/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
* All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/trim_map.h>
#include <sys/time.h>
/*
* Calculate the zio end, upgrading based on ashift which would be
* done by zio_vdev_io_start.
*
* This makes free range consolidation much more effective
* than it would otherwise be as well as ensuring that entire
* blocks are invalidated by writes.
*/
#define TRIM_ZIO_END(vd, offset, size) (offset + \
P2ROUNDUP(size, 1ULL << vd->vdev_top->vdev_ashift))
/* Maximal segment size for ATA TRIM. */
#define TRIM_MAP_SIZE_FACTOR (512 << 16)
#define TRIM_MAP_SEGS(size) (1 + (size) / TRIM_MAP_SIZE_FACTOR)
#define TRIM_MAP_ADD(tm, ts) do { \
list_insert_tail(&(tm)->tm_head, (ts)); \
(tm)->tm_pending += TRIM_MAP_SEGS((ts)->ts_end - (ts)->ts_start); \
} while (0)
#define TRIM_MAP_REM(tm, ts) do { \
list_remove(&(tm)->tm_head, (ts)); \
(tm)->tm_pending -= TRIM_MAP_SEGS((ts)->ts_end - (ts)->ts_start); \
} while (0)
typedef struct trim_map {
list_t tm_head; /* List of segments sorted by txg. */
avl_tree_t tm_queued_frees; /* AVL tree of segments waiting for TRIM. */
avl_tree_t tm_inflight_frees; /* AVL tree of in-flight TRIMs. */
avl_tree_t tm_inflight_writes; /* AVL tree of in-flight writes. */
list_t tm_pending_writes; /* Writes blocked on in-flight frees. */
kmutex_t tm_lock;
uint64_t tm_pending; /* Count of pending TRIMs. */
} trim_map_t;
typedef struct trim_seg {
avl_node_t ts_node; /* AVL node. */
list_node_t ts_next; /* List element. */
uint64_t ts_start; /* Starting offset of this segment. */
uint64_t ts_end; /* Ending offset (non-inclusive). */
uint64_t ts_txg; /* Segment creation txg. */
hrtime_t ts_time; /* Segment creation time. */
} trim_seg_t;
extern boolean_t zfs_trim_enabled;
static u_int trim_txg_delay = 32; /* Keep deleted data up to 32 TXG */
static u_int trim_timeout = 30; /* Keep deleted data up to 30s */
static u_int trim_max_interval = 1; /* 1s delays between TRIMs */
static u_int trim_vdev_max_pending = 10000; /* Keep up to 10K segments */
SYSCTL_DECL(_vfs_zfs);
SYSCTL_NODE(_vfs_zfs, OID_AUTO, trim, CTLFLAG_RD, 0, "ZFS TRIM");
SYSCTL_UINT(_vfs_zfs_trim, OID_AUTO, txg_delay, CTLFLAG_RWTUN, &trim_txg_delay,
0, "Delay TRIMs by up to this many TXGs");
SYSCTL_UINT(_vfs_zfs_trim, OID_AUTO, timeout, CTLFLAG_RWTUN, &trim_timeout, 0,
"Delay TRIMs by up to this many seconds");
SYSCTL_UINT(_vfs_zfs_trim, OID_AUTO, max_interval, CTLFLAG_RWTUN,
&trim_max_interval, 0,
"Maximum interval between TRIM queue processing (seconds)");
SYSCTL_DECL(_vfs_zfs_vdev);
SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, trim_max_pending, CTLFLAG_RWTUN,
&trim_vdev_max_pending, 0,
"Maximum pending TRIM segments for a vdev");
static void trim_map_vdev_commit_done(spa_t *spa, vdev_t *vd);
static int
trim_map_seg_compare(const void *x1, const void *x2)
{
const trim_seg_t *s1 = x1;
const trim_seg_t *s2 = x2;
if (s1->ts_start < s2->ts_start) {
if (s1->ts_end > s2->ts_start)
return (0);
return (-1);
}
if (s1->ts_start > s2->ts_start) {
if (s1->ts_start < s2->ts_end)
return (0);
return (1);
}
return (0);
}
static int
trim_map_zio_compare(const void *x1, const void *x2)
{
const zio_t *z1 = x1;
const zio_t *z2 = x2;
if (z1->io_offset < z2->io_offset) {
if (z1->io_offset + z1->io_size > z2->io_offset)
return (0);
return (-1);
}
if (z1->io_offset > z2->io_offset) {
if (z1->io_offset < z2->io_offset + z2->io_size)
return (0);
return (1);
}
return (0);
}
void
trim_map_create(vdev_t *vd)
{
trim_map_t *tm;
ASSERT(zfs_trim_enabled && !vd->vdev_notrim &&
vd->vdev_ops->vdev_op_leaf);
tm = kmem_zalloc(sizeof (*tm), KM_SLEEP);
mutex_init(&tm->tm_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&tm->tm_head, sizeof (trim_seg_t),
offsetof(trim_seg_t, ts_next));
list_create(&tm->tm_pending_writes, sizeof (zio_t),
offsetof(zio_t, io_trim_link));
avl_create(&tm->tm_queued_frees, trim_map_seg_compare,
sizeof (trim_seg_t), offsetof(trim_seg_t, ts_node));
avl_create(&tm->tm_inflight_frees, trim_map_seg_compare,
sizeof (trim_seg_t), offsetof(trim_seg_t, ts_node));
avl_create(&tm->tm_inflight_writes, trim_map_zio_compare,
sizeof (zio_t), offsetof(zio_t, io_trim_node));
vd->vdev_trimmap = tm;
}
void
trim_map_destroy(vdev_t *vd)
{
trim_map_t *tm;
trim_seg_t *ts;
ASSERT(vd->vdev_ops->vdev_op_leaf);
if (!zfs_trim_enabled)
return;
tm = vd->vdev_trimmap;
if (tm == NULL)
return;
/*
* We may have been called before trim_map_vdev_commit_done()
* had a chance to run, so do it now to prune the remaining
* inflight frees.
*/
trim_map_vdev_commit_done(vd->vdev_spa, vd);
mutex_enter(&tm->tm_lock);
while ((ts = list_head(&tm->tm_head)) != NULL) {
avl_remove(&tm->tm_queued_frees, ts);
TRIM_MAP_REM(tm, ts);
kmem_free(ts, sizeof (*ts));
}
mutex_exit(&tm->tm_lock);
avl_destroy(&tm->tm_queued_frees);
avl_destroy(&tm->tm_inflight_frees);
avl_destroy(&tm->tm_inflight_writes);
list_destroy(&tm->tm_pending_writes);
list_destroy(&tm->tm_head);
mutex_destroy(&tm->tm_lock);
kmem_free(tm, sizeof (*tm));
vd->vdev_trimmap = NULL;
}
static void
trim_map_segment_add(trim_map_t *tm, uint64_t start, uint64_t end, uint64_t txg)
{
avl_index_t where;
trim_seg_t tsearch, *ts_before, *ts_after, *ts;
boolean_t merge_before, merge_after;
hrtime_t time;
ASSERT(MUTEX_HELD(&tm->tm_lock));
VERIFY(start < end);
time = gethrtime();
tsearch.ts_start = start;
tsearch.ts_end = end;
ts = avl_find(&tm->tm_queued_frees, &tsearch, &where);
if (ts != NULL) {
if (start < ts->ts_start)
trim_map_segment_add(tm, start, ts->ts_start, txg);
if (end > ts->ts_end)
trim_map_segment_add(tm, ts->ts_end, end, txg);
return;
}
ts_before = avl_nearest(&tm->tm_queued_frees, where, AVL_BEFORE);
ts_after = avl_nearest(&tm->tm_queued_frees, where, AVL_AFTER);
merge_before = (ts_before != NULL && ts_before->ts_end == start);
merge_after = (ts_after != NULL && ts_after->ts_start == end);
if (merge_before && merge_after) {
avl_remove(&tm->tm_queued_frees, ts_before);
TRIM_MAP_REM(tm, ts_before);
TRIM_MAP_REM(tm, ts_after);
ts_after->ts_start = ts_before->ts_start;
ts_after->ts_txg = txg;
ts_after->ts_time = time;
TRIM_MAP_ADD(tm, ts_after);
kmem_free(ts_before, sizeof (*ts_before));
} else if (merge_before) {
TRIM_MAP_REM(tm, ts_before);
ts_before->ts_end = end;
ts_before->ts_txg = txg;
ts_before->ts_time = time;
TRIM_MAP_ADD(tm, ts_before);
} else if (merge_after) {
TRIM_MAP_REM(tm, ts_after);
ts_after->ts_start = start;
ts_after->ts_txg = txg;
ts_after->ts_time = time;
TRIM_MAP_ADD(tm, ts_after);
} else {
ts = kmem_alloc(sizeof (*ts), KM_SLEEP);
ts->ts_start = start;
ts->ts_end = end;
ts->ts_txg = txg;
ts->ts_time = time;
avl_insert(&tm->tm_queued_frees, ts, where);
TRIM_MAP_ADD(tm, ts);
}
}
static void
trim_map_segment_remove(trim_map_t *tm, trim_seg_t *ts, uint64_t start,
uint64_t end)
{
trim_seg_t *nts;
boolean_t left_over, right_over;
ASSERT(MUTEX_HELD(&tm->tm_lock));
left_over = (ts->ts_start < start);
right_over = (ts->ts_end > end);
TRIM_MAP_REM(tm, ts);
if (left_over && right_over) {
nts = kmem_alloc(sizeof (*nts), KM_SLEEP);
nts->ts_start = end;
nts->ts_end = ts->ts_end;
nts->ts_txg = ts->ts_txg;
nts->ts_time = ts->ts_time;
ts->ts_end = start;
avl_insert_here(&tm->tm_queued_frees, nts, ts, AVL_AFTER);
TRIM_MAP_ADD(tm, ts);
TRIM_MAP_ADD(tm, nts);
} else if (left_over) {
ts->ts_end = start;
TRIM_MAP_ADD(tm, ts);
} else if (right_over) {
ts->ts_start = end;
TRIM_MAP_ADD(tm, ts);
} else {
avl_remove(&tm->tm_queued_frees, ts);
kmem_free(ts, sizeof (*ts));
}
}
static void
trim_map_free_locked(trim_map_t *tm, uint64_t start, uint64_t end, uint64_t txg)
{
zio_t zsearch, *zs;
ASSERT(MUTEX_HELD(&tm->tm_lock));
zsearch.io_offset = start;
zsearch.io_size = end - start;
zs = avl_find(&tm->tm_inflight_writes, &zsearch, NULL);
if (zs == NULL) {
trim_map_segment_add(tm, start, end, txg);
return;
}
if (start < zs->io_offset)
trim_map_free_locked(tm, start, zs->io_offset, txg);
if (zs->io_offset + zs->io_size < end)
trim_map_free_locked(tm, zs->io_offset + zs->io_size, end, txg);
}
void
trim_map_free(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
{
trim_map_t *tm = vd->vdev_trimmap;
if (!zfs_trim_enabled || vd->vdev_notrim || tm == NULL)
return;
mutex_enter(&tm->tm_lock);
trim_map_free_locked(tm, offset, TRIM_ZIO_END(vd, offset, size), txg);
mutex_exit(&tm->tm_lock);
}
boolean_t
trim_map_write_start(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
trim_map_t *tm = vd->vdev_trimmap;
trim_seg_t tsearch, *ts;
boolean_t left_over, right_over;
uint64_t start, end;
if (!zfs_trim_enabled || vd->vdev_notrim || tm == NULL)
return (B_TRUE);
start = zio->io_offset;
end = TRIM_ZIO_END(zio->io_vd, start, zio->io_size);
tsearch.ts_start = start;
tsearch.ts_end = end;
mutex_enter(&tm->tm_lock);
/*
* Checking for colliding in-flight frees.
*/
ts = avl_find(&tm->tm_inflight_frees, &tsearch, NULL);
if (ts != NULL) {
list_insert_tail(&tm->tm_pending_writes, zio);
mutex_exit(&tm->tm_lock);
return (B_FALSE);
}
ts = avl_find(&tm->tm_queued_frees, &tsearch, NULL);
if (ts != NULL) {
/*
* Loop until all overlapping segments are removed.
*/
do {
trim_map_segment_remove(tm, ts, start, end);
ts = avl_find(&tm->tm_queued_frees, &tsearch, NULL);
} while (ts != NULL);
}
avl_add(&tm->tm_inflight_writes, zio);
mutex_exit(&tm->tm_lock);
return (B_TRUE);
}
void
trim_map_write_done(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
trim_map_t *tm = vd->vdev_trimmap;
/*
* Don't check for vdev_notrim, since the write could have
* started before vdev_notrim was set.
*/
if (!zfs_trim_enabled || tm == NULL)
return;
mutex_enter(&tm->tm_lock);
/*
* Don't fail if the write isn't in the tree, since the write
* could have started after vdev_notrim was set.
*/
if (zio->io_trim_node.avl_child[0] ||
zio->io_trim_node.avl_child[1] ||
AVL_XPARENT(&zio->io_trim_node) ||
tm->tm_inflight_writes.avl_root == &zio->io_trim_node)
avl_remove(&tm->tm_inflight_writes, zio);
mutex_exit(&tm->tm_lock);
}
/*
* Return the oldest segment (the one with the lowest txg / time) or NULL if:
* 1. The list is empty
* 2. The first element's txg is greater than txgsafe
* 3. The first element's txg is not greater than the txg argument and the
* the first element's time is not greater than time argument
*/
static trim_seg_t *
trim_map_first(trim_map_t *tm, uint64_t txg, uint64_t txgsafe, hrtime_t time,
boolean_t force)
{
trim_seg_t *ts;
ASSERT(MUTEX_HELD(&tm->tm_lock));
VERIFY(txgsafe >= txg);
ts = list_head(&tm->tm_head);
if (ts != NULL && ts->ts_txg <= txgsafe &&
(ts->ts_txg <= txg || ts->ts_time <= time || force))
return (ts);
return (NULL);
}
static void
trim_map_vdev_commit(spa_t *spa, zio_t *zio, vdev_t *vd)
{
trim_map_t *tm = vd->vdev_trimmap;
trim_seg_t *ts;
uint64_t size, offset, txgtarget, txgsafe;
int64_t hard, soft;
hrtime_t timelimit;
ASSERT(vd->vdev_ops->vdev_op_leaf);
if (tm == NULL)
return;
timelimit = gethrtime() - (hrtime_t)trim_timeout * NANOSEC;
if (vd->vdev_isl2cache) {
txgsafe = UINT64_MAX;
txgtarget = UINT64_MAX;
} else {
txgsafe = MIN(spa_last_synced_txg(spa), spa_freeze_txg(spa));
if (txgsafe > trim_txg_delay)
txgtarget = txgsafe - trim_txg_delay;
else
txgtarget = 0;
}
mutex_enter(&tm->tm_lock);
hard = 0;
if (tm->tm_pending > trim_vdev_max_pending)
hard = (tm->tm_pending - trim_vdev_max_pending) / 4;
soft = P2ROUNDUP(hard + tm->tm_pending / trim_timeout + 1, 64);
/* Loop until we have sent all outstanding free's */
while (soft > 0 &&
(ts = trim_map_first(tm, txgtarget, txgsafe, timelimit, hard > 0))
!= NULL) {
TRIM_MAP_REM(tm, ts);
avl_remove(&tm->tm_queued_frees, ts);
avl_add(&tm->tm_inflight_frees, ts);
size = ts->ts_end - ts->ts_start;
offset = ts->ts_start;
/*
* We drop the lock while we call zio_nowait as the IO
* scheduler can result in a different IO being run e.g.
* a write which would result in a recursive lock.
*/
mutex_exit(&tm->tm_lock);
zio_nowait(zio_trim(zio, spa, vd, offset, size));
soft -= TRIM_MAP_SEGS(size);
hard -= TRIM_MAP_SEGS(size);
mutex_enter(&tm->tm_lock);
}
mutex_exit(&tm->tm_lock);
}
static void
trim_map_vdev_commit_done(spa_t *spa, vdev_t *vd)
{
trim_map_t *tm = vd->vdev_trimmap;
trim_seg_t *ts;
list_t pending_writes;
zio_t *zio;
uint64_t start, size;
void *cookie;
ASSERT(vd->vdev_ops->vdev_op_leaf);
if (tm == NULL)
return;
mutex_enter(&tm->tm_lock);
if (!avl_is_empty(&tm->tm_inflight_frees)) {
cookie = NULL;
while ((ts = avl_destroy_nodes(&tm->tm_inflight_frees,
&cookie)) != NULL) {
kmem_free(ts, sizeof (*ts));
}
}
list_create(&pending_writes, sizeof (zio_t), offsetof(zio_t,
io_trim_link));
list_move_tail(&pending_writes, &tm->tm_pending_writes);
mutex_exit(&tm->tm_lock);
while ((zio = list_remove_head(&pending_writes)) != NULL) {
zio_vdev_io_reissue(zio);
zio_execute(zio);
}
list_destroy(&pending_writes);
}
static void
trim_map_commit(spa_t *spa, zio_t *zio, vdev_t *vd)
{
int c;
if (vd == NULL)
return;
if (vd->vdev_ops->vdev_op_leaf) {
trim_map_vdev_commit(spa, zio, vd);
} else {
for (c = 0; c < vd->vdev_children; c++)
trim_map_commit(spa, zio, vd->vdev_child[c]);
}
}
static void
trim_map_commit_done(spa_t *spa, vdev_t *vd)
{
int c;
if (vd == NULL)
return;
if (vd->vdev_ops->vdev_op_leaf) {
trim_map_vdev_commit_done(spa, vd);
} else {
for (c = 0; c < vd->vdev_children; c++)
trim_map_commit_done(spa, vd->vdev_child[c]);
}
}
static void
trim_thread(void *arg)
{
spa_t *spa = arg;
zio_t *zio;
#ifdef __FreeBSD__
#ifdef _KERNEL
(void) snprintf(curthread->td_name, sizeof(curthread->td_name),
"trim %s", spa_name(spa));
#endif
#endif
#ifdef __NetBSD__
#ifdef _KERNEL
size_t sz;
char *name, *oname;
struct lwp *l = curlwp;
name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
snprintf(name, MAXCOMLEN, "trim %s", spa_name(spa));
name[MAXCOMLEN - 1] = 0;
lwp_lock(l);
oname = l->l_name;
l->l_name = name;
lwp_unlock(l);
if (oname != NULL)
kmem_free(oname, MAXCOMLEN);
#endif
#endif
for (;;) {
mutex_enter(&spa->spa_trim_lock);
if (spa->spa_trim_thread == NULL) {
spa->spa_trim_thread = curthread;
cv_signal(&spa->spa_trim_cv);
mutex_exit(&spa->spa_trim_lock);
thread_exit();
}
(void) cv_timedwait(&spa->spa_trim_cv, &spa->spa_trim_lock,
hz * trim_max_interval);
mutex_exit(&spa->spa_trim_lock);
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
trim_map_commit(spa, zio, spa->spa_root_vdev);
(void) zio_wait(zio);
trim_map_commit_done(spa, spa->spa_root_vdev);
spa_config_exit(spa, SCL_STATE, FTAG);
}
}
void
trim_thread_create(spa_t *spa)
{
if (!zfs_trim_enabled)
return;
mutex_init(&spa->spa_trim_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&spa->spa_trim_cv, NULL, CV_DEFAULT, NULL);
mutex_enter(&spa->spa_trim_lock);
spa->spa_trim_thread = thread_create(NULL, 0, trim_thread, spa, 0, &p0,
TS_RUN, minclsyspri);
mutex_exit(&spa->spa_trim_lock);
}
void
trim_thread_destroy(spa_t *spa)
{
if (!zfs_trim_enabled)
return;
if (spa->spa_trim_thread == NULL)
return;
mutex_enter(&spa->spa_trim_lock);
/* Setting spa_trim_thread to NULL tells the thread to stop. */
spa->spa_trim_thread = NULL;
cv_signal(&spa->spa_trim_cv);
/* The thread will set it back to != NULL on exit. */
while (spa->spa_trim_thread == NULL)
cv_wait(&spa->spa_trim_cv, &spa->spa_trim_lock);
spa->spa_trim_thread = NULL;
mutex_exit(&spa->spa_trim_lock);
cv_destroy(&spa->spa_trim_cv);
mutex_destroy(&spa->spa_trim_lock);
}
void
trim_thread_wakeup(spa_t *spa)
{
if (!zfs_trim_enabled)
return;
if (spa->spa_trim_thread == NULL)
return;
mutex_enter(&spa->spa_trim_lock);
cv_signal(&spa->spa_trim_cv);
mutex_exit(&spa->spa_trim_lock);
}