Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/*
 * Copyright (c) 1984 through 2008, William LeFebvre
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 * 
 *     * Neither the name of William LeFebvre nor the names of other
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 *  Top users/processes display for Unix
 *  Version 3
 */

/*
 *  This file contains various handy utilities used by top.
 */

#include "os.h"
#include <ctype.h>
#include <math.h>
#ifdef HAVE_STDARG_H
#include <stdarg.h>
#else
#undef DEBUG
#endif
#include "top.h"
#include "utils.h"

static int
alldigits(char *s)

{
    int ch;

    while ((ch = *s++) != '\0')
    {
	if (!isdigit(ch))
	{
	    return 0;
	}
    }
    return 1;
}

int
atoiwi(char *str)

{
    register int len;

    len = strlen(str);
    if (len != 0)
    {
	if (strncmp(str, "infinity", len) == 0 ||
	    strncmp(str, "all",      len) == 0 ||
	    strncmp(str, "maximum",  len) == 0)
	{
	    return(Infinity);
	}
	else if (alldigits(str))
	{
	    return(atoi(str));
	}
	else
	{
	    return(Invalid);
	}
    }
    return(0);
}

/*
 *  itoa - convert integer (decimal) to ascii string for positive numbers
 *  	   only (we don't bother with negative numbers since we know we
 *	   don't use them).
 */

				/*
				 * How do we know that 16 will suffice?
				 * Because the biggest number that we will
				 * ever convert will be 2^32-1, which is 10
				 * digits.
				 */

char *
itoa(int val)

{
    register char *ptr;
    static char buffer[16];	/* result is built here */
    				/* 16 is sufficient since the largest number
				   we will ever convert will be 2^32-1,
				   which is 10 digits. */

    ptr = buffer + sizeof(buffer);
    *--ptr = '\0';
    if (val == 0)
    {
	*--ptr = '0';
    }
    else while (val != 0)
    {
	*--ptr = (val % 10) + '0';
	val /= 10;
    }
    return(ptr);
}

/*
 *  itoa7(val) - like itoa, except the number is right justified in a 7
 *	character field.  This code is a duplication of itoa instead of
 *	a front end to a more general routine for efficiency.
 */

char *
itoa_w(int val, int w)

{
    char *ptr;
    char *eptr;
    static char buffer[16];	/* result is built here */
    				/* 16 is sufficient since the largest number
				   we will ever convert will be 2^32-1,
				   which is 10 digits. */

    if (w > 15)
    {
	w = 15;
    }
    eptr = ptr = buffer + sizeof(buffer);
    *--ptr = '\0';
    if (val == 0)
    {
	*--ptr = '0';
    }
    else while (val != 0)
    {
	*--ptr = (val % 10) + '0';
	val /= 10;
    }
    while (ptr >= eptr - w)
    {
	*--ptr = ' ';
    }
    return(ptr);
}

char *
itoa7(int val)

{
    return itoa_w(val, 7);
}

/*
 *  digits(val) - return number of decimal digits in val.  Only works for
 *	positive numbers.  If val < 0 then digits(val) == 0, but
 *      digits(0) == 1.
 */

int
digits(int val)

{
    register int cnt = 0;

    if (val == 0)
    {
	return 1;
    }
    while (val > 0)
    {
	cnt++;
	val /= 10;
    }
    return(cnt);
}

/*
 *  printable(char *str) - make the string pointed to by "str" into one that is
 *	printable (i.e.: all ascii), by converting all non-printable
 *	characters into '?'.  Replacements are done in place and a pointer
 *	to the original buffer is returned.
 */

char *
printable(char *str)

{
    register char *ptr;
    register int ch;

    ptr = str;
    while ((ch = *ptr) != '\0')
    {
	if (!isprint(ch))
	{
	    *ptr = '?';
	}
	ptr++;
    }
    return(str);
}

/*
 *  strcpyend(to, from) - copy string "from" into "to" and return a pointer
 *	to the END of the string "to".
 */

char *
strcpyend(char *to, const char *from)

{
    while ((*to++ = *from++) != '\0');
    return(--to);
}

/*
 * char *
 * homogenize(const char *str)
 *
 * Remove unwanted characters from "str" and make everything lower case.
 * Newly allocated string is returned: the original is not altered.
 */

char *homogenize(const char *str)

{
    char *ans;
    char *fr;
    char *to;
    int ch;

    to = fr = ans = estrdup(str);
    while ((ch = *fr++) != '\0')
    {
	if (isalnum(ch))
	{
	    *to++ = tolower(ch);
	}
    }

    *to = '\0';
    return ans;
}

/*
 * string_index(string, array) - find string in array and return index
 */

int
string_index(const char *string, const char **array)

{
    register int i = 0;

    while (*array != NULL)
    {
	if (strcmp(string, *array) == 0)
	{
	    return(i);
	}
	array++;
	i++;
    }
    return(-1);
}

/*
 * char *string_list(char **strings)
 *
 * Create a comma-separated list of the strings in the NULL-terminated
 * "strings".  Returned string is malloc-ed and should be freed when the
 * caller is done.  Note that this is not an efficient function.
 */

char *string_list(const char **strings)

{
    int cnt = 0;
    const char **pp;
    const char *p;
    char *result = NULL;
    char *resp = NULL;

    pp = strings;
    while ((p = *pp++) != NULL)
    {
	cnt += strlen(p) + 2;
    }

    if (cnt > 0)
    {
	resp = result = emalloc(cnt);
	pp = strings;
	while ((p = *pp++) != NULL)
	{
	    resp = strcpyend(resp, p);
	    if (*pp != NULL)
	    {
		resp = strcpyend(resp, ", ");
	    }
	}
    }

    return result;
}

/*
 * argparse(line, cntp) - parse arguments in string "line", separating them
 *	out into an argv-like array, and setting *cntp to the number of
 *	arguments encountered.  This is a simple parser that doesn't understand
 *	squat about quotes.
 */

char **
argparse(char *line, int *cntp)

{
    register char *from;
    register char *to;
    register int cnt;
    register int ch;
    int length;
    int lastch;
    register char **argv;
    char **argarray;
    char *args;

    /* unfortunately, the only real way to do this is to go thru the
       input string twice. */

    /* step thru the string counting the white space sections */
    from = line;
    lastch = cnt = length = 0;
    while ((ch = *from++) != '\0')
    {
	length++;
	if (ch == ' ' && lastch != ' ')
	{
	    cnt++;
	}
	lastch = ch;
    }

    /* add three to the count:  one for the initial "dummy" argument,
       one for the last argument and one for NULL */
    cnt += 3;

    /* allocate a char * array to hold the pointers */
    argarray = emalloc(cnt * sizeof(char *));

    /* allocate another array to hold the strings themselves */
    args = emalloc(length+2);

    /* initialization for main loop */
    from = line;
    to = args;
    argv = argarray;
    lastch = '\0';

    /* create a dummy argument to keep getopt happy */
    *argv++ = to;
    *to++ = '\0';
    cnt = 2;

    /* now build argv while copying characters */
    *argv++ = to;
    while ((ch = *from++) != '\0')
    {
	if (ch != ' ')
	{
	    if (lastch == ' ')
	    {
		*to++ = '\0';
		*argv++ = to;
		cnt++;
	    }
	    *to++ = ch;
	}
	lastch = ch;
    }
    *to++ = '\0';

    /* set cntp and return the allocated array */
    *cntp = cnt;
    return(argarray);
}

/*
 *  percentages(cnt, out, new, old, diffs) - calculate percentage change
 *	between array "old" and "new", putting the percentages i "out".
 *	"cnt" is size of each array and "diffs" is used for scratch space.
 *	The array "old" is updated on each call.
 *	The routine assumes modulo arithmetic.  This function is especially
 *	useful on BSD mchines for calculating cpu state percentages.
 */

long
percentages(int cnt, int *out, long *new, long *old, long *diffs)

{
    register int i;
    register long change;
    register long total_change;
    register long *dp;
    long half_total;

    /* initialization */
    total_change = 0;
    dp = diffs;

    /* calculate changes for each state and the overall change */
    for (i = 0; i < cnt; i++)
    {
	if ((change = *new - *old) < 0)
	{
	    /* this only happens when the counter wraps */
	    change = (int)
		((unsigned long)*new-(unsigned long)*old);
	}
	total_change += (*dp++ = change);
	*old++ = *new++;
    }

    /* avoid divide by zero potential */
    if (total_change == 0)
    {
	total_change = 1;
    }

    /* calculate percentages based on overall change, rounding up */
    half_total = total_change / 2l;
    for (i = 0; i < cnt; i++)
    {
	*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
    }

    /* return the total in case the caller wants to use it */
    return(total_change);
}

/*
 * errmsg(errnum) - return an error message string appropriate to the
 *           error number "errnum".  This is a substitute for the System V
 *           function "strerror".  There appears to be no reliable way to
 *           determine if "strerror" exists at compile time, so I make do
 *           by providing something of similar functionality.  For those
 *           systems that have strerror and NOT errlist, define
 *           -DHAVE_STRERROR in the module file and this function will
 *           use strerror.
 */

/* externs referenced by errmsg */

#ifndef HAVE_STRERROR
#if !HAVE_DECL_SYS_ERRLIST
extern char *sys_errlist[];
#endif

extern int sys_nerr;
#endif

const char *
errmsg(int errnum)

{
#ifdef HAVE_STRERROR
    char *msg = strerror(errnum);
    if (msg != NULL)
    {
	return msg;
    }
#else
    if (errnum > 0 && errnum < sys_nerr)
    {
	return((char *)(sys_errlist[errnum]));
    }
#endif
    return("No error");
}

/* format_percent(v) - format a double as a percentage in a manner that
 *		does not exceed 5 characters (excluding any trailing
 *		percent sign).  Since it is possible for the value
 *		to exceed 100%, we format such values with no fractional
 *		component to fit within the 5 characters.
 */

char *
format_percent(double v)

{
    static char result[10];

    /* enumerate the possibilities */
    if (v < 0 || v >= 100000.)
    {
	/* we dont want to try extreme values */
	strcpy(result, "  ???");
    }
    else if (v > 99.99)
    {
	sprintf(result, "%5.0f", v);
    }
    else
    {
	sprintf(result, "%5.2f", v);
    }

    return result;
}

/* format_time(seconds) - format number of seconds into a suitable
 *		display that will fit within 6 characters.  Note that this
 *		routine builds its string in a static area.  If it needs
 *		to be called more than once without overwriting previous data,
 *		then we will need to adopt a technique similar to the
 *		one used for format_k.
 */

/* Explanation:
   We want to keep the output within 6 characters.  For low values we use
   the format mm:ss.  For values that exceed 999:59, we switch to a format
   that displays hours and fractions:  hhh.tH.  For values that exceed
   999.9, we use hhhh.t and drop the "H" designator.  For values that
   exceed 9999.9, we use "???".
 */

char *
format_time(long seconds)

{
    static char result[10];

    /* sanity protection */
    if (seconds < 0 || seconds > (99999l * 360l))
    {
	strcpy(result, "   ???");
    }
    else if (seconds >= (1000l * 60l))
    {
	/* alternate (slow) method displaying hours and tenths */
	sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));

	/* It is possible that the sprintf took more than 6 characters.
	   If so, then the "H" appears as result[6].  If not, then there
	   is a \0 in result[6].  Either way, it is safe to step on.
	 */
	result[6] = '\0';
    }
    else
    {
	/* standard method produces MMM:SS */
	/* we avoid printf as must as possible to make this quick */
	sprintf(result, "%3ld:%02ld", seconds / 60l, seconds % 60l);
    }
    return(result);
}

/*
 * format_k(amt) - format a kilobyte memory value, returning a string
 *		suitable for display.  Returns a pointer to a static
 *		area that changes each call.  "amt" is converted to a
 *		string with a trailing "K".  If "amt" is 10000 or greater,
 *		then it is formatted as megabytes (rounded) with a
 *		trailing "M".
 */

/*
 * Compromise time.  We need to return a string, but we don't want the
 * caller to have to worry about freeing a dynamically allocated string.
 * Unfortunately, we can't just return a pointer to a static area as one
 * of the common uses of this function is in a large call to sprintf where
 * it might get invoked several times.  Our compromise is to maintain an
 * array of strings and cycle thru them with each invocation.  We make the
 * array large enough to handle the above mentioned case.  The constant
 * NUM_STRINGS defines the number of strings in this array:  we can tolerate
 * up to NUM_STRINGS calls before we start overwriting old information.
 * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
 * to convert the modulo operation into something quicker.  What a hack!
 */

#define NUM_STRINGS 8

char *
format_k(long amt)

{
    static char retarray[NUM_STRINGS][16];
    static int idx = 0;
    register char *ret;
    register char tag = 'K';

    ret = retarray[idx];
    idx = (idx + 1) % NUM_STRINGS;

    if (amt >= 10000)
    {
	amt = (amt + 512) / 1024;
	tag = 'M';
	if (amt >= 10000)
	{
	    amt = (amt + 512) / 1024;
	    tag = 'G';
	}
    }

    snprintf(ret, sizeof(retarray[idx])-1, "%ld%c", amt, tag);

    return(ret);
}

/*
 * Time keeping functions.  
 */

static struct timeval lasttime = { 0, 0 };
static unsigned int elapsed_msecs = 0;

void
time_get(struct timeval *tv)

{
    /* get the current time */
#ifdef HAVE_GETTIMEOFDAY
    gettimeofday(tv, NULL);
#else
    tv->tv_sec = (long)time(NULL);
    tv->tv_usec = 0;
#endif
}

void
time_mark(struct timeval *tv)

{
    struct timeval thistime;
    struct timeval timediff;

    /* if the caller didnt provide one then use our own */
    if (tv == NULL)
    {
	tv = &thistime;
    }

    /* get the current time */
#ifdef HAVE_GETTIMEOFDAY
    gettimeofday(tv, NULL);
#else
    tv->tv_sec = (long)time(NULL);
    tv->tv_usec = 0;
#endif

    /* calculate the difference */
    timediff.tv_sec = tv->tv_sec - lasttime.tv_sec;
    timediff.tv_usec = tv->tv_usec - lasttime.tv_usec;
    if (timediff.tv_usec < 0) {
	timediff.tv_sec--;
	timediff.tv_usec += 1000000;
    }

    /* convert to milliseconds */
    elapsed_msecs = timediff.tv_sec * 1000 + timediff.tv_usec / 1000;
    if (elapsed_msecs == 0)
    {
	elapsed_msecs = 1;
    }

    /* save for next time */
    lasttime = *tv;
}

unsigned int
time_elapsed()

{
    return elapsed_msecs;
}

unsigned int
diff_per_second(unsigned int x, unsigned int y)

{
    return (y > x ? UINT_MAX - y + x + 1 : x - y) * 1000 / elapsed_msecs;
}

void
double2tv(struct timeval *tv, double d)
{
    double di;

    di = floor(d);
    tv->tv_sec = (time_t)di;
    tv->tv_usec = (int)ceil((d - di) * 1000000.0);
}

static int debug_on = 0;

#ifdef DEBUG
FILE *debugfile;
#endif

void
debug_set(int i)

{
    debug_on = i;
#ifdef DEBUG
    debugfile = fopen("/tmp/top.debug", "w");
#endif
}

#ifdef DEBUG
void
xdprintf(char *fmt, ...)

{
    va_list argp;

    va_start(argp, fmt);

    if (debug_on)
    {
	vfprintf(debugfile, fmt, argp);
	fflush(debugfile);
    }

    va_end(argp);
}
#endif