher::countRendererFns() const {
  return std::accumulate(
      Matchers.begin(), Matchers.end(), 0,
      [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
        return A + Matcher->countRendererFns();
      });
}

bool OperandPredicateMatcher::isHigherPriorityThan(
    const OperandPredicateMatcher &B) const {
  // Generally speaking, an instruction is more important than an Int or a
  // LiteralInt because it can cover more nodes but theres an exception to
  // this. G_CONSTANT's are less important than either of those two because they
  // are more permissive.

  const InstructionOperandMatcher *AOM =
      dyn_cast<InstructionOperandMatcher>(this);
  const InstructionOperandMatcher *BOM =
      dyn_cast<InstructionOperandMatcher>(&B);
  bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
  bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();

  if (AOM && BOM) {
    // The relative priorities between a G_CONSTANT and any other instruction
    // don't actually matter but this code is needed to ensure a strict weak
    // ordering. This is particularly important on Windows where the rules will
    // be incorrectly sorted without it.
    if (AIsConstantInsn != BIsConstantInsn)
      return AIsConstantInsn < BIsConstantInsn;
    return false;
  }

  if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
    return false;
  if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
    return true;

  return Kind < B.Kind;
}

void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
                                              RuleMatcher &Rule) const {
  const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
  unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
  assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());

  Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
        << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
        << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
        << MatchTable::Comment("OtherMI")
        << MatchTable::IntValue(OtherInsnVarID)
        << MatchTable::Comment("OtherOpIdx")
        << MatchTable::IntValue(OtherOM.getOpIdx())
        << MatchTable::LineBreak;
}

//===- GlobalISelEmitter class --------------------------------------------===//

class GlobalISelEmitter {
public:
  explicit GlobalISelEmitter(RecordKeeper &RK);
  void run(raw_ostream &OS);

private:
  const RecordKeeper &RK;
  const CodeGenDAGPatterns CGP;
  const CodeGenTarget &Target;
  CodeGenRegBank CGRegs;

  /// Keep track of the equivalence between SDNodes and Instruction by mapping
  /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
  /// check for attributes on the relation such as CheckMMOIsNonAtomic.
  /// This is defined using 'GINodeEquiv' in the target description.
  DenseMap<Record *, Record *> NodeEquivs;

  /// Keep track of the equivalence between ComplexPattern's and
  /// GIComplexOperandMatcher. Map entries are specified by subclassing
  /// GIComplexPatternEquiv.
  DenseMap<const Record *, const Record *> ComplexPatternEquivs;

  /// Keep track of the equivalence between SDNodeXForm's and
  /// GICustomOperandRenderer. Map entries are specified by subclassing
  /// GISDNodeXFormEquiv.
  DenseMap<const Record *, const Record *> SDNodeXFormEquivs;

  /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
  /// This adds compatibility for RuleMatchers to use this for ordering rules.
  DenseMap<uint64_t, int> RuleMatcherScores;

  // Map of predicates to their subtarget features.
  SubtargetFeatureInfoMap SubtargetFeatures;

  // Rule coverage information.
  Optional<CodeGenCoverage> RuleCoverage;

  void gatherOpcodeValues();
  void gatherTypeIDValues();
  void gatherNodeEquivs();
  // Instruction predicate code that will be emitted in generated functions.
  SmallVector<std::string, 2> InstructionPredicateCodes;
  unsigned getOrCreateInstructionPredicateFnId(StringRef Code);

  Record *findNodeEquiv(Record *N) const;
  const CodeGenInstruction *getEquivNode(Record &Equiv,
                                         const TreePatternNode *N) const;

  Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
  Expected<InstructionMatcher &>
  createAndImportSelDAGMatcher(RuleMatcher &Rule,
                               InstructionMatcher &InsnMatcher,
                               const TreePatternNode *Src, unsigned &TempOpIdx);
  Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
                                           unsigned &TempOpIdx) const;
  Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
                           const TreePatternNode *SrcChild,
                           bool OperandIsAPointer, unsigned OpIdx,
                           unsigned &TempOpIdx);

  Expected<BuildMIAction &>
  createAndImportInstructionRenderer(RuleMatcher &M,
                                     const TreePatternNode *Dst);
  Expected<action_iterator> createAndImportSubInstructionRenderer(
      action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
      unsigned TempReg);
  Expected<action_iterator>
  createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
                            const TreePatternNode *Dst);
  void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
  Expected<action_iterator>
  importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
                             BuildMIAction &DstMIBuilder,
                             const llvm::TreePatternNode *Dst);
  Expected<action_iterator>
  importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
                            BuildMIAction &DstMIBuilder,
                            TreePatternNode *DstChild);
  Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
                                      DagInit *DefaultOps) const;
  Error
  importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
                             const std::vector<Record *> &ImplicitDefs) const;

  void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
                           StringRef TypeIdentifier, StringRef ArgType,
                           StringRef ArgName, StringRef AdditionalDeclarations,
                           std::function<bool(const Record *R)> Filter);
  void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
                           StringRef ArgType,
                           std::function<bool(const Record *R)> Filter);
  void emitMIPredicateFns(raw_ostream &OS);

  /// Analyze pattern \p P, returning a matcher for it if possible.
  /// Otherwise, return an Error explaining why we don't support it.
  Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);

  void declareSubtargetFeature(Record *Predicate);

  MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
                             bool WithCoverage);

public:
  /// Takes a sequence of \p Rules and group them based on the predicates
  /// they share. \p MatcherStorage is used as a memory container
  /// for the group that are created as part of this process.
  ///
  /// What this optimization does looks like if GroupT = GroupMatcher:
  /// Output without optimization:
  /// \verbatim
  /// # R1
  ///  # predicate A
  ///  # predicate B
  ///  ...
  /// # R2
  ///  # predicate A // <-- effectively this is going to be checked twice.
  ///                //     Once in R1 and once in R2.
  ///  # predicate C
  /// \endverbatim
  /// Output with optimization:
  /// \verbatim
  /// # Group1_2
  ///  # predicate A // <-- Check is now shared.
  ///  # R1
  ///   # predicate B
  ///  # R2
  ///   # predicate C
  /// \endverbatim
  template <class GroupT>
  static std::vector<Matcher *> optimizeRules(
      ArrayRef<Matcher *> Rules,
      std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
};

void GlobalISelEmitter::gatherOpcodeValues() {
  InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
}

void GlobalISelEmitter::gatherTypeIDValues() {
  LLTOperandMatcher::initTypeIDValuesMap();
}
unsigned GlobalISelEmitter::getOrCreateInstructionPredicateFnId(StringRef Code) {
  // There's not very many predicates that need to be here at the moment so we
  // just maintain a simple set-like vector. If it grows then we'll need to do
  // something more efficient.
  const auto &I = std::find(InstructionPredicateCodes.begin(),
                            InstructionPredicateCodes.end(),
                            Code);
  if (I == InstructionPredicateCodes.end()) {
    unsigned ID = InstructionPredicateCodes.size();
    InstructionPredicateCodes.push_back(Code);
    return ID;
  }
  return std::distance(InstructionPredicateCodes.begin(), I);
}

void GlobalISelEmitter::gatherNodeEquivs() {
  assert(NodeEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
    NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;

  assert(ComplexPatternEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
    if (!SelDAGEquiv)
      continue;
    ComplexPatternEquivs[SelDAGEquiv] = Equiv;
 }

 assert(SDNodeXFormEquivs.empty());
 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
   Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
   if (!SelDAGEquiv)
     continue;
   SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
 }
}

Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
  return NodeEquivs.lookup(N);
}

const CodeGenInstruction *
GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
  for (const auto &Predicate : N->getPredicateFns()) {
    if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
        Predicate.isSignExtLoad())
      return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
    if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
        Predicate.isZeroExtLoad())
      return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
  }
  return &Target.getInstruction(Equiv.getValueAsDef("I"));
}

GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
    : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
      CGRegs(RK, Target.getHwModes()) {}

//===- Emitter ------------------------------------------------------------===//

Error
GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
                                        ArrayRef<Predicate> Predicates) {
  for (const Predicate &P : Predicates) {
    if (!P.Def)
      continue;
    declareSubtargetFeature(P.Def);
    M.addRequiredFeature(P.Def);
  }

  return Error::success();
}

Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
    RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
    const TreePatternNode *Src, unsigned &TempOpIdx) {
  Record *SrcGIEquivOrNull = nullptr;
  const CodeGenInstruction *SrcGIOrNull = nullptr;

  // Start with the defined operands (i.e., the results of the root operator).
  if (Src->getExtTypes().size() > 1)
    return failedImport("Src pattern has multiple results");

  if (Src->isLeaf()) {
    Init *SrcInit = Src->getLeafValue();
    if (isa<IntInit>(SrcInit)) {
      InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
          &Target.getInstruction(RK.getDef("G_CONSTANT")));
    } else
      return failedImport(
          "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
  } else {
    SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
    if (!SrcGIEquivOrNull)
      return failedImport("Pattern operator lacks an equivalent Instruction" +
                          explainOperator(Src->getOperator()));
    SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);

    // The operators look good: match the opcode
    InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
  }

  unsigned OpIdx = 0;
  for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
    // Results don't have a name unless they are the root node. The caller will
    // set the name if appropriate.
    OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
    if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
      return failedImport(toString(std::move(Error)) +
                          " for result of Src pattern operator");
  }

  for (const auto &Predicate : Src->getPredicateFns()) {
    if (Predicate.isAlwaysTrue())
      continue;

    if (Predicate.isImmediatePattern()) {
      InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
      continue;
    }

    // G_LOAD is used for both non-extending and any-extending loads. 
    if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
      InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
          0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
      continue;
    }
    if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
      InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
          0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
      continue;
    }

    // No check required. We already did it by swapping the opcode.
    if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
        Predicate.isSignExtLoad())
      continue;

    // No check required. We already did it by swapping the opcode.
    if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
        Predicate.isZeroExtLoad())
      continue;

    // No check required. G_STORE by itself is a non-extending store.
    if (Predicate.isNonTruncStore())
      continue;

    if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
      if (Predicate.getMemoryVT() != nullptr) {
        Optional<LLTCodeGen> MemTyOrNone =
            MVTToLLT(getValueType(Predicate.getMemoryVT()));

        if (!MemTyOrNone)
          return failedImport("MemVT could not be converted to LLT");

        // MMO's work in bytes so we must take care of unusual types like i1
        // don't round down.
        unsigned MemSizeInBits =
            llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);

        InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
            0, MemSizeInBits / 8);
        continue;
      }
    }

    if (Predicate.isLoad() || Predicate.isStore()) {
      // No check required. A G_LOAD/G_STORE is an unindexed load.
      if (Predicate.isUnindexed())
        continue;
    }

    if (Predicate.isAtomic()) {
      if (Predicate.isAtomicOrderingMonotonic()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "Monotonic");
        continue;
      }
      if (Predicate.isAtomicOrderingAcquire()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
        continue;
      }
      if (Predicate.isAtomicOrderingRelease()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
        continue;
      }
      if (Predicate.isAtomicOrderingAcquireRelease()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "AcquireRelease");
        continue;
      }
      if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "SequentiallyConsistent");
        continue;
      }

      if (Predicate.isAtomicOrderingAcquireOrStronger()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
        continue;
      }
      if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
        continue;
      }

      if (Predicate.isAtomicOrderingReleaseOrStronger()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
        continue;
      }
      if (Predicate.isAtomicOrderingWeakerThanRelease()) {
        InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
            "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
        continue;
      }
    }

    if (Predicate.hasGISelPredicateCode()) {
      InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
      continue;
    }

    return failedImport("Src pattern child has predicate (" +
                        explainPredicates(Src) + ")");
  }
  if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
    InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");

  if (Src->isLeaf()) {
    Init *SrcInit = Src->getLeafValue();
    if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
      OperandMatcher &OM =
          InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
      OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
    } else
      return failedImport(
          "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
  } else {
    assert(SrcGIOrNull &&
           "Expected to have already found an equivalent Instruction");
    if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
        SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
      // imm/fpimm still have operands but we don't need to do anything with it
      // here since we don't support ImmLeaf predicates yet. However, we still
      // need to note the hidden operand to get GIM_CheckNumOperands correct.
      InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
      return InsnMatcher;
    }

    // Match the used operands (i.e. the children of the operator).
    for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
      TreePatternNode *SrcChild = Src->getChild(i);

      // SelectionDAG allows pointers to be represented with iN since it doesn't
      // distinguish between pointers and integers but they are different types in GlobalISel.
      // Coerce integers to pointers to address space 0 if the context indicates a pointer.
      bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);

      // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
      // following the defs is an intrinsic ID.
      if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
           SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
          i == 0) {
        if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
          OperandMatcher &OM =
              InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
          OM.addPredicate<IntrinsicIDOperandMatcher>(II);
          continue;
        }

        return failedImport("Expected IntInit containing instrinsic ID)");
      }

      if (auto Error =
              importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
                                 OpIdx++, TempOpIdx))
        return std::move(Error);
    }
  }

  return InsnMatcher;
}

Error GlobalISelEmitter::importComplexPatternOperandMatcher(
    OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
  const auto &ComplexPattern = ComplexPatternEquivs.find(R);
  if (ComplexPattern == ComplexPatternEquivs.end())
    return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
                        ") not mapped to GlobalISel");

  OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
  TempOpIdx++;
  return Error::success();
}

Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
                                            InstructionMatcher &InsnMatcher,
                                            const TreePatternNode *SrcChild,
                                            bool OperandIsAPointer,
                                            unsigned OpIdx,
                                            unsigned &TempOpIdx) {
  OperandMatcher &OM =
      InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
  if (OM.isSameAsAnotherOperand())
    return Error::success();

  ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
  if (ChildTypes.size() != 1)
    return failedImport("Src pattern child has multiple results");

  // Check MBB's before the type check since they are not a known type.
  if (!SrcChild->isLeaf()) {
    if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
      auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
      if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
        OM.addPredicate<MBBOperandMatcher>();
        return Error::success();
      }
    }
  }

  if (auto Error =
          OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
    return failedImport(toString(std::move(Error)) + " for Src operand (" +
                        to_string(*SrcChild) + ")");

  // Check for nested instructions.
  if (!SrcChild->isLeaf()) {
    if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
      // When a ComplexPattern is used as an operator, it should do the same
      // thing as when used as a leaf. However, the children of the operator
      // name the sub-operands that make up the complex operand and we must
      // prepare to reference them in the renderer too.
      unsigned RendererID = TempOpIdx;
      if (auto Error = importComplexPatternOperandMatcher(
              OM, SrcChild->getOperator(), TempOpIdx))
        return Error;

      for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
        auto *SubOperand = SrcChild->getChild(i);
        if (!SubOperand->getName().empty())
          Rule.defineComplexSubOperand(SubOperand->getName(),
                                       SrcChild->getOperator(), RendererID, i);
      }

      return Error::success();
    }

    auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
        InsnMatcher.getRuleMatcher(), SrcChild->getName());
    if (!MaybeInsnOperand.hasValue()) {
      // This isn't strictly true. If the user were to provide exactly the same
      // matchers as the original operand then we could allow it. However, it's
      // simpler to not permit the redundant specification.
      return failedImport("Nested instruction cannot be the same as another operand");
    }

    // Map the node to a gMIR instruction.
    InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
    auto InsnMatcherOrError = createAndImportSelDAGMatcher(
        Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
    if (auto Error = InsnMatcherOrError.takeError())
      return Error;

    return Error::success();
  }

  if (SrcChild->hasAnyPredicate())
    return failedImport("Src pattern child has unsupported predicate");

  // Check for constant immediates.
  if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
    OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
    return Error::success();
  }

  // Check for def's like register classes or ComplexPattern's.
  if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
    auto *ChildRec = ChildDefInit->getDef();

    // Check for register classes.
    if (ChildRec->isSubClassOf("RegisterClass") ||
        ChildRec->isSubClassOf("RegisterOperand")) {
      OM.addPredicate<RegisterBankOperandMatcher>(
          Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
      return Error::success();
    }

    // Check for ValueType.
    if (ChildRec->isSubClassOf("ValueType")) {
      // We already added a type check as standard practice so this doesn't need
      // to do anything.
      return Error::success();
    }

    // Check for ComplexPattern's.
    if (ChildRec->isSubClassOf("ComplexPattern"))
      return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);

    if (ChildRec->isSubClassOf("ImmLeaf")) {
      return failedImport(
          "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
    }

    return failedImport(
        "Src pattern child def is an unsupported tablegen class");
  }

  return failedImport("Src pattern child is an unsupported kind");
}

Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
    action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
    TreePatternNode *DstChild) {

  const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
  if (SubOperand.hasValue()) {
    DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
        *std::get<0>(*SubOperand), DstChild->getName(),
        std::get<1>(*SubOperand), std::get<2>(*SubOperand));
    return InsertPt;
  }

  if (!DstChild->isLeaf()) {

    if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
      auto Child = DstChild->getChild(0);
      auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
      if (I != SDNodeXFormEquivs.end()) {
        DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
        return InsertPt;
      }
      return failedImport("SDNodeXForm " + Child->getName() +
                          " has no custom renderer");
    }

    // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
    // inline, but in MI it's just another operand.
    if (DstChild->getOperator()->isSubClassOf("SDNode")) {
      auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
      if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
        DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
        return InsertPt;
      }
    }

    // Similarly, imm is an operator in TreePatternNode's view but must be
    // rendered as operands.
    // FIXME: The target should be able to choose sign-extended when appropriate
    //        (e.g. on Mips).
    if (DstChild->getOperator()->getName() == "imm") {
      DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
      return InsertPt;
    } else if (DstChild->getOperator()->getName() == "fpimm") {
      DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
          DstChild->getName());
      return InsertPt;
    }

    if (DstChild->getOperator()->isSubClassOf("Instruction")) {
      ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
      if (ChildTypes.size() != 1)
        return failedImport("Dst pattern child has multiple results");

      Optional<LLTCodeGen> OpTyOrNone = None;
      if (ChildTypes.front().isMachineValueType())
        OpTyOrNone =
            MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
      if (!OpTyOrNone)
        return failedImport("Dst operand has an unsupported type");

      unsigned TempRegID = Rule.allocateTempRegID();
      InsertPt = Rule.insertAction<MakeTempRegisterAction>(
          InsertPt, OpTyOrNone.getValue(), TempRegID);
      DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);

      auto InsertPtOrError = createAndImportSubInstructionRenderer(
          ++InsertPt, Rule, DstChild, TempRegID);
      if (auto Error = InsertPtOrError.takeError())
        return std::move(Error);
      return InsertPtOrError.get();
    }

    return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
  }

  // It could be a specific immediate in which case we should just check for
  // that immediate.
  if (const IntInit *ChildIntInit =
          dyn_cast<IntInit>(DstChild->getLeafValue())) {
    DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
    return InsertPt;
  }

  // Otherwise, we're looking for a bog-standard RegisterClass operand.
  if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
    auto *ChildRec = ChildDefInit->getDef();

    ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
    if (ChildTypes.size() != 1)
      return failedImport("Dst pattern child has multiple results");

    Optional<LLTCodeGen> OpTyOrNone = None;
    if (ChildTypes.front().isMachineValueType())
      OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
    if (!OpTyOrNone)
      return failedImport("Dst operand has an unsupported type");

    if (ChildRec->isSubClassOf("Register")) {
      DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
      return InsertPt;
    }

    if (ChildRec->isSubClassOf("RegisterClass") ||
        ChildRec->isSubClassOf("RegisterOperand") ||
        ChildRec->isSubClassOf("ValueType")) {
      if (ChildRec->isSubClassOf("RegisterOperand") &&
          !ChildRec->isValueUnset("GIZeroRegister")) {
        DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
            DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
        return InsertPt;
      }

      DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
      return InsertPt;
    }

    if (ChildRec->isSubClassOf("ComplexPattern")) {
      const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
      if (ComplexPattern == ComplexPatternEquivs.end())
        return failedImport(
            "SelectionDAG ComplexPattern not mapped to GlobalISel");

      const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
      DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
          *ComplexPattern->second, DstChild->getName(),
          OM.getAllocatedTemporariesBaseID());
      return InsertPt;
    }

    return failedImport(
        "Dst pattern child def is an unsupported tablegen class");
  }

  return failedImport("Dst pattern child is an unsupported kind");
}

Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
    RuleMatcher &M, const TreePatternNode *Dst) {
  auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
  if (auto Error = InsertPtOrError.takeError())
    return std::move(Error);

  action_iterator InsertPt = InsertPtOrError.get();
  BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());

  importExplicitDefRenderers(DstMIBuilder);

  if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
                       .takeError())
    return std::move(Error);

  return DstMIBuilder;
}

Expected<action_iterator>
GlobalISelEmitter::createAndImportSubInstructionRenderer(
    const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
    unsigned TempRegID) {
  auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);

  // TODO: Assert there's exactly one result.

  if (auto Error = InsertPtOrError.takeError())
    return std::move(Error);

  BuildMIAction &DstMIBuilder =
      *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());

  // Assign the result to TempReg.
  DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);

  InsertPtOrError =
      importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
  if (auto Error = InsertPtOrError.takeError())
    return std::move(Error);

  M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
                                                      DstMIBuilder.getInsnID());
  return InsertPtOrError.get();
}

Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
    action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
  Record *DstOp = Dst->getOperator();
  if (!DstOp->isSubClassOf("Instruction")) {
    if (DstOp->isSubClassOf("ValueType"))
      return failedImport(
          "Pattern operator isn't an instruction (it's a ValueType)");
    return failedImport("Pattern operator isn't an instruction");
  }
  CodeGenInstruction *DstI = &Target.getInstruction(DstOp);

  // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
  // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
  if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
    DstI = &Target.getInstruction(RK.getDef("COPY"));
  else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
    DstI = &Target.getInstruction(RK.getDef("COPY"));
  else if (DstI->TheDef->getName() == "REG_SEQUENCE")
    return failedImport("Unable to emit REG_SEQUENCE");

  return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
                                       DstI);
}

void GlobalISelEmitter::importExplicitDefRenderers(
    BuildMIAction &DstMIBuilder) {
  const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
  for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
    const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
    DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
  }
}

Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
    action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
    const llvm::TreePatternNode *Dst) {
  const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
  CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());

  // EXTRACT_SUBREG needs to use a subregister COPY.
  if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
    if (!Dst->getChild(0)->isLeaf())
      return failedImport("EXTRACT_SUBREG child #1 is not a leaf");

    if (DefInit *SubRegInit =
            dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
      Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
      if (!RCDef)
        return failedImport("EXTRACT_SUBREG child #0 could not "
                            "be coerced to a register class");

      CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
      CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());

      const auto &SrcRCDstRCPair =
          RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
      if (SrcRCDstRCPair.hasValue()) {
        assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
        if (SrcRCDstRCPair->first != RC)
          return failedImport("EXTRACT_SUBREG requires an additional COPY");
      }

      DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
                                                   SubIdx);
      return InsertPt;
    }

    return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
  }

  // Render the explicit uses.
  unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
  unsigned ExpectedDstINumUses = Dst->getNumChildren();
  if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
    DstINumUses--; // Ignore the class constraint.
    ExpectedDstINumUses--;
  }

  unsigned Child = 0;
  unsigned NumDefaultOps = 0;
  for (unsigned I = 0; I != DstINumUses; ++I) {
    const CGIOperandList::OperandInfo &DstIOperand =
        DstI->Operands[DstI->Operands.NumDefs + I];

    // If the operand has default values, introduce them now.
    // FIXME: Until we have a decent test case that dictates we should do
    // otherwise, we're going to assume that operands with default values cannot
    // be specified in the patterns. Therefore, adding them will not cause us to
    // end up with too many rendered operands.
    if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
      DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
      if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
        return std::move(Error);
      ++NumDefaultOps;
      continue;
    }

    auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
                                                     Dst->getChild(Child));
    if (auto Error = InsertPtOrError.takeError())
      return std::move(Error);
    InsertPt = InsertPtOrError.get();
    ++Child;
  }

  if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
    return failedImport("Expected " + llvm::to_string(DstINumUses) +
                        " used operands but found " +
                        llvm::to_string(ExpectedDstINumUses) +
                        " explicit ones and " + llvm::to_string(NumDefaultOps) +
                        " default ones");

  return InsertPt;
}

Error GlobalISelEmitter::importDefaultOperandRenderers(
    BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
  for (const auto *DefaultOp : DefaultOps->getArgs()) {
    // Look through ValueType operators.
    if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
      if (const DefInit *DefaultDagOperator =
              dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
        if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
          DefaultOp = DefaultDagOp->getArg(0);
      }
    }

    if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
      DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
      continue;
    }

    if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
      DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
      continue;
    }

    return failedImport("Could not add default op");
  }

  return Error::success();
}

Error GlobalISelEmitter::importImplicitDefRenderers(
    BuildMIAction &DstMIBuilder,
    const std::vector<Record *> &ImplicitDefs) const {
  if (!ImplicitDefs.empty())
    return failedImport("Pattern defines a physical register");
  return Error::success();
}

Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
  // Keep track of the matchers and actions to emit.
  int Score = P.getPatternComplexity(CGP);
  RuleMatcher M(P.getSrcRecord()->getLoc());
  RuleMatcherScores[M.getRuleID()] = Score;
  M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
                                  "  =>  " +
                                  llvm::to_string(*P.getDstPattern()));

  if (auto Error = importRulePredicates(M, P.getPredicates()))
    return std::move(Error);

  // Next, analyze the pattern operators.
  TreePatternNode *Src = P.getSrcPattern();
  TreePatternNode *Dst = P.getDstPattern();

  // If the root of either pattern isn't a simple operator, ignore it.
  if (auto Err = isTrivialOperatorNode(Dst))
    return failedImport("Dst pattern root isn't a trivial operator (" +
                        toString(std::move(Err)) + ")");
  if (auto Err = isTrivialOperatorNode(Src))
    return failedImport("Src pattern root isn't a trivial operator (" +
                        toString(std::move(Err)) + ")");

  // The different predicates and matchers created during
  // addInstructionMatcher use the RuleMatcher M to set up their
  // instruction ID (InsnVarID) that are going to be used when
  // M is going to be emitted.
  // However, the code doing the emission still relies on the IDs
  // returned during that process by the RuleMatcher when issuing
  // the recordInsn opcodes.
  // Because of that:
  // 1. The order in which we created the predicates
  //    and such must be the same as the order in which we emit them,
  //    and
  // 2. We need to reset the generation of the IDs in M somewhere between
  //    addInstructionMatcher and emit
  //
  // FIXME: Long term, we don't want to have to rely on this implicit
  // naming being the same. One possible solution would be to have
  // explicit operator for operation capture and reference those.
  // The plus side is that it would expose opportunities to share
  // the capture accross rules. The downside is that it would
  // introduce a dependency between predicates (captures must happen
  // before their first use.)
  InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
  unsigned TempOpIdx = 0;
  auto InsnMatcherOrError =
      createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
  if (auto Error = InsnMatcherOrError.takeError())
    return std::move(Error);
  InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();

  if (Dst->isLeaf()) {
    Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());

    const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
    if (RCDef) {
      // We need to replace the def and all its uses with the specified
      // operand. However, we must also insert COPY's wherever needed.
      // For now, emit a copy and let the register allocator clean up.
      auto &DstI = Target.getInstruction(RK.getDef("COPY"));
      const auto &DstIOperand = DstI.Operands[0];

      OperandMatcher &OM0 = InsnMatcher.getOperand(0);
      OM0.setSymbolicName(DstIOperand.Name);
      M.defineOperand(OM0.getSymbolicName(), OM0);
      OM0.addPredicate<RegisterBankOperandMatcher>(RC);

      auto &DstMIBuilder =
          M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
      DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
      DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
      M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);

      // We're done with this pattern!  It's eligible for GISel emission; return
      // it.
      ++NumPatternImported;
      return std::move(M);
    }

    return failedImport("Dst pattern root isn't a known leaf");
  }

  // Start with the defined operands (i.e., the results of the root operator).
  Record *DstOp = Dst->getOperator();
  if (!DstOp->isSubClassOf("Instruction"))
    return failedImport("Pattern operator isn't an instruction");

  auto &DstI = Target.getInstruction(DstOp);
  if (DstI.Operands.NumDefs != Src->getExtTypes().size())
    return failedImport("Src pattern results and dst MI defs are different (" +
                        to_string(Src->getExtTypes().size()) + " def(s) vs " +
                        to_string(DstI.Operands.NumDefs) + " def(s))");

  // The root of the match also has constraints on the register bank so that it
  // matches the result instruction.
  unsigned OpIdx = 0;
  for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
    (void)VTy;

    const auto &DstIOperand = DstI.Operands[OpIdx];
    Record *DstIOpRec = DstIOperand.Rec;
    if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
      DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());

      if (DstIOpRec == nullptr)
        return failedImport(
            "COPY_TO_REGCLASS operand #1 isn't a register class");
    } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
      if (!Dst->getChild(0)->isLeaf())
        return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");

      // We can assume that a subregister is in the same bank as it's super
      // register.
      DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());

      if (DstIOpRec == nullptr)
        return failedImport(
            "EXTRACT_SUBREG operand #0 isn't a register class");
    } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
      DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
    else if (!DstIOpRec->isSubClassOf("RegisterClass"))
      return failedImport("Dst MI def isn't a register class" +
                          to_string(*Dst));

    OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
    OM.setSymbolicName(DstIOperand.Name);
    M.defineOperand(OM.getSymbolicName(), OM);
    OM.addPredicate<RegisterBankOperandMatcher>(
        Target.getRegisterClass(DstIOpRec));
    ++OpIdx;
  }

  auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
  if (auto Error = DstMIBuilderOrError.takeError())
    return std::move(Error);
  BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();

  // Render the implicit defs.
  // These are only added to the root of the result.
  if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
    return std::move(Error);

  DstMIBuilder.chooseInsnToMutate(M);

  // Constrain the registers to classes. This is normally derived from the
  // emitted instruction but a few instructions require special handling.
  if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
    // COPY_TO_REGCLASS does not provide operand constraints itself but the
    // result is constrained to the class given by the second child.
    Record *DstIOpRec =
        getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());

    if (DstIOpRec == nullptr)
      return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");

    M.addAction<ConstrainOperandToRegClassAction>(
        0, 0, Target.getRegisterClass(DstIOpRec));

    // We're done with this pattern!  It's eligible for GISel emission; return
    // it.
    ++NumPatternImported;
    return std::move(M);
  }

  if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
    // EXTRACT_SUBREG selects into a subregister COPY but unlike most
    // instructions, the result register class is controlled by the
    // subregisters of the operand. As a result, we must constrain the result
    // class rather than check that it's already the right one.
    if (!Dst->getChild(0)->isLeaf())
      return failedImport("EXTRACT_SUBREG child #1 is not a leaf");

    DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
    if (!SubRegInit)
      return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");

    // Constrain the result to the same register bank as the operand.
    Record *DstIOpRec =
        getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());

    if (DstIOpRec == nullptr)
      return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");

    CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
    CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);

    // It would be nice to leave this constraint implicit but we're required
    // to pick a register class so constrain the result to a register class
    // that can hold the correct MVT.
    //
    // FIXME: This may introduce an extra copy if the chosen class doesn't
    //        actually contain the subregisters.
    assert(Src->getExtTypes().size() == 1 &&
             "Expected Src of EXTRACT_SUBREG to have one result type");

    const auto &SrcRCDstRCPair =
        SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
    assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
    M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
    M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);

    // We're done with this pattern!  It's eligible for GISel emission; return
    // it.
    ++NumPatternImported;
    return std::move(M);
  }

  M.addAction<ConstrainOperandsToDefinitionAction>(0);

  // We're done with this pattern!  It's eligible for GISel emission; return it.
  ++NumPatternImported;
  return std::move(M);
}

// Emit imm predicate table and an enum to reference them with.
// The 'Predicate_' part of the name is redundant but eliminating it is more
// trouble than it's worth.
void GlobalISelEmitter::emitCxxPredicateFns(
    raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
    StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
    std::function<bool(const Record *R)> Filter) {
  std::vector<const Record *> MatchedRecords;
  const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
  std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
               [&](Record *Record) {
                 return !Record->getValueAsString(CodeFieldName).empty() &&
                        Filter(Record);
               });

  if (!MatchedRecords.empty()) {
    OS << "// PatFrag predicates.\n"
       << "enum {\n";
    std::string EnumeratorSeparator =
        (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
    for (const auto *Record : MatchedRecords) {
      OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
         << EnumeratorSeparator;
      EnumeratorSeparator = ",\n";
    }
    OS << "};\n";
  }

  OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
     << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
     << ArgName << ") const {\n"
     << AdditionalDeclarations;
  if (!AdditionalDeclarations.empty())
    OS << "\n";
  if (!MatchedRecords.empty())
    OS << "  switch (PredicateID) {\n";
  for (const auto *Record : MatchedRecords) {
    OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
       << Record->getName() << ": {\n"
       << "    " << Record->getValueAsString(CodeFieldName) << "\n"
       << "    llvm_unreachable(\"" << CodeFieldName
       << " should have returned\");\n"
       << "    return false;\n"
       << "  }\n";
  }
  if (!MatchedRecords.empty())
    OS << "  }\n";
  OS << "  llvm_unreachable(\"Unknown predicate\");\n"
     << "  return false;\n"
     << "}\n";
}

void GlobalISelEmitter::emitImmPredicateFns(
    raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
    std::function<bool(const Record *R)> Filter) {
  return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
                             "Imm", "", Filter);
}

void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
  return emitCxxPredicateFns(
      OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
      "  const MachineFunction &MF = *MI.getParent()->getParent();\n"
      "  const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
      "  (void)MRI;",
      [](const Record *R) { return true; });
}

template <class GroupT>
std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
    ArrayRef<Matcher *> Rules,
    std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {

  std::vector<Matcher *> OptRules;
  std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
  assert(CurrentGroup->empty() && "Newly created group isn't empty!");
  unsigned NumGroups = 0;

  auto ProcessCurrentGroup = [&]() {
    if (CurrentGroup->empty())
      // An empty group is good to be reused:
      return;

    // If the group isn't large enough to provide any benefit, move all the
    // added rules out of it and make sure to re-create the group to properly
    // re-initialize it:
    if (CurrentGroup->size() < 2)
      for (Matcher *M : CurrentGroup->matchers())
        OptRules.push_back(M);
    else {
      CurrentGroup->finalize();
      OptRules.push_back(CurrentGroup.get());
      MatcherStorage.emplace_back(std::move(CurrentGroup));
      ++NumGroups;
    }
    CurrentGroup = make_unique<GroupT>();
  };
  for (Matcher *Rule : Rules) {
    // Greedily add as many matchers as possible to the current group:
    if (CurrentGroup->addMatcher(*Rule))
      continue;

    ProcessCurrentGroup();
    assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");

    // Try to add the pending matcher to a newly created empty group:
    if (!CurrentGroup->addMatcher(*Rule))
      // If we couldn't add the matcher to an empty group, that group type
      // doesn't support that kind of matchers at all, so just skip it:
      OptRules.push_back(Rule);
  }
  ProcessCurrentGroup();

  LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
  assert(CurrentGroup->empty() && "The last group wasn't properly processed");
  return OptRules;
}

MatchTable
GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
                                   bool Optimize, bool WithCoverage) {
  std::vector<Matcher *> InputRules;
  for (Matcher &Rule : Rules)
    InputRules.push_back(&Rule);

  if (!Optimize)
    return MatchTable::buildTable(InputRules, WithCoverage);

  unsigned CurrentOrdering = 0;
  StringMap<unsigned> OpcodeOrder;
  for (RuleMatcher &Rule : Rules) {
    const StringRef Opcode = Rule.getOpcode();
    assert(!Opcode.empty() && "Didn't expect an undefined opcode");
    if (OpcodeOrder.count(Opcode) == 0)
      OpcodeOrder[Opcode] = CurrentOrdering++;
  }

  std::stable_sort(InputRules.begin(), InputRules.end(),
                   [&OpcodeOrder](const Matcher *A, const Matcher *B) {
                     auto *L = static_cast<const RuleMatcher *>(A);
                     auto *R = static_cast<const RuleMatcher *>(B);
                     return std::make_tuple(OpcodeOrder[L->getOpcode()],
                                            L->getNumOperands()) <
                            std::make_tuple(OpcodeOrder[R->getOpcode()],
                                            R->getNumOperands());
                   });

  for (Matcher *Rule : InputRules)
    Rule->optimize();

  std::vector<std::unique_ptr<Matcher>> MatcherStorage;
  std::vector<Matcher *> OptRules =
      optimizeRules<GroupMatcher>(InputRules, MatcherStorage);

  for (Matcher *Rule : OptRules)
    Rule->optimize();

  OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);

  return MatchTable::buildTable(OptRules, WithCoverage);
}

void GroupMatcher::optimize() {
  // Make sure we only sort by a specific predicate within a range of rules that
  // all have that predicate checked against a specific value (not a wildcard):
  auto F = Matchers.begin();
  auto T = F;
  auto E = Matchers.end();
  while (T != E) {
    while (T != E) {
      auto *R = static_cast<RuleMatcher *>(*T);
      if (!R->getFirstConditionAsRootType().get().isValid())
        break;
      ++T;
    }
    std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
      auto *L = static_cast<RuleMatcher *>(A);
      auto *R = static_cast<RuleMatcher *>(B);
      return L->getFirstConditionAsRootType() <
             R->getFirstConditionAsRootType();
    });
    if (T != E)
      F = ++T;
  }
  GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
      .swap(Matchers);
  GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
      .swap(Matchers);
}

void GlobalISelEmitter::run(raw_ostream &OS) {
  if (!UseCoverageFile.empty()) {
    RuleCoverage = CodeGenCoverage();
    auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
    if (!RuleCoverageBufOrErr) {
      PrintWarning(SMLoc(), "Missing rule coverage data");
      RuleCoverage = None;
    } else {
      if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
        PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
        RuleCoverage = None;
      }
    }
  }

  // Track the run-time opcode values
  gatherOpcodeValues();
  // Track the run-time LLT ID values
  gatherTypeIDValues();

  // Track the GINodeEquiv definitions.
  gatherNodeEquivs();

  emitSourceFileHeader(("Global Instruction Selector for the " +
                       Target.getName() + " target").str(), OS);
  std::vector<RuleMatcher> Rules;
  // Look through the SelectionDAG patterns we found, possibly emitting some.
  for (const PatternToMatch &Pat : CGP.ptms()) {
    ++NumPatternTotal;

    auto MatcherOrErr = runOnPattern(Pat);

    // The pattern analysis can fail, indicating an unsupported pattern.
    // Report that if we've been asked to do so.
    if (auto Err = MatcherOrErr.takeError()) {
      if (WarnOnSkippedPatterns) {
        PrintWarning(Pat.getSrcRecord()->getLoc(),
                     "Skipped pattern: " + toString(std::move(Err)));
      } else {
        consumeError(std::move(Err));
      }
      ++NumPatternImportsSkipped;
      continue;
    }

    if (RuleCoverage) {
      if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
        ++NumPatternsTested;
      else
        PrintWarning(Pat.getSrcRecord()->getLoc(),
                     "Pattern is not covered by a test");
    }
    Rules.push_back(std::move(MatcherOrErr.get()));
  }

  // Comparison function to order records by name.
  auto orderByName = [](const Record *A, const Record *B) {
    return A->getName() < B->getName();
  };

  std::vector<Record *> ComplexPredicates =
      RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
  llvm::sort(ComplexPredicates.begin(), ComplexPredicates.end(), orderByName);

  std::vector<Record *> CustomRendererFns =
      RK.getAllDerivedDefinitions("GICustomOperandRenderer");
  llvm::sort(CustomRendererFns.begin(), CustomRendererFns.end(), orderByName);

  unsigned MaxTemporaries = 0;
  for (const auto &Rule : Rules)
    MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());

  OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
     << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
     << ";\n"
     << "using PredicateBitset = "
        "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";

  OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
     << "  mutable MatcherState State;\n"
     << "  typedef "
        "ComplexRendererFns("
     << Target.getName()
     << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"

     << "  typedef void(" << Target.getName()
     << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
        "MachineInstr&) "
        "const;\n"
     << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
        "CustomRendererFn> "
        "ISelInfo;\n";
  OS << "  static " << Target.getName()
     << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
     << "  static " << Target.getName()
     << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
     << "  bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
        "override;\n"
     << "  bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
        "const override;\n"
     << "  bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
        "&Imm) const override;\n"
     << "  const int64_t *getMatchTable() const override;\n"
     << "  bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
        "const override;\n"
     << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";

  OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
     << ", State(" << MaxTemporaries << "),\n"
     << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
     << ", ComplexPredicateFns, CustomRenderers)\n"
     << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";

  OS << "#ifdef GET_GLOBALISEL_IMPL\n";
  SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
                                                           OS);

  // Separate subtarget features by how often they must be recomputed.
  SubtargetFeatureInfoMap ModuleFeatures;
  std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
               std::inserter(ModuleFeatures, ModuleFeatures.end()),
               [](const SubtargetFeatureInfoMap::value_type &X) {
                 return !X.second.mustRecomputePerFunction();
               });
  SubtargetFeatureInfoMap FunctionFeatures;
  std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
               std::inserter(FunctionFeatures, FunctionFeatures.end()),
               [](const SubtargetFeatureInfoMap::value_type &X) {
                 return X.second.mustRecomputePerFunction();
               });

  SubtargetFeatureInfo::emitComputeAvailableFeatures(
      Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
      ModuleFeatures, OS);
  SubtargetFeatureInfo::emitComputeAvailableFeatures(
      Target.getName(), "InstructionSelector",
      "computeAvailableFunctionFeatures", FunctionFeatures, OS,
      "const MachineFunction *MF");

  // Emit a table containing the LLT objects needed by the matcher and an enum
  // for the matcher to reference them with.
  std::vector<LLTCodeGen> TypeObjects;
  for (const auto &Ty : KnownTypes)
    TypeObjects.push_back(Ty);
  llvm::sort(TypeObjects.begin(), TypeObjects.end());
  OS << "// LLT Objects.\n"
     << "enum {\n";
  for (const auto &TypeObject : TypeObjects) {
    OS << "  ";
    TypeObject.emitCxxEnumValue(OS);
    OS << ",\n";
  }
  OS << "};\n";
  OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
     << "const static LLT TypeObjects[] = {\n";
  for (const auto &TypeObject : TypeObjects) {
    OS << "  ";
    TypeObject.emitCxxConstructorCall(OS);
    OS << ",\n";
  }
  OS << "};\n\n";

  // Emit a table containing the PredicateBitsets objects needed by the matcher
  // and an enum for the matcher to reference them with.
  std::vector<std::vector<Record *>> FeatureBitsets;
  for (auto &Rule : Rules)
    FeatureBitsets.push_back(Rule.getRequiredFeatures());
  llvm::sort(
      FeatureBitsets.begin(), FeatureBitsets.end(),
      [&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
        if (A.size() < B.size())
          return true;
        if (A.size() > B.size())
          return false;
        for (const auto &Pair : zip(A, B)) {
          if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
            return true;
          if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
            return false;
        }
        return false;
      });
  FeatureBitsets.erase(
      std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
      FeatureBitsets.end());
  OS << "// Feature bitsets.\n"
     << "enum {\n"
     << "  GIFBS_Invalid,\n";
  for (const auto &FeatureBitset : FeatureBitsets) {
    if (FeatureBitset.empty())
      continue;
    OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
  }
  OS << "};\n"
     << "const static PredicateBitset FeatureBitsets[] {\n"
     << "  {}, // GIFBS_Invalid\n";
  for (const auto &FeatureBitset : FeatureBitsets) {
    if (FeatureBitset.empty())
      continue;
    OS << "  {";
    for (const auto &Feature : FeatureBitset) {
      const auto &I = SubtargetFeatures.find(Feature);
      assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
      OS << I->second.getEnumBitName() << ", ";
    }
    OS << "},\n";
  }
  OS << "};\n\n";

  // Emit complex predicate table and an enum to reference them with.
  OS << "// ComplexPattern predicates.\n"
     << "enum {\n"
     << "  GICP_Invalid,\n";
  for (const auto &Record : ComplexPredicates)
    OS << "  GICP_" << Record->getName() << ",\n";
  OS << "};\n"
     << "// See constructor for table contents\n\n";

  emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
    bool Unset;
    return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
           !R->getValueAsBit("IsAPInt");
  });
  emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
    bool Unset;
    return R->getValueAsBitOrUnset("IsAPFloat", Unset);
  });
  emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
    return R->getValueAsBit("IsAPInt");
  });
  emitMIPredicateFns(OS);
  OS << "\n";

  OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
     << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
     << "  nullptr, // GICP_Invalid\n";
  for (const auto &Record : ComplexPredicates)
    OS << "  &" << Target.getName()
       << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
       << ", // " << Record->getName() << "\n";
  OS << "};\n\n";

  OS << "// Custom renderers.\n"
     << "enum {\n"
     << "  GICR_Invalid,\n";
  for (const auto &Record : CustomRendererFns)
    OS << "  GICR_" << Record->getValueAsString("RendererFn") << ", \n";
  OS << "};\n";

  OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
     << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
     << "  nullptr, // GICP_Invalid\n";
  for (const auto &Record : CustomRendererFns)
    OS << "  &" << Target.getName()
       << "InstructionSelector::" << Record->getValueAsString("RendererFn")
       << ", // " << Record->getName() << "\n";
  OS << "};\n\n";

  std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
                                                   const RuleMatcher &B) {
    int ScoreA = RuleMatcherScores[A.getRuleID()];
    int ScoreB = RuleMatcherScores[B.getRuleID()];
    if (ScoreA > ScoreB)
      return true;
    if (ScoreB > ScoreA)
      return false;
    if (A.isHigherPriorityThan(B)) {
      assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
                                           "and less important at "
                                           "the same time");
      return true;
    }
    return false;
  });

  OS << "bool " << Target.getName()
     << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
        "&CoverageInfo) const {\n"
     << "  MachineFunction &MF = *I.getParent()->getParent();\n"
     << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
     << "  // FIXME: This should be computed on a per-function basis rather "
        "than per-insn.\n"
     << "  AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
        "&MF);\n"
     << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
     << "  NewMIVector OutMIs;\n"
     << "  State.MIs.clear();\n"
     << "  State.MIs.push_back(&I);\n\n"
     << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo"
     << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
     << ", CoverageInfo)) {\n"
     << "    return true;\n"
     << "  }\n\n"
     << "  return false;\n"
     << "}\n\n";

  const MatchTable Table =
      buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
  OS << "const int64_t *" << Target.getName()
     << "InstructionSelector::getMatchTable() const {\n";
  Table.emitDeclaration(OS);
  OS << "  return ";
  Table.emitUse(OS);
  OS << ";\n}\n";
  OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";

  OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
     << "PredicateBitset AvailableModuleFeatures;\n"
     << "mutable PredicateBitset AvailableFunctionFeatures;\n"
     << "PredicateBitset getAvailableFeatures() const {\n"
     << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
     << "}\n"
     << "PredicateBitset\n"
     << "computeAvailableModuleFeatures(const " << Target.getName()
     << "Subtarget *Subtarget) const;\n"
     << "PredicateBitset\n"
     << "computeAvailableFunctionFeatures(const " << Target.getName()
     << "Subtarget *Subtarget,\n"
     << "                                 const MachineFunction *MF) const;\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";

  OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
     << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
     << "AvailableFunctionFeatures()\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
}

void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
  if (SubtargetFeatures.count(Predicate) == 0)
    SubtargetFeatures.emplace(
        Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
}

void RuleMatcher::optimize() {
  for (auto &Item : InsnVariableIDs) {
    InstructionMatcher &InsnMatcher = *Item.first;
    for (auto &OM : InsnMatcher.operands()) {
      // Complex Patterns are usually expensive and they relatively rarely fail
      // on their own: more often we end up throwing away all the work done by a
      // matching part of a complex pattern because some other part of the
      // enclosing pattern didn't match. All of this makes it beneficial to
      // delay complex patterns until the very end of the rule matching,
      // especially for targets having lots of complex patterns.
      for (auto &OP : OM->predicates())
        if (isa<ComplexPatternOperandMatcher>(OP))
          EpilogueMatchers.emplace_back(std::move(OP));
      OM->eraseNullPredicates();
    }
    InsnMatcher.optimize();
  }
  llvm::sort(
      EpilogueMatchers.begin(), EpilogueMatchers.end(),
      [](const std::unique_ptr<PredicateMatcher> &L,
         const std::unique_ptr<PredicateMatcher> &R) {
        return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
               std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
      });
}

bool RuleMatcher::hasFirstCondition() const {
  if (insnmatchers_empty())
    return false;
  InstructionMatcher &Matcher = insnmatchers_front();
  if (!Matcher.predicates_empty())
    return true;
  for (auto &OM : Matcher.operands())
    for (auto &OP : OM->predicates())
      if (!isa<InstructionOperandMatcher>(OP))
        return true;
  return false;
}

const PredicateMatcher &RuleMatcher::getFirstCondition() const {
  assert(!insnmatchers_empty() &&
         "Trying to get a condition from an empty RuleMatcher");

  InstructionMatcher &Matcher = insnmatchers_front();
  if (!Matcher.predicates_empty())
    return **Matcher.predicates_begin();
  // If there is no more predicate on the instruction itself, look at its
  // operands.
  for (auto &OM : Matcher.operands())
    for (auto &OP : OM->predicates())
      if (!isa<InstructionOperandMatcher>(OP))
        return *OP;

  llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
                   "no conditions");
}

std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
  assert(!insnmatchers_empty() &&
         "Trying to pop a condition from an empty RuleMatcher");

  InstructionMatcher &Matcher = insnmatchers_front();
  if (!Matcher.predicates_empty())
    return Matcher.predicates_pop_front();
  // If there is no more predicate on the instruction itself, look at its
  // operands.
  for (auto &OM : Matcher.operands())
    for (auto &OP : OM->predicates())
      if (!isa<InstructionOperandMatcher>(OP)) {
        std::unique_ptr<PredicateMatcher> Result = std::move(OP);
        OM->eraseNullPredicates();
        return Result;
      }

  llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
                   "no conditions");
}

bool GroupMatcher::candidateConditionMatches(
    const PredicateMatcher &Predicate) const {

  if (empty()) {
    // Sharing predicates for nested instructions is not supported yet as we
    // currently don't hoist the GIM_RecordInsn's properly, therefore we can
    // only work on the original root instruction (InsnVarID == 0):
    if (Predicate.getInsnVarID() != 0)
      return false;
    // ... otherwise an empty group can handle any predicate with no specific
    // requirements:
    return true;
  }

  const Matcher &Representative = **Matchers.begin();
  const auto &RepresentativeCondition = Representative.getFirstCondition();
  // ... if not empty, the group can only accomodate matchers with the exact
  // same first condition:
  return Predicate.isIdentical(RepresentativeCondition);
}

bool GroupMatcher::addMatcher(Matcher &Candidate) {
  if (!Candidate.hasFirstCondition())
    return false;

  const PredicateMatcher &Predicate = Candidate.getFirstCondition();
  if (!candidateConditionMatches(Predicate))
    return false;

  Matchers.push_back(&Candidate);
  return true;
}

void GroupMatcher::finalize() {
  assert(Conditions.empty() && "Already finalized?");
  if (empty())
    return;

  Matcher &FirstRule = **Matchers.begin();
  for (;;) {
    // All the checks are expected to succeed during the first iteration:
    for (const auto &Rule : Matchers)
      if (!Rule->hasFirstCondition())
        return;
    const auto &FirstCondition = FirstRule.getFirstCondition();
    for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
      if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
        return;

    Conditions.push_back(FirstRule.popFirstCondition());
    for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
      Matchers[I]->popFirstCondition();
  }
}

void GroupMatcher::emit(MatchTable &Table) {
  unsigned LabelID = ~0U;
  if (!Conditions.empty()) {
    LabelID = Table.allocateLabelID();
    Table << MatchTable::Opcode("GIM_Try", +1)
          << MatchTable::Comment("On fail goto")
          << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
  }
  for (auto &Condition : Conditions)
    Condition->emitPredicateOpcodes(
        Table, *static_cast<RuleMatcher *>(*Matchers.begin()));

  for (const auto &M : Matchers)
    M->emit(Table);

  // Exit the group
  if (!Conditions.empty())
    Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
          << MatchTable::Label(LabelID);
}

bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
  return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
}

bool SwitchMatcher::candidateConditionMatches(
    const PredicateMatcher &Predicate) const {

  if (empty()) {
    // Sharing predicates for nested instructions is not supported yet as we
    // currently don't hoist the GIM_RecordInsn's properly, therefore we can
    // only work on the original root instruction (InsnVarID == 0):
    if (Predicate.getInsnVarID() != 0)
      return false;
    // ... while an attempt to add even a root matcher to an empty SwitchMatcher
    // could fail as not all the types of conditions are supported:
    if (!isSupportedPredicateType(Predicate))
      return false;
    // ... or the condition might not have a proper implementation of
    // getValue() / isIdenticalDownToValue() yet:
    if (!Predicate.hasValue())
      return false;
    // ... otherwise an empty Switch can accomodate the condition with no
    // further requirements:
    return true;
  }

  const Matcher &CaseRepresentative = **Matchers.begin();
  const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
  // Switch-cases must share the same kind of condition and path to the value it
  // checks:
  if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
    return false;

  const auto Value = Predicate.getValue();
  // ... but be unique with respect to the actual value they check:
  return Values.count(Value) == 0;
}

bool SwitchMatcher::addMatcher(Matcher &Candidate) {
  if (!Candidate.hasFirstCondition())
    return false;

  const PredicateMatcher &Predicate = Candidate.getFirstCondition();
  if (!candidateConditionMatches(Predicate))
    return false;
  const auto Value = Predicate.getValue();
  Values.insert(Value);

  Matchers.push_back(&Candidate);
  return true;
}

void SwitchMatcher::finalize() {
  assert(Condition == nullptr && "Already finalized");
  assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
  if (empty())
    return;

  std::stable_sort(Matchers.begin(), Matchers.end(),
                   [](const Matcher *L, const Matcher *R) {
                     return L->getFirstCondition().getValue() <
                            R->getFirstCondition().getValue();
                   });
  Condition = Matchers[0]->popFirstCondition();
  for (unsigned I = 1, E = Values.size(); I < E; ++I)
    Matchers[I]->popFirstCondition();
}

void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
                                                 MatchTable &Table) {
  assert(isSupportedPredicateType(P) && "Predicate type is not supported");

  if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
    Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
          << MatchTable::IntValue(Condition->getInsnVarID());
    return;
  }
  if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
    Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
          << MatchTable::IntValue(Condition->getInsnVarID())
          << MatchTable::Comment("Op")
          << MatchTable::IntValue(Condition->getOpIdx());
    return;
  }

  llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
                   "predicate type that is claimed to be supported");
}

void SwitchMatcher::emit(MatchTable &Table) {
  assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
  if (empty())
    return;
  assert(Condition != nullptr &&
         "Broken SwitchMatcher, hasn't been finalized?");

  std::vector<unsigned> LabelIDs(Values.size());
  std::generate(LabelIDs.begin(), LabelIDs.end(),
                [&Table]() { return Table.allocateLabelID(); });
  const unsigned Default = Table.allocateLabelID();

  const int64_t LowerBound = Values.begin()->getRawValue();
  const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;

  emitPredicateSpecificOpcodes(*Condition, Table);

  Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
        << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
        << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);

  int64_t J = LowerBound;
  auto VI = Values.begin();
  for (unsigned I = 0, E = Values.size(); I < E; ++I) {
    auto V = *VI++;
    while (J++ < V.getRawValue())
      Table << MatchTable::IntValue(0);
    V.turnIntoComment();
    Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
  }
  Table << MatchTable::LineBreak;

  for (unsigned I = 0, E = Values.size(); I < E; ++I) {
    Table << MatchTable::Label(LabelIDs[I]);
    Matchers[I]->emit(Table);
    Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
  }
  Table << MatchTable::Label(Default);
}

unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }

} // end anonymous namespace

//===----------------------------------------------------------------------===//

namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
  GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace