Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*	$NetBSD: authkeys.c,v 1.12 2018/04/07 00:19:52 christos Exp $	*/

/*
 * authkeys.c - routines to manage the storage of authentication keys
 */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#include <math.h>
#include <stdio.h>

#include "ntp.h"
#include "ntp_fp.h"
#include "ntpd.h"
#include "ntp_lists.h"
#include "ntp_string.h"
#include "ntp_malloc.h"
#include "ntp_stdlib.h"
#include "ntp_keyacc.h"

/*
 * Structure to store keys in in the hash table.
 */
typedef struct savekey symkey;

struct savekey {
	symkey *	hlink;		/* next in hash bucket */
	DECL_DLIST_LINK(symkey, llink);	/* for overall & free lists */
	u_char *	secret;		/* shared secret */
	KeyAccT *	keyacclist;	/* Private key access list */
	u_long		lifetime;	/* remaining lifetime */
	keyid_t		keyid;		/* key identifier */
	u_short		type;		/* OpenSSL digest NID */
	size_t		secretsize;	/* secret octets */
	u_short		flags;		/* KEY_ flags that wave */
};

/* define the payload region of symkey beyond the list pointers */
#define symkey_payload	secret

#define	KEY_TRUSTED	0x001	/* this key is trusted */

#ifdef DEBUG
typedef struct symkey_alloc_tag symkey_alloc;

struct symkey_alloc_tag {
	symkey_alloc *	link;
	void *		mem;		/* enable free() atexit */
};

symkey_alloc *	authallocs;
#endif	/* DEBUG */

static u_short	auth_log2(size_t);
static void		auth_resize_hashtable(void);
static void		allocsymkey(keyid_t,	u_short,
				    u_short, u_long, size_t, u_char *, KeyAccT *);
static void		freesymkey(symkey *);
#ifdef DEBUG
static void		free_auth_mem(void);
#endif

symkey	key_listhead;		/* list of all in-use keys */;
/*
 * The hash table. This is indexed by the low order bits of the
 * keyid. We make this fairly big for potentially busy servers.
 */
#define	DEF_AUTHHASHSIZE	64
/*#define	HASHMASK	((HASHSIZE)-1)*/
#define	KEYHASH(keyid)	((keyid) & authhashmask)

int	authhashdisabled;
u_short	authhashbuckets = DEF_AUTHHASHSIZE;
u_short authhashmask = DEF_AUTHHASHSIZE - 1;
symkey **key_hash;

u_long authkeynotfound;		/* keys not found */
u_long authkeylookups;		/* calls to lookup keys */
u_long authnumkeys;		/* number of active keys */
u_long authkeyexpired;		/* key lifetime expirations */
u_long authkeyuncached;		/* cache misses */
u_long authnokey;		/* calls to encrypt with no key */
u_long authencryptions;		/* calls to encrypt */
u_long authdecryptions;		/* calls to decrypt */

/*
 * Storage for free symkey structures.  We malloc() such things but
 * never free them.
 */
symkey *authfreekeys;
int authnumfreekeys;

#define	MEMINC	16		/* number of new free ones to get */

/*
 * The key cache. We cache the last key we looked at here.
 * Note: this should hold the last *trusted* key. Also the
 * cache is only loaded when the digest type / MAC algorithm
 * is valid.
 */
keyid_t	cache_keyid;		/* key identifier */
u_char *cache_secret;		/* secret */
size_t	cache_secretsize;	/* secret length */
int	cache_type;		/* OpenSSL digest NID */
u_short cache_flags;		/* flags that wave */
KeyAccT *cache_keyacclist;	/* key access list */

/* --------------------------------------------------------------------
 * manage key access lists
 * --------------------------------------------------------------------
 */
/* allocate and populate new access node and pushes it on the list.
 * Returns the new head.
 */
KeyAccT*
keyacc_new_push(
	KeyAccT          * head,
	const sockaddr_u * addr,
	unsigned int	   subnetbits
	)
{
	KeyAccT *	node = emalloc(sizeof(KeyAccT));
	
	memcpy(&node->addr, addr, sizeof(sockaddr_u));
	node->subnetbits = subnetbits;
	node->next = head;

	return node;
}

/* ----------------------------------------------------------------- */
/* pop and deallocate the first node of a list of access nodes, if
 * the list is not empty. Returns the tail of the list.
 */
KeyAccT*
keyacc_pop_free(
	KeyAccT *head
	)
{
	KeyAccT *	next = NULL;
	if (head) {
		next = head->next;
		free(head);
	}
	return next;
}

/* ----------------------------------------------------------------- */
/* deallocate the list; returns an empty list. */
KeyAccT*
keyacc_all_free(
	KeyAccT * head
	)
{
	while (head)
		head = keyacc_pop_free(head);
	return head;
}

/* ----------------------------------------------------------------- */
/* scan a list to see if it contains a given address. Return the
 * default result value in case of an empty list.
 */
int /*BOOL*/
keyacc_contains(
	const KeyAccT    *head,
	const sockaddr_u *addr,
	int               defv)
{
	if (head) {
		do {
			if (keyacc_amatch(&head->addr, addr,
					  head->subnetbits))
				return TRUE;
		} while (NULL != (head = head->next));
		return FALSE;
	} else {
		return !!defv;
	}
}

#if CHAR_BIT != 8
# error "don't know how to handle bytes with that bit size"
#endif

/* ----------------------------------------------------------------- */
/* check two addresses for a match, taking a prefix length into account
 * when doing the compare.
 *
 * The ISC lib contains a similar function with not entirely specified
 * semantics, so it seemed somewhat cleaner to do this from scratch.
 *
 * Note 1: It *is* assumed that the addresses are stored in network byte
 * order, that is, most significant byte first!
 *
 * Note 2: "no address" compares unequal to all other addresses, even to
 * itself. This has the same semantics as NaNs have for floats: *any*
 * relational or equality operation involving a NaN returns FALSE, even
 * equality with itself. "no address" is either a NULL pointer argument
 * or an address of type AF_UNSPEC.
 */
int/*BOOL*/
keyacc_amatch(
	const sockaddr_u *	a1,
	const sockaddr_u *	a2,
	unsigned int		mbits
	)
{
	const uint8_t * pm1;
	const uint8_t * pm2;
	uint8_t         msk;
	unsigned int    len;

	/* 1st check: If any address is not an address, it's inequal. */
	if ( !a1 || (AF_UNSPEC == AF(a1)) ||
	     !a2 || (AF_UNSPEC == AF(a2))  )
		return FALSE;

	/* We could check pointers for equality here and shortcut the
	 * other checks if we find object identity. But that use case is
	 * too rare to care for it.
	 */
	
	/* 2nd check: Address families must be the same. */
	if (AF(a1) != AF(a2))
		return FALSE;

	/* type check: address family determines buffer & size */
	switch (AF(a1)) {
	case AF_INET:
		/* IPv4 is easy: clamp size, get byte pointers */
		if (mbits > sizeof(NSRCADR(a1)) * 8)
			mbits = sizeof(NSRCADR(a1)) * 8;
		pm1 = (const void*)&NSRCADR(a1);
		pm2 = (const void*)&NSRCADR(a2);
		break;

	case AF_INET6:
		/* IPv6 is slightly different: Both scopes must match,
		 * too, before we even consider doing a match!
		 */
		if ( ! SCOPE_EQ(a1, a2))
			return FALSE;
		if (mbits > sizeof(NSRCADR6(a1)) * 8)
			mbits = sizeof(NSRCADR6(a1)) * 8;
		pm1 = (const void*)&NSRCADR6(a1);
		pm2 = (const void*)&NSRCADR6(a2);
		break;

	default:
		/* don't know how to compare that!?! */
		return FALSE;
	}

	/* Split bit length into byte length and partial byte mask.
	 * Note that the byte mask extends from the MSB of a byte down,
	 * and that zero shift (--> mbits % 8 == 0) results in an
	 * all-zero mask.
	 */
	msk = 0xFFu ^ (0xFFu >> (mbits & 7));
	len = mbits >> 3;

	/* 3rd check: Do memcmp() over full bytes, if any */
	if (len && memcmp(pm1, pm2, len))
		return FALSE;

	/* 4th check: compare last incomplete byte, if any */
	if (msk && ((pm1[len] ^ pm2[len]) & msk))
		return FALSE;

	/* If none of the above failed, we're successfully through. */
	return TRUE;
}

/*
 * init_auth - initialize internal data
 */
void
init_auth(void)
{
	size_t newalloc;

	/*
	 * Initialize hash table and free list
	 */
	newalloc = authhashbuckets * sizeof(key_hash[0]);

	key_hash = erealloc(key_hash, newalloc);
	memset(key_hash, '\0', newalloc);

	INIT_DLIST(key_listhead, llink);

#ifdef DEBUG
	atexit(&free_auth_mem);
#endif
}


/*
 * free_auth_mem - assist in leak detection by freeing all dynamic
 *		   allocations from this module.
 */
#ifdef DEBUG
static void
free_auth_mem(void)
{
	symkey *	sk;
	symkey_alloc *	alloc;
	symkey_alloc *	next_alloc;

	while (NULL != (sk = HEAD_DLIST(key_listhead, llink))) {
		freesymkey(sk);
	}
	free(key_hash);
	key_hash = NULL;
	cache_keyid = 0;
	cache_flags = 0;
	cache_keyacclist = NULL;
	for (alloc = authallocs; alloc != NULL; alloc = next_alloc) {
		next_alloc = alloc->link;
		free(alloc->mem);	
	}
	authfreekeys = NULL;
	authnumfreekeys = 0;
}
#endif	/* DEBUG */


/*
 * auth_moremem - get some more free key structures
 */
void
auth_moremem(
	int	keycount
	)
{
	symkey *	sk;
	int		i;
#ifdef DEBUG
	void *		base;
	symkey_alloc *	allocrec;
# define MOREMEM_EXTRA_ALLOC	(sizeof(*allocrec))
#else
# define MOREMEM_EXTRA_ALLOC	(0)
#endif

	i = (keycount > 0)
		? keycount
		: MEMINC;
	sk = eallocarrayxz(i, sizeof(*sk), MOREMEM_EXTRA_ALLOC);
#ifdef DEBUG
	base = sk;
#endif
	authnumfreekeys += i;

	for (; i > 0; i--, sk++) {
		LINK_SLIST(authfreekeys, sk, llink.f);
	}

#ifdef DEBUG
	allocrec = (void *)sk;
	allocrec->mem = base;
	LINK_SLIST(authallocs, allocrec, link);
#endif
}


/*
 * auth_prealloc_symkeys
 */
void
auth_prealloc_symkeys(
	int	keycount
	)
{
	int	allocated;
	int	additional;

	allocated = authnumkeys + authnumfreekeys;
	additional = keycount - allocated;
	if (additional > 0)
		auth_moremem(additional);
	auth_resize_hashtable();
}


static u_short
auth_log2(size_t x)
{
	/*
	** bithack to calculate floor(log2(x))
	**
	** This assumes
	**   - (sizeof(size_t) is a power of two
	**   - CHAR_BITS is a power of two
	**   - returning zero for arguments <= 0 is OK.
	**
	** Does only shifts, masks and sums in integer arithmetic in
	** log2(CHAR_BIT*sizeof(size_t)) steps. (that is, 5/6 steps for
	** 32bit/64bit size_t)
	*/
	int	s;
	int	r = 0;
	size_t  m = ~(size_t)0;

	for (s = sizeof(size_t) / 2 * CHAR_BIT; s != 0; s >>= 1) {
		m <<= s;
		if (x & m)
			r += s;
		else
			x <<= s;
	}
	return (u_short)r;
}

int/*BOOL*/
ipaddr_match_masked(const sockaddr_u *,const sockaddr_u *,
		    unsigned int mbits);

static void
authcache_flush_id(
	keyid_t id
	)
{
	if (cache_keyid == id) {
		cache_keyid = 0;
		cache_type = 0;
		cache_flags = 0;
		cache_secret = NULL;
		cache_secretsize = 0;
		cache_keyacclist = NULL;
	}
}


/*
 * auth_resize_hashtable
 *
 * Size hash table to average 4 or fewer entries per bucket initially,
 * within the bounds of at least 4 and no more than 15 bits for the hash
 * table index.  Populate the hash table.
 */
static void
auth_resize_hashtable(void)
{
	u_long		totalkeys;
	u_short		hashbits;
	u_short		hash;
	size_t		newalloc;
	symkey *	sk;

	totalkeys = authnumkeys + authnumfreekeys;
	hashbits = auth_log2(totalkeys / 4) + 1;
	hashbits = max(4, hashbits);
	hashbits = min(15, hashbits);

	authhashbuckets = 1 << hashbits;
	authhashmask = authhashbuckets - 1;
	newalloc = authhashbuckets * sizeof(key_hash[0]);

	key_hash = erealloc(key_hash, newalloc);
	memset(key_hash, '\0', newalloc);

	ITER_DLIST_BEGIN(key_listhead, sk, llink, symkey)
		hash = KEYHASH(sk->keyid);
		LINK_SLIST(key_hash[hash], sk, hlink);
	ITER_DLIST_END()
}


/*
 * allocsymkey - common code to allocate and link in symkey
 *
 * secret must be allocated with a free-compatible allocator.  It is
 * owned by the referring symkey structure, and will be free()d by
 * freesymkey().
 */
static void
allocsymkey(
	keyid_t		id,
	u_short		flags,
	u_short		type,
	u_long		lifetime,
	size_t		secretsize,
	u_char *	secret,
	KeyAccT *	ka
	)
{
	symkey *	sk;
	symkey **	bucket;

	bucket = &key_hash[KEYHASH(id)];


	if (authnumfreekeys < 1)
		auth_moremem(-1);
	UNLINK_HEAD_SLIST(sk, authfreekeys, llink.f);
	DEBUG_ENSURE(sk != NULL);
	sk->keyid = id;
	sk->flags = flags;
	sk->type = type;
	sk->secretsize = secretsize;
	sk->secret = secret;
	sk->keyacclist = ka;
	sk->lifetime = lifetime;
	LINK_SLIST(*bucket, sk, hlink);
	LINK_TAIL_DLIST(key_listhead, sk, llink);
	authnumfreekeys--;
	authnumkeys++;
}


/*
 * freesymkey - common code to remove a symkey and recycle its entry.
 */
static void
freesymkey(
	symkey *	sk
	)
{
	symkey **	bucket;
	symkey *	unlinked;

	if (NULL == sk)
		return;

	authcache_flush_id(sk->keyid);
	keyacc_all_free(sk->keyacclist);
	
	bucket = &key_hash[KEYHASH(sk->keyid)];
	if (sk->secret != NULL) {
		memset(sk->secret, '\0', sk->secretsize);
		free(sk->secret);
	}
	UNLINK_SLIST(unlinked, *bucket, sk, hlink, symkey);
	DEBUG_ENSURE(sk == unlinked);
	UNLINK_DLIST(sk, llink);
	memset((char *)sk + offsetof(symkey, symkey_payload), '\0',
	       sizeof(*sk) - offsetof(symkey, symkey_payload));
	LINK_SLIST(authfreekeys, sk, llink.f);
	authnumkeys--;
	authnumfreekeys++;
}


/*
 * auth_findkey - find a key in the hash table
 */
struct savekey *
auth_findkey(
	keyid_t		id
	)
{
	symkey *	sk;

	for (sk = key_hash[KEYHASH(id)]; sk != NULL; sk = sk->hlink)
		if (id == sk->keyid)
			return sk;
	return NULL;
}


/*
 * auth_havekey - return TRUE if the key id is zero or known. The
 * key needs not to be trusted.
 */
int
auth_havekey(
	keyid_t		id
	)
{
	return
	    (0           == id) ||
	    (cache_keyid == id) ||
	    (NULL        != auth_findkey(id));
}


/*
 * authhavekey - return TRUE and cache the key, if zero or both known
 *		 and trusted.
 */
int
authhavekey(
	keyid_t		id
	)
{
	symkey *	sk;

	authkeylookups++;
	if (0 == id || cache_keyid == id)
		return !!(KEY_TRUSTED & cache_flags);

	/*
	 * Search the bin for the key. If not found, or found but the key
	 * type is zero, somebody marked it trusted without specifying a
	 * key or key type. In this case consider the key missing.
	 */
	authkeyuncached++;
	sk = auth_findkey(id);
	if ((sk == NULL) || (sk->type == 0)) {
		authkeynotfound++;
		return FALSE;
	}

	/*
	 * If the key is not trusted, the key is not considered found.
	 */
	if ( ! (KEY_TRUSTED & sk->flags)) {
		authnokey++;
		return FALSE;
	}

	/*
	 * The key is found and trusted. Initialize the key cache.
	 */
	cache_keyid = sk->keyid;
	cache_type = sk->type;
	cache_flags = sk->flags;
	cache_secret = sk->secret;
	cache_secretsize = sk->secretsize;
	cache_keyacclist = sk->keyacclist;

	return TRUE;
}


/*
 * authtrust - declare a key to be trusted/untrusted
 */
void
authtrust(
	keyid_t		id,
	u_long		trust
	)
{
	symkey *	sk;
	u_long		lifetime;

	/*
	 * Search bin for key; if it does not exist and is untrusted,
	 * forget it.
	 */

	sk = auth_findkey(id);
	if (!trust && sk == NULL)
		return;

	/*
	 * There are two conditions remaining. Either it does not
	 * exist and is to be trusted or it does exist and is or is
	 * not to be trusted.
	 */	
	if (sk != NULL) {
		/*
		 * Key exists. If it is to be trusted, say so and update
		 * its lifetime. If no longer trusted, return it to the
		 * free list. Flush the cache first to be sure there are
		 * no discrepancies.
		 */
		authcache_flush_id(id);
		if (trust > 0) {
			sk->flags |= KEY_TRUSTED;
			if (trust > 1)
				sk->lifetime = current_time + trust;
			else
				sk->lifetime = 0;
		} else {
			freesymkey(sk);
		}
		return;
	}

	/*
	 * keyid is not present, but the is to be trusted.  We allocate
	 * a new key, but do not specify a key type or secret.
	 */
	if (trust > 1) {
		lifetime = current_time + trust;
	} else {
		lifetime = 0;
	}
	allocsymkey(id, KEY_TRUSTED, 0, lifetime, 0, NULL, NULL);
}


/*
 * authistrusted - determine whether a key is trusted
 */
int
authistrusted(
	keyid_t		id
	)
{
	symkey *	sk;

	if (id == cache_keyid)
		return !!(KEY_TRUSTED & cache_flags);

	authkeyuncached++;
	sk = auth_findkey(id);
	if (sk == NULL || !(KEY_TRUSTED & sk->flags)) {
		authkeynotfound++;
		return FALSE;
	}
	return TRUE;
}


/*
 * authistrustedip - determine if the IP is OK for the keyid
 */
 int
 authistrustedip(
 	keyid_t		keyno,
	sockaddr_u *	sau
	)
{
	symkey *	sk;

	if (keyno == cache_keyid) {
		return (KEY_TRUSTED & cache_flags) &&
		    keyacc_contains(cache_keyacclist, sau, TRUE);
	}

	if (NULL != (sk = auth_findkey(keyno))) {
		authkeyuncached++;
		return (KEY_TRUSTED & sk->flags) &&
		    keyacc_contains(sk->keyacclist, sau, TRUE);
	}
	
	authkeynotfound++;
	return FALSE;    
}

/* Note: There are two locations below where 'strncpy()' is used. While
 * this function is a hazard by itself, it's essential that it is used
 * here. Bug 1243 involved that the secret was filled with NUL bytes
 * after the first NUL encountered, and 'strlcpy()' simply does NOT have
 * this behaviour. So disabling the fix and reverting to the buggy
 * behaviour due to compatibility issues MUST also fill with NUL and
 * this needs 'strncpy'. Also, the secret is managed as a byte blob of a
 * given size, and eventually truncating it and replacing the last byte
 * with a NUL would be a bug.
 * perlinger@ntp.org 2015-10-10
 */
void
MD5auth_setkey(
	keyid_t keyno,
	int	keytype,
	const u_char *key,
	size_t secretsize,
	KeyAccT *ka
	)
{
	symkey *	sk;
	u_char *	secret;
	
	DEBUG_ENSURE(keytype <= USHRT_MAX);
	DEBUG_ENSURE(secretsize < 4 * 1024);
	/*
	 * See if we already have the key.  If so just stick in the
	 * new value.
	 */
	sk = auth_findkey(keyno);
	if (sk != NULL && keyno == sk->keyid) {
			/* TALOS-CAN-0054: make sure we have a new buffer! */
		if (NULL != sk->secret) {
			memset(sk->secret, 0, sk->secretsize);
			free(sk->secret);
		}
		sk->secret = emalloc(secretsize + 1);
		sk->type = (u_short)keytype;
		sk->secretsize = secretsize;
		/* make sure access lists don't leak here! */
		if (ka != sk->keyacclist) {
			keyacc_all_free(sk->keyacclist);
			sk->keyacclist = ka;
		}
#ifndef DISABLE_BUG1243_FIX
		memcpy(sk->secret, key, secretsize);
#else
		/* >MUST< use 'strncpy()' here! See above! */
		strncpy((char *)sk->secret, (const char *)key,
			secretsize);
#endif
		authcache_flush_id(keyno);
		return;
	}

	/*
	 * Need to allocate new structure.  Do it.
	 */
	secret = emalloc(secretsize + 1);
#ifndef DISABLE_BUG1243_FIX
	memcpy(secret, key, secretsize);
#else
	/* >MUST< use 'strncpy()' here! See above! */
	strncpy((char *)secret, (const char *)key, secretsize);
#endif
	allocsymkey(keyno, 0, (u_short)keytype, 0,
		    secretsize, secret, ka);
#ifdef DEBUG
	if (debug >= 4) {
		size_t	j;

		printf("auth_setkey: key %d type %d len %d ", (int)keyno,
		    keytype, (int)secretsize);
		for (j = 0; j < secretsize; j++) {
			printf("%02x", secret[j]);
		}
		printf("\n");
	}	
#endif
}


/*
 * auth_delkeys - delete non-autokey untrusted keys, and clear all info
 *                except the trusted bit of non-autokey trusted keys, in
 *		  preparation for rereading the keys file.
 */
void
auth_delkeys(void)
{
	symkey *	sk;

	ITER_DLIST_BEGIN(key_listhead, sk, llink, symkey)
		if (sk->keyid > NTP_MAXKEY) {	/* autokey */
			continue;
		}

		/*
		 * Don't lose info as to which keys are trusted. Make
		 * sure there are no dangling pointers!
		 */
		if (KEY_TRUSTED & sk->flags) {
			if (sk->secret != NULL) {
				memset(sk->secret, 0, sk->secretsize);
				free(sk->secret);
				sk->secret = NULL; /* TALOS-CAN-0054 */
			}
			sk->keyacclist = keyacc_all_free(sk->keyacclist);
			sk->secretsize = 0;
			sk->lifetime = 0;
		} else {
			freesymkey(sk);
		}
	ITER_DLIST_END()
}


/*
 * auth_agekeys - delete keys whose lifetimes have expired
 */
void
auth_agekeys(void)
{
	symkey *	sk;

	ITER_DLIST_BEGIN(key_listhead, sk, llink, symkey)
		if (sk->lifetime > 0 && current_time > sk->lifetime) {
			freesymkey(sk);
			authkeyexpired++;
		}
	ITER_DLIST_END()
	DPRINTF(1, ("auth_agekeys: at %lu keys %lu expired %lu\n",
		    current_time, authnumkeys, authkeyexpired));
}


/*
 * authencrypt - generate message authenticator
 *
 * Returns length of authenticator field, zero if key not found.
 */
size_t
authencrypt(
	keyid_t		keyno,
	u_int32 *	pkt,
	size_t		length
	)
{
	/*
	 * A zero key identifier means the sender has not verified
	 * the last message was correctly authenticated. The MAC
	 * consists of a single word with value zero.
	 */
	authencryptions++;
	pkt[length / 4] = htonl(keyno);
	if (0 == keyno) {
		return 4;
	}
	if (!authhavekey(keyno)) {
		return 0;
	}

	return MD5authencrypt(cache_type,
			      cache_secret, cache_secretsize,
			      pkt, length);
}


/*
 * authdecrypt - verify message authenticator
 *
 * Returns TRUE if authenticator valid, FALSE if invalid or not found.
 */
int
authdecrypt(
	keyid_t		keyno,
	u_int32 *	pkt,
	size_t		length,
	size_t		size
	)
{
	/*
	 * A zero key identifier means the sender has not verified
	 * the last message was correctly authenticated.  For our
	 * purpose this is an invalid authenticator.
	 */
	authdecryptions++;
	if (0 == keyno || !authhavekey(keyno) || size < 4) {
		return FALSE;
	}

	return MD5authdecrypt(cache_type,
			      cache_secret, cache_secretsize,
			      pkt, length, size);
}