Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
 * All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/trim_map.h>
#include <sys/time.h>

/*
 * Calculate the zio end, upgrading based on ashift which would be
 * done by zio_vdev_io_start.
 *
 * This makes free range consolidation much more effective
 * than it would otherwise be as well as ensuring that entire
 * blocks are invalidated by writes.
 */
#define	TRIM_ZIO_END(vd, offset, size)	(offset +		\
 	P2ROUNDUP(size, 1ULL << vd->vdev_top->vdev_ashift))

/* Maximal segment size for ATA TRIM. */
#define TRIM_MAP_SIZE_FACTOR	(512 << 16)

#define TRIM_MAP_SEGS(size)	(1 + (size) / TRIM_MAP_SIZE_FACTOR)

#define TRIM_MAP_ADD(tm, ts)	do {				\
	list_insert_tail(&(tm)->tm_head, (ts));			\
	(tm)->tm_pending += TRIM_MAP_SEGS((ts)->ts_end - (ts)->ts_start); \
} while (0)

#define TRIM_MAP_REM(tm, ts)	do {				\
	list_remove(&(tm)->tm_head, (ts));			\
	(tm)->tm_pending -= TRIM_MAP_SEGS((ts)->ts_end - (ts)->ts_start); \
} while (0)

typedef struct trim_map {
	list_t		tm_head;		/* List of segments sorted by txg. */
	avl_tree_t	tm_queued_frees;	/* AVL tree of segments waiting for TRIM. */
	avl_tree_t	tm_inflight_frees;	/* AVL tree of in-flight TRIMs. */
	avl_tree_t	tm_inflight_writes;	/* AVL tree of in-flight writes. */
	list_t		tm_pending_writes;	/* Writes blocked on in-flight frees. */
	kmutex_t	tm_lock;
	uint64_t	tm_pending;		/* Count of pending TRIMs. */
} trim_map_t;

typedef struct trim_seg {
	avl_node_t	ts_node;	/* AVL node. */
	list_node_t	ts_next;	/* List element. */
	uint64_t	ts_start;	/* Starting offset of this segment. */
	uint64_t	ts_end;		/* Ending offset (non-inclusive). */
	uint64_t	ts_txg;		/* Segment creation txg. */
	hrtime_t	ts_time;	/* Segment creation time. */
} trim_seg_t;

extern boolean_t zfs_trim_enabled;

static u_int trim_txg_delay = 32;	/* Keep deleted data up to 32 TXG */
static u_int trim_timeout = 30;		/* Keep deleted data up to 30s */
static u_int trim_max_interval = 1;	/* 1s delays between TRIMs */
static u_int trim_vdev_max_pending = 10000; /* Keep up to 10K segments */

SYSCTL_DECL(_vfs_zfs);
SYSCTL_NODE(_vfs_zfs, OID_AUTO, trim, CTLFLAG_RD, 0, "ZFS TRIM");

SYSCTL_UINT(_vfs_zfs_trim, OID_AUTO, txg_delay, CTLFLAG_RWTUN, &trim_txg_delay,
    0, "Delay TRIMs by up to this many TXGs");
SYSCTL_UINT(_vfs_zfs_trim, OID_AUTO, timeout, CTLFLAG_RWTUN, &trim_timeout, 0,
    "Delay TRIMs by up to this many seconds");
SYSCTL_UINT(_vfs_zfs_trim, OID_AUTO, max_interval, CTLFLAG_RWTUN,
    &trim_max_interval, 0,
    "Maximum interval between TRIM queue processing (seconds)");

SYSCTL_DECL(_vfs_zfs_vdev);
SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, trim_max_pending, CTLFLAG_RWTUN,
    &trim_vdev_max_pending, 0,
    "Maximum pending TRIM segments for a vdev");

static void trim_map_vdev_commit_done(spa_t *spa, vdev_t *vd);

static int
trim_map_seg_compare(const void *x1, const void *x2)
{
	const trim_seg_t *s1 = x1;
	const trim_seg_t *s2 = x2;

	if (s1->ts_start < s2->ts_start) {
		if (s1->ts_end > s2->ts_start)
			return (0);
		return (-1);
	}
	if (s1->ts_start > s2->ts_start) {
		if (s1->ts_start < s2->ts_end)
			return (0);
		return (1);
	}
	return (0);
}

static int
trim_map_zio_compare(const void *x1, const void *x2)
{
	const zio_t *z1 = x1;
	const zio_t *z2 = x2;

	if (z1->io_offset < z2->io_offset) {
		if (z1->io_offset + z1->io_size > z2->io_offset)
			return (0);
		return (-1);
	}
	if (z1->io_offset > z2->io_offset) {
		if (z1->io_offset < z2->io_offset + z2->io_size)
			return (0);
		return (1);
	}
	return (0);
}

void
trim_map_create(vdev_t *vd)
{
	trim_map_t *tm;

	ASSERT(zfs_trim_enabled && !vd->vdev_notrim &&
		vd->vdev_ops->vdev_op_leaf);

	tm = kmem_zalloc(sizeof (*tm), KM_SLEEP);
	mutex_init(&tm->tm_lock, NULL, MUTEX_DEFAULT, NULL);
	list_create(&tm->tm_head, sizeof (trim_seg_t),
	    offsetof(trim_seg_t, ts_next));
	list_create(&tm->tm_pending_writes, sizeof (zio_t),
	    offsetof(zio_t, io_trim_link));
	avl_create(&tm->tm_queued_frees, trim_map_seg_compare,
	    sizeof (trim_seg_t), offsetof(trim_seg_t, ts_node));
	avl_create(&tm->tm_inflight_frees, trim_map_seg_compare,
	    sizeof (trim_seg_t), offsetof(trim_seg_t, ts_node));
	avl_create(&tm->tm_inflight_writes, trim_map_zio_compare,
	    sizeof (zio_t), offsetof(zio_t, io_trim_node));
	vd->vdev_trimmap = tm;
}

void
trim_map_destroy(vdev_t *vd)
{
	trim_map_t *tm;
	trim_seg_t *ts;

	ASSERT(vd->vdev_ops->vdev_op_leaf);

	if (!zfs_trim_enabled)
		return;

	tm = vd->vdev_trimmap;
	if (tm == NULL)
		return;

	/*
	 * We may have been called before trim_map_vdev_commit_done()
	 * had a chance to run, so do it now to prune the remaining
	 * inflight frees.
	 */
	trim_map_vdev_commit_done(vd->vdev_spa, vd);

	mutex_enter(&tm->tm_lock);
	while ((ts = list_head(&tm->tm_head)) != NULL) {
		avl_remove(&tm->tm_queued_frees, ts);
		TRIM_MAP_REM(tm, ts);
		kmem_free(ts, sizeof (*ts));
	}
	mutex_exit(&tm->tm_lock);

	avl_destroy(&tm->tm_queued_frees);
	avl_destroy(&tm->tm_inflight_frees);
	avl_destroy(&tm->tm_inflight_writes);
	list_destroy(&tm->tm_pending_writes);
	list_destroy(&tm->tm_head);
	mutex_destroy(&tm->tm_lock);
	kmem_free(tm, sizeof (*tm));
	vd->vdev_trimmap = NULL;
}

static void
trim_map_segment_add(trim_map_t *tm, uint64_t start, uint64_t end, uint64_t txg)
{
	avl_index_t where;
	trim_seg_t tsearch, *ts_before, *ts_after, *ts;
	boolean_t merge_before, merge_after;
	hrtime_t time;

	ASSERT(MUTEX_HELD(&tm->tm_lock));
	VERIFY(start < end);

	time = gethrtime();
	tsearch.ts_start = start;
	tsearch.ts_end = end;

	ts = avl_find(&tm->tm_queued_frees, &tsearch, &where);
	if (ts != NULL) {
		if (start < ts->ts_start)
			trim_map_segment_add(tm, start, ts->ts_start, txg);
		if (end > ts->ts_end)
			trim_map_segment_add(tm, ts->ts_end, end, txg);
		return;
	}

	ts_before = avl_nearest(&tm->tm_queued_frees, where, AVL_BEFORE);
	ts_after = avl_nearest(&tm->tm_queued_frees, where, AVL_AFTER);

	merge_before = (ts_before != NULL && ts_before->ts_end == start);
	merge_after = (ts_after != NULL && ts_after->ts_start == end);

	if (merge_before && merge_after) {
		avl_remove(&tm->tm_queued_frees, ts_before);
		TRIM_MAP_REM(tm, ts_before);
		TRIM_MAP_REM(tm, ts_after);
		ts_after->ts_start = ts_before->ts_start;
		ts_after->ts_txg = txg;
		ts_after->ts_time = time;
		TRIM_MAP_ADD(tm, ts_after);
		kmem_free(ts_before, sizeof (*ts_before));
	} else if (merge_before) {
		TRIM_MAP_REM(tm, ts_before);
		ts_before->ts_end = end;
		ts_before->ts_txg = txg;
		ts_before->ts_time = time;
		TRIM_MAP_ADD(tm, ts_before);
	} else if (merge_after) {
		TRIM_MAP_REM(tm, ts_after);
		ts_after->ts_start = start;
		ts_after->ts_txg = txg;
		ts_after->ts_time = time;
		TRIM_MAP_ADD(tm, ts_after);
	} else {
		ts = kmem_alloc(sizeof (*ts), KM_SLEEP);
		ts->ts_start = start;
		ts->ts_end = end;
		ts->ts_txg = txg;
		ts->ts_time = time;
		avl_insert(&tm->tm_queued_frees, ts, where);
		TRIM_MAP_ADD(tm, ts);
	}
}

static void
trim_map_segment_remove(trim_map_t *tm, trim_seg_t *ts, uint64_t start,
    uint64_t end)
{
	trim_seg_t *nts;
	boolean_t left_over, right_over;

	ASSERT(MUTEX_HELD(&tm->tm_lock));

	left_over = (ts->ts_start < start);
	right_over = (ts->ts_end > end);

	TRIM_MAP_REM(tm, ts);
	if (left_over && right_over) {
		nts = kmem_alloc(sizeof (*nts), KM_SLEEP);
		nts->ts_start = end;
		nts->ts_end = ts->ts_end;
		nts->ts_txg = ts->ts_txg;
		nts->ts_time = ts->ts_time;
		ts->ts_end = start;
		avl_insert_here(&tm->tm_queued_frees, nts, ts, AVL_AFTER);
		TRIM_MAP_ADD(tm, ts);
		TRIM_MAP_ADD(tm, nts);
	} else if (left_over) {
		ts->ts_end = start;
		TRIM_MAP_ADD(tm, ts);
	} else if (right_over) {
		ts->ts_start = end;
		TRIM_MAP_ADD(tm, ts);
	} else {
		avl_remove(&tm->tm_queued_frees, ts);
		kmem_free(ts, sizeof (*ts));
	}
}

static void
trim_map_free_locked(trim_map_t *tm, uint64_t start, uint64_t end, uint64_t txg)
{
	zio_t zsearch, *zs;

	ASSERT(MUTEX_HELD(&tm->tm_lock));

	zsearch.io_offset = start;
	zsearch.io_size = end - start;

	zs = avl_find(&tm->tm_inflight_writes, &zsearch, NULL);
	if (zs == NULL) {
		trim_map_segment_add(tm, start, end, txg);
		return;
	}
	if (start < zs->io_offset)
		trim_map_free_locked(tm, start, zs->io_offset, txg);
	if (zs->io_offset + zs->io_size < end)
		trim_map_free_locked(tm, zs->io_offset + zs->io_size, end, txg);
}

void
trim_map_free(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
{
	trim_map_t *tm = vd->vdev_trimmap;

	if (!zfs_trim_enabled || vd->vdev_notrim || tm == NULL)
		return;

	mutex_enter(&tm->tm_lock);
	trim_map_free_locked(tm, offset, TRIM_ZIO_END(vd, offset, size), txg);
	mutex_exit(&tm->tm_lock);
}

boolean_t
trim_map_write_start(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	trim_map_t *tm = vd->vdev_trimmap;
	trim_seg_t tsearch, *ts;
	boolean_t left_over, right_over;
	uint64_t start, end;

	if (!zfs_trim_enabled || vd->vdev_notrim || tm == NULL)
		return (B_TRUE);

	start = zio->io_offset;
	end = TRIM_ZIO_END(zio->io_vd, start, zio->io_size);
	tsearch.ts_start = start;
	tsearch.ts_end = end;

	mutex_enter(&tm->tm_lock);

	/*
	 * Checking for colliding in-flight frees.
	 */
	ts = avl_find(&tm->tm_inflight_frees, &tsearch, NULL);
	if (ts != NULL) {
		list_insert_tail(&tm->tm_pending_writes, zio);
		mutex_exit(&tm->tm_lock);
		return (B_FALSE);
	}

	ts = avl_find(&tm->tm_queued_frees, &tsearch, NULL);
	if (ts != NULL) {
		/*
		 * Loop until all overlapping segments are removed.
		 */
		do {
			trim_map_segment_remove(tm, ts, start, end);
			ts = avl_find(&tm->tm_queued_frees, &tsearch, NULL);
		} while (ts != NULL);
	}
	avl_add(&tm->tm_inflight_writes, zio);

	mutex_exit(&tm->tm_lock);

	return (B_TRUE);
}

void
trim_map_write_done(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	trim_map_t *tm = vd->vdev_trimmap;

	/*
	 * Don't check for vdev_notrim, since the write could have
	 * started before vdev_notrim was set.
	 */
	if (!zfs_trim_enabled || tm == NULL)
		return;

	mutex_enter(&tm->tm_lock);
	/*
	 * Don't fail if the write isn't in the tree, since the write
	 * could have started after vdev_notrim was set.
	 */
	if (zio->io_trim_node.avl_child[0] ||
	    zio->io_trim_node.avl_child[1] ||
	    AVL_XPARENT(&zio->io_trim_node) ||
	    tm->tm_inflight_writes.avl_root == &zio->io_trim_node)
		avl_remove(&tm->tm_inflight_writes, zio);
	mutex_exit(&tm->tm_lock);
}

/*
 * Return the oldest segment (the one with the lowest txg / time) or NULL if:
 * 1. The list is empty
 * 2. The first element's txg is greater than txgsafe
 * 3. The first element's txg is not greater than the txg argument and the
 *    the first element's time is not greater than time argument
 */
static trim_seg_t *
trim_map_first(trim_map_t *tm, uint64_t txg, uint64_t txgsafe, hrtime_t time,
    boolean_t force)
{
	trim_seg_t *ts;

	ASSERT(MUTEX_HELD(&tm->tm_lock));
	VERIFY(txgsafe >= txg);

	ts = list_head(&tm->tm_head);
	if (ts != NULL && ts->ts_txg <= txgsafe &&
	    (ts->ts_txg <= txg || ts->ts_time <= time || force))
		return (ts);
	return (NULL);
}

static void
trim_map_vdev_commit(spa_t *spa, zio_t *zio, vdev_t *vd)
{
	trim_map_t *tm = vd->vdev_trimmap;
	trim_seg_t *ts;
	uint64_t size, offset, txgtarget, txgsafe;
	int64_t hard, soft;
	hrtime_t timelimit;

	ASSERT(vd->vdev_ops->vdev_op_leaf);

	if (tm == NULL)
		return;

	timelimit = gethrtime() - (hrtime_t)trim_timeout * NANOSEC;
	if (vd->vdev_isl2cache) {
		txgsafe = UINT64_MAX;
		txgtarget = UINT64_MAX;
	} else {
		txgsafe = MIN(spa_last_synced_txg(spa), spa_freeze_txg(spa));
		if (txgsafe > trim_txg_delay)
			txgtarget = txgsafe - trim_txg_delay;
		else
			txgtarget = 0;
	}

	mutex_enter(&tm->tm_lock);
	hard = 0;
	if (tm->tm_pending > trim_vdev_max_pending)
		hard = (tm->tm_pending - trim_vdev_max_pending) / 4;
	soft = P2ROUNDUP(hard + tm->tm_pending / trim_timeout + 1, 64);
	/* Loop until we have sent all outstanding free's */
	while (soft > 0 &&
	    (ts = trim_map_first(tm, txgtarget, txgsafe, timelimit, hard > 0))
	    != NULL) {
		TRIM_MAP_REM(tm, ts);
		avl_remove(&tm->tm_queued_frees, ts);
		avl_add(&tm->tm_inflight_frees, ts);
		size = ts->ts_end - ts->ts_start;
		offset = ts->ts_start;
		/*
		 * We drop the lock while we call zio_nowait as the IO
		 * scheduler can result in a different IO being run e.g.
		 * a write which would result in a recursive lock.
		 */
		mutex_exit(&tm->tm_lock);

		zio_nowait(zio_trim(zio, spa, vd, offset, size));

		soft -= TRIM_MAP_SEGS(size);
		hard -= TRIM_MAP_SEGS(size);
		mutex_enter(&tm->tm_lock);
	}
	mutex_exit(&tm->tm_lock);
}

static void
trim_map_vdev_commit_done(spa_t *spa, vdev_t *vd)
{
	trim_map_t *tm = vd->vdev_trimmap;
	trim_seg_t *ts;
	list_t pending_writes;
	zio_t *zio;
	uint64_t start, size;
	void *cookie;

	ASSERT(vd->vdev_ops->vdev_op_leaf);

	if (tm == NULL)
		return;

	mutex_enter(&tm->tm_lock);
	if (!avl_is_empty(&tm->tm_inflight_frees)) {
		cookie = NULL;
		while ((ts = avl_destroy_nodes(&tm->tm_inflight_frees,
		    &cookie)) != NULL) {
			kmem_free(ts, sizeof (*ts));
		}
	}
	list_create(&pending_writes, sizeof (zio_t), offsetof(zio_t,
	    io_trim_link));
	list_move_tail(&pending_writes, &tm->tm_pending_writes);
	mutex_exit(&tm->tm_lock);

	while ((zio = list_remove_head(&pending_writes)) != NULL) {
		zio_vdev_io_reissue(zio);
		zio_execute(zio);
	}
	list_destroy(&pending_writes);
}

static void
trim_map_commit(spa_t *spa, zio_t *zio, vdev_t *vd)
{
	int c;

	if (vd == NULL)
		return;

	if (vd->vdev_ops->vdev_op_leaf) {
		trim_map_vdev_commit(spa, zio, vd);
	} else {
		for (c = 0; c < vd->vdev_children; c++)
			trim_map_commit(spa, zio, vd->vdev_child[c]);
	}
}

static void
trim_map_commit_done(spa_t *spa, vdev_t *vd)
{
	int c;

	if (vd == NULL)
		return;

	if (vd->vdev_ops->vdev_op_leaf) {
		trim_map_vdev_commit_done(spa, vd);
	} else {
		for (c = 0; c < vd->vdev_children; c++)
			trim_map_commit_done(spa, vd->vdev_child[c]);
	}
}

static void
trim_thread(void *arg)
{
	spa_t *spa = arg;
	zio_t *zio;

#ifdef __FreeBSD__
#ifdef _KERNEL
	(void) snprintf(curthread->td_name, sizeof(curthread->td_name),
	    "trim %s", spa_name(spa));
#endif
#endif
#ifdef __NetBSD__
#ifdef _KERNEL
	size_t sz;
	char *name, *oname;
	struct lwp *l = curlwp;

	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
	snprintf(name, MAXCOMLEN, "trim %s", spa_name(spa));
	name[MAXCOMLEN - 1] = 0;

	lwp_lock(l);
	oname = l->l_name;
	l->l_name = name;
	lwp_unlock(l);

	if (oname != NULL)
		kmem_free(oname, MAXCOMLEN);
#endif
#endif

	for (;;) {
		mutex_enter(&spa->spa_trim_lock);
		if (spa->spa_trim_thread == NULL) {
			spa->spa_trim_thread = curthread;
			cv_signal(&spa->spa_trim_cv);
			mutex_exit(&spa->spa_trim_lock);
			thread_exit();
		}

		(void) cv_timedwait(&spa->spa_trim_cv, &spa->spa_trim_lock,
		    hz * trim_max_interval);
		mutex_exit(&spa->spa_trim_lock);

		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);

		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
		trim_map_commit(spa, zio, spa->spa_root_vdev);
		(void) zio_wait(zio);
		trim_map_commit_done(spa, spa->spa_root_vdev);
		spa_config_exit(spa, SCL_STATE, FTAG);
	}
}

void
trim_thread_create(spa_t *spa)
{

	if (!zfs_trim_enabled)
		return;

	mutex_init(&spa->spa_trim_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&spa->spa_trim_cv, NULL, CV_DEFAULT, NULL);
	mutex_enter(&spa->spa_trim_lock);
	spa->spa_trim_thread = thread_create(NULL, 0, trim_thread, spa, 0, &p0,
	    TS_RUN, minclsyspri);
	mutex_exit(&spa->spa_trim_lock);
}

void
trim_thread_destroy(spa_t *spa)
{

	if (!zfs_trim_enabled)
		return;
	if (spa->spa_trim_thread == NULL)
		return;

	mutex_enter(&spa->spa_trim_lock);
	/* Setting spa_trim_thread to NULL tells the thread to stop. */
	spa->spa_trim_thread = NULL;
	cv_signal(&spa->spa_trim_cv);
	/* The thread will set it back to != NULL on exit. */
	while (spa->spa_trim_thread == NULL)
		cv_wait(&spa->spa_trim_cv, &spa->spa_trim_lock);
	spa->spa_trim_thread = NULL;
	mutex_exit(&spa->spa_trim_lock);

	cv_destroy(&spa->spa_trim_cv);
	mutex_destroy(&spa->spa_trim_lock);
}

void
trim_thread_wakeup(spa_t *spa)
{

	if (!zfs_trim_enabled)
		return;
	if (spa->spa_trim_thread == NULL)
		return;

	mutex_enter(&spa->spa_trim_lock);
	cv_signal(&spa->spa_trim_cv);
	mutex_exit(&spa->spa_trim_lock);
}