/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Top users/processes display for Unix
* Version 3
*/
/*
* This file contains various handy utilities used by top.
*/
#include "os.h"
#include <ctype.h>
#include <math.h>
#ifdef HAVE_STDARG_H
#include <stdarg.h>
#else
#undef DEBUG
#endif
#include "top.h"
#include "utils.h"
static int
alldigits(char *s)
{
int ch;
while ((ch = *s++) != '\0')
{
if (!isdigit(ch))
{
return 0;
}
}
return 1;
}
int
atoiwi(char *str)
{
register int len;
len = strlen(str);
if (len != 0)
{
if (strncmp(str, "infinity", len) == 0 ||
strncmp(str, "all", len) == 0 ||
strncmp(str, "maximum", len) == 0)
{
return(Infinity);
}
else if (alldigits(str))
{
return(atoi(str));
}
else
{
return(Invalid);
}
}
return(0);
}
/*
* itoa - convert integer (decimal) to ascii string for positive numbers
* only (we don't bother with negative numbers since we know we
* don't use them).
*/
/*
* How do we know that 16 will suffice?
* Because the biggest number that we will
* ever convert will be 2^32-1, which is 10
* digits.
*/
char *
itoa(int val)
{
register char *ptr;
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
ptr = buffer + sizeof(buffer);
*--ptr = '\0';
if (val == 0)
{
*--ptr = '0';
}
else while (val != 0)
{
*--ptr = (val % 10) + '0';
val /= 10;
}
return(ptr);
}
/*
* itoa7(val) - like itoa, except the number is right justified in a 7
* character field. This code is a duplication of itoa instead of
* a front end to a more general routine for efficiency.
*/
char *
itoa_w(int val, int w)
{
char *ptr;
char *eptr;
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
if (w > 15)
{
w = 15;
}
eptr = ptr = buffer + sizeof(buffer);
*--ptr = '\0';
if (val == 0)
{
*--ptr = '0';
}
else while (val != 0)
{
*--ptr = (val % 10) + '0';
val /= 10;
}
while (ptr >= eptr - w)
{
*--ptr = ' ';
}
return(ptr);
}
char *
itoa7(int val)
{
return itoa_w(val, 7);
}
/*
* digits(val) - return number of decimal digits in val. Only works for
* positive numbers. If val < 0 then digits(val) == 0, but
* digits(0) == 1.
*/
int
digits(int val)
{
register int cnt = 0;
if (val == 0)
{
return 1;
}
while (val > 0)
{
cnt++;
val /= 10;
}
return(cnt);
}
/*
* printable(char *str) - make the string pointed to by "str" into one that is
* printable (i.e.: all ascii), by converting all non-printable
* characters into '?'. Replacements are done in place and a pointer
* to the original buffer is returned.
*/
char *
printable(char *str)
{
register char *ptr;
register int ch;
ptr = str;
while ((ch = *ptr) != '\0')
{
if (!isprint(ch))
{
*ptr = '?';
}
ptr++;
}
return(str);
}
/*
* strcpyend(to, from) - copy string "from" into "to" and return a pointer
* to the END of the string "to".
*/
char *
strcpyend(char *to, const char *from)
{
while ((*to++ = *from++) != '\0');
return(--to);
}
/*
* char *
* homogenize(const char *str)
*
* Remove unwanted characters from "str" and make everything lower case.
* Newly allocated string is returned: the original is not altered.
*/
char *homogenize(const char *str)
{
char *ans;
char *fr;
char *to;
int ch;
to = fr = ans = estrdup(str);
while ((ch = *fr++) != '\0')
{
if (isalnum(ch))
{
*to++ = tolower(ch);
}
}
*to = '\0';
return ans;
}
/*
* string_index(string, array) - find string in array and return index
*/
int
string_index(const char *string, const char **array)
{
register int i = 0;
while (*array != NULL)
{
if (strcmp(string, *array) == 0)
{
return(i);
}
array++;
i++;
}
return(-1);
}
/*
* char *string_list(char **strings)
*
* Create a comma-separated list of the strings in the NULL-terminated
* "strings". Returned string is malloc-ed and should be freed when the
* caller is done. Note that this is not an efficient function.
*/
char *string_list(const char **strings)
{
int cnt = 0;
const char **pp;
const char *p;
char *result = NULL;
char *resp = NULL;
pp = strings;
while ((p = *pp++) != NULL)
{
cnt += strlen(p) + 2;
}
if (cnt > 0)
{
resp = result = emalloc(cnt);
pp = strings;
while ((p = *pp++) != NULL)
{
resp = strcpyend(resp, p);
if (*pp != NULL)
{
resp = strcpyend(resp, ", ");
}
}
}
return result;
}
/*
* argparse(line, cntp) - parse arguments in string "line", separating them
* out into an argv-like array, and setting *cntp to the number of
* arguments encountered. This is a simple parser that doesn't understand
* squat about quotes.
*/
char **
argparse(char *line, int *cntp)
{
register char *from;
register char *to;
register int cnt;
register int ch;
int length;
int lastch;
register char **argv;
char **argarray;
char *args;
/* unfortunately, the only real way to do this is to go thru the
input string twice. */
/* step thru the string counting the white space sections */
from = line;
lastch = cnt = length = 0;
while ((ch = *from++) != '\0')
{
length++;
if (ch == ' ' && lastch != ' ')
{
cnt++;
}
lastch = ch;
}
/* add three to the count: one for the initial "dummy" argument,
one for the last argument and one for NULL */
cnt += 3;
/* allocate a char * array to hold the pointers */
argarray = emalloc(cnt * sizeof(char *));
/* allocate another array to hold the strings themselves */
args = emalloc(length+2);
/* initialization for main loop */
from = line;
to = args;
argv = argarray;
lastch = '\0';
/* create a dummy argument to keep getopt happy */
*argv++ = to;
*to++ = '\0';
cnt = 2;
/* now build argv while copying characters */
*argv++ = to;
while ((ch = *from++) != '\0')
{
if (ch != ' ')
{
if (lastch == ' ')
{
*to++ = '\0';
*argv++ = to;
cnt++;
}
*to++ = ch;
}
lastch = ch;
}
*to++ = '\0';
/* set cntp and return the allocated array */
*cntp = cnt;
return(argarray);
}
/*
* percentages(cnt, out, new, old, diffs) - calculate percentage change
* between array "old" and "new", putting the percentages i "out".
* "cnt" is size of each array and "diffs" is used for scratch space.
* The array "old" is updated on each call.
* The routine assumes modulo arithmetic. This function is especially
* useful on BSD mchines for calculating cpu state percentages.
*/
long
percentages(int cnt, int *out, long *new, long *old, long *diffs)
{
register int i;
register long change;
register long total_change;
register long *dp;
long half_total;
/* initialization */
total_change = 0;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++)
{
if ((change = *new - *old) < 0)
{
/* this only happens when the counter wraps */
change = (int)
((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
{
total_change = 1;
}
/* calculate percentages based on overall change, rounding up */
half_total = total_change / 2l;
for (i = 0; i < cnt; i++)
{
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}
/* return the total in case the caller wants to use it */
return(total_change);
}
/*
* errmsg(errnum) - return an error message string appropriate to the
* error number "errnum". This is a substitute for the System V
* function "strerror". There appears to be no reliable way to
* determine if "strerror" exists at compile time, so I make do
* by providing something of similar functionality. For those
* systems that have strerror and NOT errlist, define
* -DHAVE_STRERROR in the module file and this function will
* use strerror.
*/
/* externs referenced by errmsg */
#ifndef HAVE_STRERROR
#if !HAVE_DECL_SYS_ERRLIST
extern char *sys_errlist[];
#endif
extern int sys_nerr;
#endif
const char *
errmsg(int errnum)
{
#ifdef HAVE_STRERROR
char *msg = strerror(errnum);
if (msg != NULL)
{
return msg;
}
#else
if (errnum > 0 && errnum < sys_nerr)
{
return((char *)(sys_errlist[errnum]));
}
#endif
return("No error");
}
/* format_percent(v) - format a double as a percentage in a manner that
* does not exceed 5 characters (excluding any trailing
* percent sign). Since it is possible for the value
* to exceed 100%, we format such values with no fractional
* component to fit within the 5 characters.
*/
char *
format_percent(double v)
{
static char result[10];
/* enumerate the possibilities */
if (v < 0 || v >= 100000.)
{
/* we dont want to try extreme values */
strcpy(result, " ???");
}
else if (v > 99.99)
{
sprintf(result, "%5.0f", v);
}
else
{
sprintf(result, "%5.2f", v);
}
return result;
}
/* format_time(seconds) - format number of seconds into a suitable
* display that will fit within 6 characters. Note that this
* routine builds its string in a static area. If it needs
* to be called more than once without overwriting previous data,
* then we will need to adopt a technique similar to the
* one used for format_k.
*/
/* Explanation:
We want to keep the output within 6 characters. For low values we use
the format mm:ss. For values that exceed 999:59, we switch to a format
that displays hours and fractions: hhh.tH. For values that exceed
999.9, we use hhhh.t and drop the "H" designator. For values that
exceed 9999.9, we use "???".
*/
char *
format_time(long seconds)
{
static char result[10];
/* sanity protection */
if (seconds < 0 || seconds > (99999l * 360l))
{
strcpy(result, " ???");
}
else if (seconds >= (1000l * 60l))
{
/* alternate (slow) method displaying hours and tenths */
sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
/* It is possible that the sprintf took more than 6 characters.
If so, then the "H" appears as result[6]. If not, then there
is a \0 in result[6]. Either way, it is safe to step on.
*/
result[6] = '\0';
}
else
{
/* standard method produces MMM:SS */
/* we avoid printf as must as possible to make this quick */
sprintf(result, "%3ld:%02ld", seconds / 60l, seconds % 60l);
}
return(result);
}
/*
* format_k(amt) - format a kilobyte memory value, returning a string
* suitable for display. Returns a pointer to a static
* area that changes each call. "amt" is converted to a
* string with a trailing "K". If "amt" is 10000 or greater,
* then it is formatted as megabytes (rounded) with a
* trailing "M".
*/
/*
* Compromise time. We need to return a string, but we don't want the
* caller to have to worry about freeing a dynamically allocated string.
* Unfortunately, we can't just return a pointer to a static area as one
* of the common uses of this function is in a large call to sprintf where
* it might get invoked several times. Our compromise is to maintain an
* array of strings and cycle thru them with each invocation. We make the
* array large enough to handle the above mentioned case. The constant
* NUM_STRINGS defines the number of strings in this array: we can tolerate
* up to NUM_STRINGS calls before we start overwriting old information.
* Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
* to convert the modulo operation into something quicker. What a hack!
*/
#define NUM_STRINGS 8
char *
format_k(long amt)
{
static char retarray[NUM_STRINGS][16];
static int idx = 0;
register char *ret;
register char tag = 'K';
ret = retarray[idx];
idx = (idx + 1) % NUM_STRINGS;
if (amt >= 10000)
{
amt = (amt + 512) / 1024;
tag = 'M';
if (amt >= 10000)
{
amt = (amt + 512) / 1024;
tag = 'G';
}
}
snprintf(ret, sizeof(retarray[idx])-1, "%ld%c", amt, tag);
return(ret);
}
/*
* Time keeping functions.
*/
static struct timeval lasttime = { 0, 0 };
static unsigned int elapsed_msecs = 0;
void
time_get(struct timeval *tv)
{
/* get the current time */
#ifdef HAVE_GETTIMEOFDAY
gettimeofday(tv, NULL);
#else
tv->tv_sec = (long)time(NULL);
tv->tv_usec = 0;
#endif
}
void
time_mark(struct timeval *tv)
{
struct timeval thistime;
struct timeval timediff;
/* if the caller didnt provide one then use our own */
if (tv == NULL)
{
tv = &thistime;
}
/* get the current time */
#ifdef HAVE_GETTIMEOFDAY
gettimeofday(tv, NULL);
#else
tv->tv_sec = (long)time(NULL);
tv->tv_usec = 0;
#endif
/* calculate the difference */
timediff.tv_sec = tv->tv_sec - lasttime.tv_sec;
timediff.tv_usec = tv->tv_usec - lasttime.tv_usec;
if (timediff.tv_usec < 0) {
timediff.tv_sec--;
timediff.tv_usec += 1000000;
}
/* convert to milliseconds */
elapsed_msecs = timediff.tv_sec * 1000 + timediff.tv_usec / 1000;
if (elapsed_msecs == 0)
{
elapsed_msecs = 1;
}
/* save for next time */
lasttime = *tv;
}
unsigned int
time_elapsed()
{
return elapsed_msecs;
}
unsigned int
diff_per_second(unsigned int x, unsigned int y)
{
return (y > x ? UINT_MAX - y + x + 1 : x - y) * 1000 / elapsed_msecs;
}
void
double2tv(struct timeval *tv, double d)
{
double di;
di = floor(d);
tv->tv_sec = (time_t)di;
tv->tv_usec = (int)ceil((d - di) * 1000000.0);
}
static int debug_on = 0;
#ifdef DEBUG
FILE *debugfile;
#endif
void
debug_set(int i)
{
debug_on = i;
#ifdef DEBUG
debugfile = fopen("/tmp/top.debug", "w");
#endif
}
#ifdef DEBUG
void
xdprintf(char *fmt, ...)
{
va_list argp;
va_start(argp, fmt);
if (debug_on)
{
vfprintf(debugfile, fmt, argp);
fflush(debugfile);
}
va_end(argp);
}
#endif