Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
// dwarf_reader.cc -- parse dwarf2/3 debug information

// Copyright (C) 2007-2018 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <algorithm>
#include <utility>
#include <vector>

#include "elfcpp_swap.h"
#include "dwarf.h"
#include "object.h"
#include "reloc.h"
#include "dwarf_reader.h"
#include "int_encoding.h"
#include "compressed_output.h"

namespace gold {

// Class Sized_elf_reloc_mapper

// Initialize the relocation tracker for section RELOC_SHNDX.

template<int size, bool big_endian>
bool
Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
    unsigned int reloc_shndx, unsigned int reloc_type)
{
  this->reloc_type_ = reloc_type;
  return this->track_relocs_.initialize(this->object_, reloc_shndx,
					reloc_type);
}

// Looks in the symtab to see what section a symbol is in.

template<int size, bool big_endian>
unsigned int
Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
    unsigned int symndx, Address* value, bool* is_ordinary)
{
  const int symsize = elfcpp::Elf_sizes<size>::sym_size;
  gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
  elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
  *value = elfsym.get_st_value();
  return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
					 is_ordinary);
}

// Return the section index and offset within the section of
// the target of the relocation for RELOC_OFFSET.

template<int size, bool big_endian>
unsigned int
Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
    off_t reloc_offset, off_t* target_offset)
{
  this->track_relocs_.advance(reloc_offset);
  if (reloc_offset != this->track_relocs_.next_offset())
    return 0;
  unsigned int symndx = this->track_relocs_.next_symndx();
  typename elfcpp::Elf_types<size>::Elf_Addr value;
  bool is_ordinary;
  unsigned int target_shndx = this->symbol_section(symndx, &value,
						   &is_ordinary);
  if (!is_ordinary)
    return 0;
  if (this->reloc_type_ == elfcpp::SHT_RELA)
    value += this->track_relocs_.next_addend();
  *target_offset = value;
  return target_shndx;
}

static inline Elf_reloc_mapper*
make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
		      off_t symtab_size)
{
  if (object->elfsize() == 32)
    {
      if (object->is_big_endian())
        {
#ifdef HAVE_TARGET_32_BIG
	  return new Sized_elf_reloc_mapper<32, true>(object, symtab,
						      symtab_size);
#else
	  gold_unreachable();
#endif
        }
      else
        {
#ifdef HAVE_TARGET_32_LITTLE
	  return new Sized_elf_reloc_mapper<32, false>(object, symtab,
						       symtab_size);
#else
	  gold_unreachable();
#endif
        }
    }
  else if (object->elfsize() == 64)
    {
      if (object->is_big_endian())
        {
#ifdef HAVE_TARGET_64_BIG
	  return new Sized_elf_reloc_mapper<64, true>(object, symtab,
						      symtab_size);
#else
	  gold_unreachable();
#endif
        }
      else
        {
#ifdef HAVE_TARGET_64_LITTLE
	  return new Sized_elf_reloc_mapper<64, false>(object, symtab,
						       symtab_size);
#else
	  gold_unreachable();
#endif
        }
    }
  else
    gold_unreachable();
}

// class Dwarf_abbrev_table

void
Dwarf_abbrev_table::clear_abbrev_codes()
{
  for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
    {
      if (this->low_abbrev_codes_[code] != NULL)
	{
	  delete this->low_abbrev_codes_[code];
	  this->low_abbrev_codes_[code] = NULL;
	}
    }
  for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
       it != this->high_abbrev_codes_.end();
       ++it)
    {
      if (it->second != NULL)
	delete it->second;
    }
  this->high_abbrev_codes_.clear();
}

// Read the abbrev table from an object file.

bool
Dwarf_abbrev_table::do_read_abbrevs(
    Relobj* object,
    unsigned int abbrev_shndx,
    off_t abbrev_offset)
{
  this->clear_abbrev_codes();

  // If we don't have relocations, abbrev_shndx will be 0, and
  // we'll have to hunt for the .debug_abbrev section.
  if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
    abbrev_shndx = this->abbrev_shndx_;
  else if (abbrev_shndx == 0)
    {
      for (unsigned int i = 1; i < object->shnum(); ++i)
	{
	  std::string name = object->section_name(i);
	  if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
	    {
	      abbrev_shndx = i;
	      // Correct the offset.  For incremental update links, we have a
	      // relocated offset that is relative to the output section, but
	      // here we need an offset relative to the input section.
	      abbrev_offset -= object->output_section_offset(i);
	      break;
	    }
	}
      if (abbrev_shndx == 0)
	return false;
    }

  // Get the section contents and decompress if necessary.
  if (abbrev_shndx != this->abbrev_shndx_)
    {
      if (this->owns_buffer_ && this->buffer_ != NULL)
        {
	  delete[] this->buffer_;
	  this->owns_buffer_ = false;
        }

      section_size_type buffer_size;
      this->buffer_ =
	  object->decompressed_section_contents(abbrev_shndx,
						&buffer_size,
						&this->owns_buffer_);
      this->buffer_end_ = this->buffer_ + buffer_size;
      this->abbrev_shndx_ = abbrev_shndx;
    }

  this->buffer_pos_ = this->buffer_ + abbrev_offset;
  return true;
}

// Lookup the abbrev code entry for CODE.  This function is called
// only when the abbrev code is not in the direct lookup table.
// It may be in the hash table, it may not have been read yet,
// or it may not exist in the abbrev table.

const Dwarf_abbrev_table::Abbrev_code*
Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
{
  // See if the abbrev code is already in the hash table.
  Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
  if (it != this->high_abbrev_codes_.end())
    return it->second;

  // Read and store abbrev code definitions until we find the
  // one we're looking for.
  for (;;)
    {
      // Read the abbrev code.  A zero here indicates the end of the
      // abbrev table.
      size_t len;
      if (this->buffer_pos_ >= this->buffer_end_)
	return NULL;
      uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
      if (nextcode == 0)
	{
	  this->buffer_pos_ = this->buffer_end_;
	  return NULL;
	}
      this->buffer_pos_ += len;

      // Read the tag.
      if (this->buffer_pos_ >= this->buffer_end_)
	return NULL;
      uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
      this->buffer_pos_ += len;

      // Read the has_children flag.
      if (this->buffer_pos_ >= this->buffer_end_)
	return NULL;
      bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
      this->buffer_pos_ += 1;

      // Read the list of (attribute, form) pairs.
      Abbrev_code* entry = new Abbrev_code(tag, has_children);
      for (;;)
	{
	  // Read the attribute.
	  if (this->buffer_pos_ >= this->buffer_end_)
	    return NULL;
	  uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
	  this->buffer_pos_ += len;

	  // Read the form.
	  if (this->buffer_pos_ >= this->buffer_end_)
	    return NULL;
	  uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
	  this->buffer_pos_ += len;

	  // A (0,0) pair terminates the list.
	  if (attr == 0 && form == 0)
	    break;

	  if (attr == elfcpp::DW_AT_sibling)
	    entry->has_sibling_attribute = true;

	  entry->add_attribute(attr, form);
	}

      this->store_abbrev(nextcode, entry);
      if (nextcode == code)
	return entry;
    }

  return NULL;
}

// class Dwarf_ranges_table

// Read the ranges table from an object file.

bool
Dwarf_ranges_table::read_ranges_table(
    Relobj* object,
    const unsigned char* symtab,
    off_t symtab_size,
    unsigned int ranges_shndx)
{
  // If we've already read this abbrev table, return immediately.
  if (this->ranges_shndx_ > 0
      && this->ranges_shndx_ == ranges_shndx)
    return true;

  // If we don't have relocations, ranges_shndx will be 0, and
  // we'll have to hunt for the .debug_ranges section.
  if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
    ranges_shndx = this->ranges_shndx_;
  else if (ranges_shndx == 0)
    {
      for (unsigned int i = 1; i < object->shnum(); ++i)
	{
	  std::string name = object->section_name(i);
	  if (name == ".debug_ranges" || name == ".zdebug_ranges")
	    {
	      ranges_shndx = i;
	      this->output_section_offset_ = object->output_section_offset(i);
	      break;
	    }
	}
      if (ranges_shndx == 0)
	return false;
    }

  // Get the section contents and decompress if necessary.
  if (ranges_shndx != this->ranges_shndx_)
    {
      if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
        {
	  delete[] this->ranges_buffer_;
	  this->owns_ranges_buffer_ = false;
        }

      section_size_type buffer_size;
      this->ranges_buffer_ =
	  object->decompressed_section_contents(ranges_shndx,
						&buffer_size,
						&this->owns_ranges_buffer_);
      this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
      this->ranges_shndx_ = ranges_shndx;
    }

  if (this->ranges_reloc_mapper_ != NULL)
    {
      delete this->ranges_reloc_mapper_;
      this->ranges_reloc_mapper_ = NULL;
    }

  // For incremental objects, we have no relocations.
  if (object->is_incremental())
    return true;

  // Find the relocation section for ".debug_ranges".
  unsigned int reloc_shndx = 0;
  unsigned int reloc_type = 0;
  for (unsigned int i = 0; i < object->shnum(); ++i)
    {
      reloc_type = object->section_type(i);
      if ((reloc_type == elfcpp::SHT_REL
	   || reloc_type == elfcpp::SHT_RELA)
	  && object->section_info(i) == ranges_shndx)
	{
	  reloc_shndx = i;
	  break;
	}
    }

  this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
						     symtab_size);
  this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
  this->reloc_type_ = reloc_type;

  return true;
}

// Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.

Dwarf_range_list*
Dwarf_ranges_table::read_range_list(
    Relobj* object,
    const unsigned char* symtab,
    off_t symtab_size,
    unsigned int addr_size,
    unsigned int ranges_shndx,
    off_t offset)
{
  Dwarf_range_list* ranges;

  if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
    return NULL;

  // Correct the offset.  For incremental update links, we have a
  // relocated offset that is relative to the output section, but
  // here we need an offset relative to the input section.
  offset -= this->output_section_offset_;

  // Read the range list at OFFSET.
  ranges = new Dwarf_range_list();
  off_t base = 0;
  for (;
       this->ranges_buffer_ + offset < this->ranges_buffer_end_;
       offset += 2 * addr_size)
    {
      off_t start;
      off_t end;

      // Read the raw contents of the section.
      if (addr_size == 4)
	{
	  start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
						       + offset);
	  end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
						     + offset + 4);
	}
      else
	{
	  start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
						       + offset);
	  end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
						     + offset + 8);
	}

      // Check for relocations and adjust the values.
      unsigned int shndx1 = 0;
      unsigned int shndx2 = 0;
      if (this->ranges_reloc_mapper_ != NULL)
        {
	  shndx1 = this->lookup_reloc(offset, &start);
	  shndx2 = this->lookup_reloc(offset + addr_size, &end);
        }

      // End of list is marked by a pair of zeroes.
      if (shndx1 == 0 && start == 0 && end == 0)
        break;

      // A "base address selection entry" is identified by
      // 0xffffffff for the first value of the pair.  The second
      // value is used as a base for subsequent range list entries.
      if (shndx1 == 0 && start == -1)
	base = end;
      else if (shndx1 == shndx2)
	{
	  if (shndx1 == 0 || object->is_section_included(shndx1))
	    ranges->add(shndx1, base + start, base + end);
	}
      else
	gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
		       "range list entry are in different sections"),
		     object->name().c_str());
    }

  return ranges;
}

// Look for a relocation at offset OFF in the range table,
// and return the section index and offset of the target.

unsigned int
Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
{
  off_t value;
  unsigned int shndx =
      this->ranges_reloc_mapper_->get_reloc_target(off, &value);
  if (shndx == 0)
    return 0;
  if (this->reloc_type_ == elfcpp::SHT_REL)
    *target_off += value;
  else
    *target_off = value;
  return shndx;
}

// class Dwarf_pubnames_table

// Read the pubnames section from the object file.

bool
Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
                                   off_t symtab_size)
{
  section_size_type buffer_size;
  unsigned int shndx = 0;
  const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
  const char* gnu_name = (this->is_pubtypes_
			  ? "gnu_pubtypes"
			  : "gnu_pubnames");

  for (unsigned int i = 1; i < object->shnum(); ++i)
    {
      std::string section_name = object->section_name(i);
      const char* section_name_suffix = section_name.c_str();
      if (is_prefix_of(".debug_", section_name_suffix))
	section_name_suffix += 7;
      else if (is_prefix_of(".zdebug_", section_name_suffix))
	section_name_suffix += 8;
      else
	continue;
      if (strcmp(section_name_suffix, name) == 0)
        {
          shndx = i;
          break;
        }
      else if (strcmp(section_name_suffix, gnu_name) == 0)
        {
          shndx = i;
          this->is_gnu_style_ = true;
          break;
        }
    }
  if (shndx == 0)
    return false;

  this->buffer_ = object->decompressed_section_contents(shndx,
							&buffer_size,
							&this->owns_buffer_);
  if (this->buffer_ == NULL)
    return false;
  this->buffer_end_ = this->buffer_ + buffer_size;

  // For incremental objects, we have no relocations.
  if (object->is_incremental())
    return true;

  // Find the relocation section
  unsigned int reloc_shndx = 0;
  unsigned int reloc_type = 0;
  for (unsigned int i = 0; i < object->shnum(); ++i)
    {
      reloc_type = object->section_type(i);
      if ((reloc_type == elfcpp::SHT_REL
	   || reloc_type == elfcpp::SHT_RELA)
	  && object->section_info(i) == shndx)
	{
	  reloc_shndx = i;
	  break;
	}
    }

  this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
  this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
  this->reloc_type_ = reloc_type;

  return true;
}

// Read the header for the set at OFFSET.

bool
Dwarf_pubnames_table::read_header(off_t offset)
{
  // Make sure we have actually read the section.
  gold_assert(this->buffer_ != NULL);

  if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
    return false;

  const unsigned char* pinfo = this->buffer_ + offset;

  // Read the unit_length field.
  uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
  pinfo += 4;
  if (unit_length == 0xffffffff)
    {
      unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
      this->unit_length_ = unit_length + 12;
      pinfo += 8;
      this->offset_size_ = 8;
    }
  else
    {
      this->unit_length_ = unit_length + 4;
      this->offset_size_ = 4;
    }
  this->end_of_table_ = pinfo + unit_length;

  // If unit_length is too big, maybe we should reject the whole table,
  // but in cases we know about, it seems OK to assume that the table
  // is valid through the actual end of the section.
  if (this->end_of_table_ > this->buffer_end_)
    this->end_of_table_ = this->buffer_end_;

  // Check the version.
  unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
  pinfo += 2;
  if (version != 2)
    return false;

  this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
                                        &this->cu_offset_);

  // Skip the debug_info_offset and debug_info_size fields.
  pinfo += 2 * this->offset_size_;

  if (pinfo >= this->buffer_end_)
    return false;

  this->pinfo_ = pinfo;
  return true;
}

// Read the next name from the set.

const char*
Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
{
  const unsigned char* pinfo = this->pinfo_;

  // Check for end of list.  The table should be terminated by an
  // entry containing nothing but a DIE offset of 0.
  if (pinfo + this->offset_size_ >= this->end_of_table_)
    return NULL;

  // Skip the offset within the CU.  If this is zero, but we're not
  // at the end of the table, then we have a real pubnames entry
  // whose DIE offset is 0 (likely to be a GCC bug).  Since we
  // don't actually use the DIE offset in building .gdb_index,
  // it's harmless.
  pinfo += this->offset_size_;

  if (this->is_gnu_style_)
    *flag_byte = *pinfo++;
  else
    *flag_byte = 0;

  // Return a pointer to the string at the current location,
  // and advance the pointer to the next entry.
  const char* ret = reinterpret_cast<const char*>(pinfo);
  while (pinfo < this->buffer_end_ && *pinfo != '\0')
    ++pinfo;
  if (pinfo < this->buffer_end_)
    ++pinfo;

  this->pinfo_ = pinfo;
  return ret;
}

// class Dwarf_die

Dwarf_die::Dwarf_die(
    Dwarf_info_reader* dwinfo,
    off_t die_offset,
    Dwarf_die* parent)
  : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
    child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
    attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
    linkage_name_off_(-1), string_shndx_(0), specification_(0),
    abstract_origin_(0)
{
  size_t len;
  const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
  if (pdie == NULL)
    return;
  unsigned int code = read_unsigned_LEB_128(pdie, &len);
  if (code == 0)
    {
      if (parent != NULL)
	parent->set_sibling_offset(die_offset + len);
      return;
    }
  this->attr_offset_ = len;

  // Lookup the abbrev code in the abbrev table.
  this->abbrev_code_ = dwinfo->get_abbrev(code);
}

// Read all the attributes of the DIE.

bool
Dwarf_die::read_attributes()
{
  if (this->attributes_read_)
    return true;

  gold_assert(this->abbrev_code_ != NULL);

  const unsigned char* pdie =
      this->dwinfo_->buffer_at_offset(this->die_offset_);
  if (pdie == NULL)
    return false;
  const unsigned char* pattr = pdie + this->attr_offset_;

  unsigned int nattr = this->abbrev_code_->attributes.size();
  this->attributes_.reserve(nattr);
  for (unsigned int i = 0; i < nattr; ++i)
    {
      size_t len;
      unsigned int attr = this->abbrev_code_->attributes[i].attr;
      unsigned int form = this->abbrev_code_->attributes[i].form;
      if (form == elfcpp::DW_FORM_indirect)
        {
          form = read_unsigned_LEB_128(pattr, &len);
          pattr += len;
        }
      off_t attr_off = this->die_offset_ + (pattr - pdie);
      bool ref_form = false;
      Attribute_value attr_value;
      attr_value.attr = attr;
      attr_value.form = form;
      attr_value.aux.shndx = 0;
      switch(form)
	{
	  case elfcpp::DW_FORM_flag_present:
	    attr_value.val.intval = 1;
	    break;
	  case elfcpp::DW_FORM_strp:
	    {
	      off_t str_off;
	      if (this->dwinfo_->offset_size() == 4)
		str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
	      else
		str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &str_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.refval = str_off;
	      break;
	    }
	  case elfcpp::DW_FORM_sec_offset:
	    {
	      off_t sec_off;
	      if (this->dwinfo_->offset_size() == 4)
		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
	      else
		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.refval = sec_off;
	      ref_form = true;
	      break;
	    }
	  case elfcpp::DW_FORM_addr:
	    {
	      off_t sec_off;
	      if (this->dwinfo_->address_size() == 4)
		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
	      else
		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.refval = sec_off;
	      ref_form = true;
	      break;
	    }
	  case elfcpp::DW_FORM_ref_addr:
	    {
	      off_t sec_off;
	      if (this->dwinfo_->ref_addr_size() == 4)
		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
	      else
		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.refval = sec_off;
	      ref_form = true;
	      break;
	    }
	  case elfcpp::DW_FORM_block1:
	    attr_value.aux.blocklen = *pattr++;
	    attr_value.val.blockval = pattr;
	    pattr += attr_value.aux.blocklen;
	    break;
	  case elfcpp::DW_FORM_block2:
	    attr_value.aux.blocklen =
		this->dwinfo_->read_from_pointer<16>(&pattr);
	    attr_value.val.blockval = pattr;
	    pattr += attr_value.aux.blocklen;
	    break;
	  case elfcpp::DW_FORM_block4:
	    attr_value.aux.blocklen =
		this->dwinfo_->read_from_pointer<32>(&pattr);
	    attr_value.val.blockval = pattr;
	    pattr += attr_value.aux.blocklen;
	    break;
	  case elfcpp::DW_FORM_block:
	  case elfcpp::DW_FORM_exprloc:
	    attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
	    attr_value.val.blockval = pattr + len;
	    pattr += len + attr_value.aux.blocklen;
	    break;
	  case elfcpp::DW_FORM_data1:
	  case elfcpp::DW_FORM_flag:
	    attr_value.val.intval = *pattr++;
	    break;
	  case elfcpp::DW_FORM_ref1:
	    attr_value.val.refval = *pattr++;
	    ref_form = true;
	    break;
	  case elfcpp::DW_FORM_data2:
	    attr_value.val.intval =
		this->dwinfo_->read_from_pointer<16>(&pattr);
	    break;
	  case elfcpp::DW_FORM_ref2:
	    attr_value.val.refval =
		this->dwinfo_->read_from_pointer<16>(&pattr);
	    ref_form = true;
	    break;
	  case elfcpp::DW_FORM_data4:
	    {
	      off_t sec_off;
	      sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.intval = sec_off;
	      break;
	    }
	  case elfcpp::DW_FORM_ref4:
	    {
	      off_t sec_off;
	      sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.refval = sec_off;
	      ref_form = true;
	      break;
	    }
	  case elfcpp::DW_FORM_data8:
	    {
	      off_t sec_off;
	      sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.intval = sec_off;
	      break;
	    }
	  case elfcpp::DW_FORM_ref_sig8:
	    attr_value.val.uintval =
		this->dwinfo_->read_from_pointer<64>(&pattr);
	    break;
	  case elfcpp::DW_FORM_ref8:
	    {
	      off_t sec_off;
	      sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
	      unsigned int shndx =
		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
	      attr_value.aux.shndx = shndx;
	      attr_value.val.refval = sec_off;
	      ref_form = true;
	      break;
	    }
	  case elfcpp::DW_FORM_ref_udata:
	    attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
	    ref_form = true;
	    pattr += len;
	    break;
	  case elfcpp::DW_FORM_udata:
	  case elfcpp::DW_FORM_GNU_addr_index:
	  case elfcpp::DW_FORM_GNU_str_index:
	    attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
	    pattr += len;
	    break;
	  case elfcpp::DW_FORM_sdata:
	    attr_value.val.intval = read_signed_LEB_128(pattr, &len);
	    pattr += len;
	    break;
	  case elfcpp::DW_FORM_string:
	    attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
	    len = strlen(attr_value.val.stringval);
	    pattr += len + 1;
	    break;
	  default:
	    return false;
	}

      // Cache the most frequently-requested attributes.
      switch (attr)
	{
	  case elfcpp::DW_AT_name:
	    if (form == elfcpp::DW_FORM_string)
	      this->name_ = attr_value.val.stringval;
	    else if (form == elfcpp::DW_FORM_strp)
	      {
		// All indirect strings should refer to the same
		// string section, so we just save the last one seen.
		this->string_shndx_ = attr_value.aux.shndx;
		this->name_off_ = attr_value.val.refval;
	      }
	    break;
	  case elfcpp::DW_AT_linkage_name:
	  case elfcpp::DW_AT_MIPS_linkage_name:
	    if (form == elfcpp::DW_FORM_string)
	      this->linkage_name_ = attr_value.val.stringval;
	    else if (form == elfcpp::DW_FORM_strp)
	      {
		// All indirect strings should refer to the same
		// string section, so we just save the last one seen.
		this->string_shndx_ = attr_value.aux.shndx;
		this->linkage_name_off_ = attr_value.val.refval;
	      }
	    break;
	  case elfcpp::DW_AT_specification:
	    if (ref_form)
	      this->specification_ = attr_value.val.refval;
	    break;
	  case elfcpp::DW_AT_abstract_origin:
	    if (ref_form)
	      this->abstract_origin_ = attr_value.val.refval;
	    break;
	  case elfcpp::DW_AT_sibling:
	    if (ref_form && attr_value.aux.shndx == 0)
	      this->sibling_offset_ = attr_value.val.refval;
	  default:
	    break;
	}

      this->attributes_.push_back(attr_value);
    }

  // Now that we know where the next DIE begins, record the offset
  // to avoid later recalculation.
  if (this->has_children())
    this->child_offset_ = this->die_offset_ + (pattr - pdie);
  else
    this->sibling_offset_ = this->die_offset_ + (pattr - pdie);

  this->attributes_read_ = true;
  return true;
}

// Skip all the attributes of the DIE and return the offset of the next DIE.

off_t
Dwarf_die::skip_attributes()
{
  gold_assert(this->abbrev_code_ != NULL);

  const unsigned char* pdie =
      this->dwinfo_->buffer_at_offset(this->die_offset_);
  if (pdie == NULL)
    return 0;
  const unsigned char* pattr = pdie + this->attr_offset_;

  for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
    {
      size_t len;
      unsigned int form = this->abbrev_code_->attributes[i].form;
      if (form == elfcpp::DW_FORM_indirect)
        {
          form = read_unsigned_LEB_128(pattr, &len);
          pattr += len;
        }
      switch(form)
	{
	  case elfcpp::DW_FORM_flag_present:
	    break;
	  case elfcpp::DW_FORM_strp:
	  case elfcpp::DW_FORM_sec_offset:
	    pattr += this->dwinfo_->offset_size();
	    break;
	  case elfcpp::DW_FORM_addr:
	    pattr += this->dwinfo_->address_size();
	    break;
	  case elfcpp::DW_FORM_ref_addr:
	    pattr += this->dwinfo_->ref_addr_size();
	    break;
	  case elfcpp::DW_FORM_block1:
	    pattr += 1 + *pattr;
	    break;
	  case elfcpp::DW_FORM_block2:
	    {
	      uint16_t block_size;
	      block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
	      pattr += block_size;
	      break;
	    }
	  case elfcpp::DW_FORM_block4:
	    {
	      uint32_t block_size;
	      block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
	      pattr += block_size;
	      break;
	    }
	  case elfcpp::DW_FORM_block:
	  case elfcpp::DW_FORM_exprloc:
	    {
	      uint64_t block_size;
	      block_size = read_unsigned_LEB_128(pattr, &len);
	      pattr += len + block_size;
	      break;
	    }
	  case elfcpp::DW_FORM_data1:
	  case elfcpp::DW_FORM_ref1:
	  case elfcpp::DW_FORM_flag:
	    pattr += 1;
	    break;
	  case elfcpp::DW_FORM_data2:
	  case elfcpp::DW_FORM_ref2:
	    pattr += 2;
	    break;
	  case elfcpp::DW_FORM_data4:
	  case elfcpp::DW_FORM_ref4:
	    pattr += 4;
	    break;
	  case elfcpp::DW_FORM_data8:
	  case elfcpp::DW_FORM_ref8:
	  case elfcpp::DW_FORM_ref_sig8:
	    pattr += 8;
	    break;
	  case elfcpp::DW_FORM_ref_udata:
	  case elfcpp::DW_FORM_udata:
	  case elfcpp::DW_FORM_GNU_addr_index:
	  case elfcpp::DW_FORM_GNU_str_index:
	    read_unsigned_LEB_128(pattr, &len);
	    pattr += len;
	    break;
	  case elfcpp::DW_FORM_sdata:
	    read_signed_LEB_128(pattr, &len);
	    pattr += len;
	    break;
	  case elfcpp::DW_FORM_string:
	    len = strlen(reinterpret_cast<const char*>(pattr));
	    pattr += len + 1;
	    break;
	  default:
	    return 0;
	}
    }

  return this->die_offset_ + (pattr - pdie);
}

// Get the name of the DIE and cache it.

void
Dwarf_die::set_name()
{
  if (this->name_ != NULL || !this->read_attributes())
    return;
  if (this->name_off_ != -1)
    this->name_ = this->dwinfo_->get_string(this->name_off_,
					    this->string_shndx_);
}

// Get the linkage name of the DIE and cache it.

void
Dwarf_die::set_linkage_name()
{
  if (this->linkage_name_ != NULL || !this->read_attributes())
    return;
  if (this->linkage_name_off_ != -1)
    this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
						    this->string_shndx_);
}

// Return the value of attribute ATTR.

const Dwarf_die::Attribute_value*
Dwarf_die::attribute(unsigned int attr)
{
  if (!this->read_attributes())
    return NULL;
  for (unsigned int i = 0; i < this->attributes_.size(); ++i)
    {
      if (this->attributes_[i].attr == attr)
        return &this->attributes_[i];
    }
  return NULL;
}

const char*
Dwarf_die::string_attribute(unsigned int attr)
{
  const Attribute_value* attr_val = this->attribute(attr);
  if (attr_val == NULL)
    return NULL;
  switch (attr_val->form)
    {
      case elfcpp::DW_FORM_string:
        return attr_val->val.stringval;
      case elfcpp::DW_FORM_strp:
	return this->dwinfo_->get_string(attr_val->val.refval,
					 attr_val->aux.shndx);
      default:
        return NULL;
    }
}

int64_t
Dwarf_die::int_attribute(unsigned int attr)
{
  const Attribute_value* attr_val = this->attribute(attr);
  if (attr_val == NULL)
    return 0;
  switch (attr_val->form)
    {
      case elfcpp::DW_FORM_flag_present:
      case elfcpp::DW_FORM_data1:
      case elfcpp::DW_FORM_flag:
      case elfcpp::DW_FORM_data2:
      case elfcpp::DW_FORM_data4:
      case elfcpp::DW_FORM_data8:
      case elfcpp::DW_FORM_sdata:
        return attr_val->val.intval;
      default:
        return 0;
    }
}

uint64_t
Dwarf_die::uint_attribute(unsigned int attr)
{
  const Attribute_value* attr_val = this->attribute(attr);
  if (attr_val == NULL)
    return 0;
  switch (attr_val->form)
    {
      case elfcpp::DW_FORM_flag_present:
      case elfcpp::DW_FORM_data1:
      case elfcpp::DW_FORM_flag:
      case elfcpp::DW_FORM_data4:
      case elfcpp::DW_FORM_data8:
      case elfcpp::DW_FORM_ref_sig8:
      case elfcpp::DW_FORM_udata:
        return attr_val->val.uintval;
      default:
        return 0;
    }
}

off_t
Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
{
  const Attribute_value* attr_val = this->attribute(attr);
  if (attr_val == NULL)
    return -1;
  switch (attr_val->form)
    {
      case elfcpp::DW_FORM_sec_offset:
      case elfcpp::DW_FORM_addr:
      case elfcpp::DW_FORM_ref_addr:
      case elfcpp::DW_FORM_ref1:
      case elfcpp::DW_FORM_ref2:
      case elfcpp::DW_FORM_ref4:
      case elfcpp::DW_FORM_ref8:
      case elfcpp::DW_FORM_ref_udata:
        *shndx = attr_val->aux.shndx;
        return attr_val->val.refval;
      case elfcpp::DW_FORM_ref_sig8:
        *shndx = attr_val->aux.shndx;
        return attr_val->val.uintval;
      case elfcpp::DW_FORM_data4:
      case elfcpp::DW_FORM_data8:
        *shndx = attr_val->aux.shndx;
        return attr_val->val.intval;
      default:
        return -1;
    }
}

off_t
Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
{
  const Attribute_value* attr_val = this->attribute(attr);
  if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
    return -1;

  *shndx = attr_val->aux.shndx;
  return attr_val->val.refval;
}

// Return the offset of this DIE's first child.

off_t
Dwarf_die::child_offset()
{
  gold_assert(this->abbrev_code_ != NULL);
  if (!this->has_children())
    return 0;
  if (this->child_offset_ == 0)
    this->child_offset_ = this->skip_attributes();
  return this->child_offset_;
}

// Return the offset of this DIE's next sibling.

off_t
Dwarf_die::sibling_offset()
{
  gold_assert(this->abbrev_code_ != NULL);

  if (this->sibling_offset_ != 0)
    return this->sibling_offset_;

  if (!this->has_children())
    {
      this->sibling_offset_ = this->skip_attributes();
      return this->sibling_offset_;
    }

  if (this->has_sibling_attribute())
    {
      if (!this->read_attributes())
	return 0;
      if (this->sibling_offset_ != 0)
	return this->sibling_offset_;
    }

  // Skip over the children.
  off_t child_offset = this->child_offset();
  while (child_offset > 0)
    {
      Dwarf_die die(this->dwinfo_, child_offset, this);
      // The Dwarf_die ctor will set this DIE's sibling offset
      // when it reads a zero abbrev code.
      if (die.tag() == 0)
	break;
      child_offset = die.sibling_offset();
    }

  // This should be set by now.  If not, there was a problem reading
  // the DWARF info, and we return 0.
  return this->sibling_offset_;
}

// class Dwarf_info_reader

// Begin parsing the debug info.  This calls visit_compilation_unit()
// or visit_type_unit() for each compilation or type unit found in the
// section, and visit_die() for each top-level DIE.

void
Dwarf_info_reader::parse()
{
  if (this->object_->is_big_endian())
    {
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
      this->do_parse<true>();
#else
      gold_unreachable();
#endif
    }
  else
    {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
      this->do_parse<false>();
#else
      gold_unreachable();
#endif
    }
}

template<bool big_endian>
void
Dwarf_info_reader::do_parse()
{
  // Get the section contents and decompress if necessary.
  section_size_type buffer_size;
  bool buffer_is_new;
  this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
							       &buffer_size,
							       &buffer_is_new);
  if (this->buffer_ == NULL || buffer_size == 0)
    return;
  this->buffer_end_ = this->buffer_ + buffer_size;

  // The offset of this input section in the output section.
  off_t section_offset = this->object_->output_section_offset(this->shndx_);

  // Start tracking relocations for this section.
  this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
					      this->symtab_size_);
  this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);

  // Loop over compilation units (or type units).
  unsigned int abbrev_shndx = this->abbrev_shndx_;
  off_t abbrev_offset = 0;
  const unsigned char* pinfo = this->buffer_;
  while (pinfo < this->buffer_end_)
    {
      // Read the compilation (or type) unit header.
      const unsigned char* cu_start = pinfo;
      this->cu_offset_ = cu_start - this->buffer_;
      this->cu_length_ = this->buffer_end_ - cu_start;

      // Read unit_length (4 or 12 bytes).
      if (!this->check_buffer(pinfo + 4))
	break;
      uint32_t unit_length =
          elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
      pinfo += 4;
      if (unit_length == 0xffffffff)
	{
	  if (!this->check_buffer(pinfo + 8))
	    break;
	  unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
	  pinfo += 8;
	  this->offset_size_ = 8;
	}
      else
	this->offset_size_ = 4;
      if (!this->check_buffer(pinfo + unit_length))
	break;
      const unsigned char* cu_end = pinfo + unit_length;
      this->cu_length_ = cu_end - cu_start;
      if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
	break;

      // Read version (2 bytes).
      this->cu_version_ =
	  elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
      pinfo += 2;

      // Read debug_abbrev_offset (4 or 8 bytes).
      if (this->offset_size_ == 4)
	abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
      else
	abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
      if (this->reloc_shndx_ > 0)
	{
	  off_t reloc_offset = pinfo - this->buffer_;
	  off_t value;
	  abbrev_shndx =
	      this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
	  if (abbrev_shndx == 0)
	    return;
	  if (this->reloc_type_ == elfcpp::SHT_REL)
	    abbrev_offset += value;
	  else
	    abbrev_offset = value;
	}
      pinfo += this->offset_size_;

      // Read address_size (1 byte).
      this->address_size_ = *pinfo++;

      // For type units, read the two extra fields.
      uint64_t signature = 0;
      off_t type_offset = 0;
      if (this->is_type_unit_)
        {
	  if (!this->check_buffer(pinfo + 8 + this->offset_size_))
	    break;

	  // Read type_signature (8 bytes).
	  signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
	  pinfo += 8;

	  // Read type_offset (4 or 8 bytes).
	  if (this->offset_size_ == 4)
	    type_offset =
		elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
	  else
	    type_offset =
		elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
	  pinfo += this->offset_size_;
	}

      // Read the .debug_abbrev table.
      this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
				       abbrev_offset);

      // Visit the root DIE.
      Dwarf_die root_die(this,
			 pinfo - (this->buffer_ + this->cu_offset_),
			 NULL);
      if (root_die.tag() != 0)
	{
	  // Visit the CU or TU.
	  if (this->is_type_unit_)
	    this->visit_type_unit(section_offset + this->cu_offset_,
				  cu_end - cu_start, type_offset, signature,
				  &root_die);
	  else
	    this->visit_compilation_unit(section_offset + this->cu_offset_,
					 cu_end - cu_start, &root_die);
	}

      // Advance to the next CU.
      pinfo = cu_end;
    }

  if (buffer_is_new)
    {
      delete[] this->buffer_;
      this->buffer_ = NULL;
    }
}

// Read the DWARF string table.

bool
Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
{
  Relobj* object = this->object_;

  // If we don't have relocations, string_shndx will be 0, and
  // we'll have to hunt for the .debug_str section.
  if (string_shndx == 0)
    {
      for (unsigned int i = 1; i < this->object_->shnum(); ++i)
	{
	  std::string name = object->section_name(i);
	  if (name == ".debug_str" || name == ".zdebug_str")
	    {
	      string_shndx = i;
	      this->string_output_section_offset_ =
		  object->output_section_offset(i);
	      break;
	    }
	}
      if (string_shndx == 0)
	return false;
    }

  if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
    {
      delete[] this->string_buffer_;
      this->owns_string_buffer_ = false;
    }

  // Get the secton contents and decompress if necessary.
  section_size_type buffer_size;
  const unsigned char* buffer =
      object->decompressed_section_contents(string_shndx,
					    &buffer_size,
					    &this->owns_string_buffer_);
  this->string_buffer_ = reinterpret_cast<const char*>(buffer);
  this->string_buffer_end_ = this->string_buffer_ + buffer_size;
  this->string_shndx_ = string_shndx;
  return true;
}

// Read a possibly unaligned integer of SIZE.
template <int valsize>
inline typename elfcpp::Valtype_base<valsize>::Valtype
Dwarf_info_reader::read_from_pointer(const unsigned char* source)
{
  typename elfcpp::Valtype_base<valsize>::Valtype return_value;
  if (this->object_->is_big_endian())
    return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
  else
    return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
  return return_value;
}

// Read a possibly unaligned integer of SIZE.  Update SOURCE after read.
template <int valsize>
inline typename elfcpp::Valtype_base<valsize>::Valtype
Dwarf_info_reader::read_from_pointer(const unsigned char** source)
{
  typename elfcpp::Valtype_base<valsize>::Valtype return_value;
  if (this->object_->is_big_endian())
    return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
  else
    return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
  *source += valsize / 8;
  return return_value;
}

// Look for a relocation at offset ATTR_OFF in the dwarf info,
// and return the section index and offset of the target.

unsigned int
Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
{
  off_t value;
  attr_off += this->cu_offset_;
  unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
  if (shndx == 0)
    return 0;
  if (this->reloc_type_ == elfcpp::SHT_REL)
    *target_off += value;
  else
    *target_off = value;
  return shndx;
}

// Return a string from the DWARF string table.

const char*
Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
{
  if (!this->read_string_table(string_shndx))
    return NULL;

  // Correct the offset.  For incremental update links, we have a
  // relocated offset that is relative to the output section, but
  // here we need an offset relative to the input section.
  str_off -= this->string_output_section_offset_;

  const char* p = this->string_buffer_ + str_off;

  if (p < this->string_buffer_ || p >= this->string_buffer_end_)
    return NULL;

  return p;
}

// The following are default, do-nothing, implementations of the
// hook methods normally provided by a derived class.  We provide
// default implementations rather than no implementation so that
// a derived class needs to implement only the hooks that it needs
// to use.

// Process a compilation unit and parse its child DIE.

void
Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
{
}

// Process a type unit and parse its child DIE.

void
Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
{
}

// Print a warning about a corrupt debug section.

void
Dwarf_info_reader::warn_corrupt_debug_section() const
{
  gold_warning(_("%s: corrupt debug info in %s"),
	       this->object_->name().c_str(),
	       this->object_->section_name(this->shndx_).c_str());
}

// class Sized_dwarf_line_info

struct LineStateMachine
{
  int file_num;
  uint64_t address;
  int line_num;
  int column_num;
  unsigned int shndx;    // the section address refers to
  bool is_stmt;          // stmt means statement.
  bool basic_block;
  bool end_sequence;
};

static void
ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
{
  lsm->file_num = 1;
  lsm->address = 0;
  lsm->line_num = 1;
  lsm->column_num = 0;
  lsm->shndx = -1U;
  lsm->is_stmt = default_is_stmt;
  lsm->basic_block = false;
  lsm->end_sequence = false;
}

template<int size, bool big_endian>
Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
    Object* object,
    unsigned int read_shndx)
  : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
    reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
    current_header_index_(-1)
{
  unsigned int debug_shndx;

  for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
    {
      // FIXME: do this more efficiently: section_name() isn't super-fast
      std::string name = object->section_name(debug_shndx);
      if (name == ".debug_line" || name == ".zdebug_line")
	{
	  section_size_type buffer_size;
	  bool is_new = false;
	  this->buffer_ = object->decompressed_section_contents(debug_shndx,
								&buffer_size,
								&is_new);
	  if (is_new)
	    this->buffer_start_ = this->buffer_;
	  this->buffer_end_ = this->buffer_ + buffer_size;
	  break;
	}
    }
  if (this->buffer_ == NULL)
    return;

  // Find the relocation section for ".debug_line".
  // We expect these for relobjs (.o's) but not dynobjs (.so's).
  unsigned int reloc_shndx = 0;
  for (unsigned int i = 0; i < object->shnum(); ++i)
    {
      unsigned int reloc_sh_type = object->section_type(i);
      if ((reloc_sh_type == elfcpp::SHT_REL
	   || reloc_sh_type == elfcpp::SHT_RELA)
	  && object->section_info(i) == debug_shndx)
	{
	  reloc_shndx = i;
	  this->track_relocs_type_ = reloc_sh_type;
	  break;
	}
    }

  // Finally, we need the symtab section to interpret the relocs.
  if (reloc_shndx != 0)
    {
      unsigned int symtab_shndx;
      for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
        if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
          {
	    this->symtab_buffer_ = object->section_contents(
		symtab_shndx, &this->symtab_buffer_size_, false);
            break;
          }
      if (this->symtab_buffer_ == NULL)
        return;
    }

  this->reloc_mapper_ =
      new Sized_elf_reloc_mapper<size, big_endian>(object,
						   this->symtab_buffer_,
						   this->symtab_buffer_size_);
  if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
    return;

  // Now that we have successfully read all the data, parse the debug
  // info.
  this->data_valid_ = true;
  this->read_line_mappings(read_shndx);
}

// Read the DWARF header.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
    const unsigned char* lineptr)
{
  uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
  lineptr += 4;

  // In DWARF2/3, if the initial length is all 1 bits, then the offset
  // size is 8 and we need to read the next 8 bytes for the real length.
  if (initial_length == 0xffffffff)
    {
      header_.offset_size = 8;
      initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
      lineptr += 8;
    }
  else
    header_.offset_size = 4;

  header_.total_length = initial_length;

  gold_assert(lineptr + header_.total_length <= buffer_end_);

  header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
  lineptr += 2;

  if (header_.offset_size == 4)
    header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
  else
    header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
  lineptr += header_.offset_size;

  header_.min_insn_length = *lineptr;
  lineptr += 1;

  if (header_.version < 4)
    header_.max_ops_per_insn = 1;
  else
    {
      // DWARF 4 added the maximum_operations_per_instruction field.
      header_.max_ops_per_insn = *lineptr;
      lineptr += 1;
      // TODO: Add support for values other than 1.
      gold_assert(header_.max_ops_per_insn == 1);
    }

  header_.default_is_stmt = *lineptr;
  lineptr += 1;

  header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
  lineptr += 1;

  header_.line_range = *lineptr;
  lineptr += 1;

  header_.opcode_base = *lineptr;
  lineptr += 1;

  header_.std_opcode_lengths.resize(header_.opcode_base + 1);
  header_.std_opcode_lengths[0] = 0;
  for (int i = 1; i < header_.opcode_base; i++)
    {
      header_.std_opcode_lengths[i] = *lineptr;
      lineptr += 1;
    }

  return lineptr;
}

// The header for a debug_line section is mildly complicated, because
// the line info is very tightly encoded.

template<int size, bool big_endian>
const unsigned char*
Sized_dwarf_line_info<size, big_endian>::read_header_tables(
    const unsigned char* lineptr)
{
  ++this->current_header_index_;

  // Create a new directories_ entry and a new files_ entry for our new
  // header.  We initialize each with a single empty element, because
  // dwarf indexes directory and filenames starting at 1.
  gold_assert(static_cast<int>(this->directories_.size())
	      == this->current_header_index_);
  gold_assert(static_cast<int>(this->files_.size())
	      == this->current_header_index_);
  this->directories_.push_back(std::vector<std::string>(1));
  this->files_.push_back(std::vector<std::pair<int, std::string> >(1));

  // It is legal for the directory entry table to be empty.
  if (*lineptr)
    {
      int dirindex = 1;
      while (*lineptr)
        {
	  const char* dirname = reinterpret_cast<const char*>(lineptr);
          gold_assert(dirindex
		      == static_cast<int>(this->directories_.back().size()));
          this->directories_.back().push_back(dirname);
          lineptr += this->directories_.back().back().size() + 1;
          dirindex++;
        }
    }
  lineptr++;

  // It is also legal for the file entry table to be empty.
  if (*lineptr)
    {
      int fileindex = 1;
      size_t len;
      while (*lineptr)
        {
          const char* filename = reinterpret_cast<const char*>(lineptr);
          lineptr += strlen(filename) + 1;

          uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
          lineptr += len;

          if (dirindex >= this->directories_.back().size())
            dirindex = 0;
	  int dirindexi = static_cast<int>(dirindex);

          read_unsigned_LEB_128(lineptr, &len);   // mod_time
          lineptr += len;

          read_unsigned_LEB_128(lineptr, &len);   // filelength
          lineptr += len;

          gold_assert(fileindex
		      == static_cast<int>(this->files_.back().size()));
          this->files_.back().push_back(std::make_pair(dirindexi, filename));
          fileindex++;
        }
    }
  lineptr++;

  return lineptr;
}

// Process a single opcode in the .debug.line structure.

template<int size, bool big_endian>
bool
Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
    const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
{
  size_t oplen = 0;
  size_t templen;
  unsigned char opcode = *start;
  oplen++;
  start++;

  // If the opcode is great than the opcode_base, it is a special
  // opcode. Most line programs consist mainly of special opcodes.
  if (opcode >= header_.opcode_base)
    {
      opcode -= header_.opcode_base;
      const int advance_address = ((opcode / header_.line_range)
                                   * header_.min_insn_length);
      lsm->address += advance_address;

      const int advance_line = ((opcode % header_.line_range)
                                + header_.line_base);
      lsm->line_num += advance_line;
      lsm->basic_block = true;
      *len = oplen;
      return true;
    }

  // Otherwise, we have the regular opcodes
  switch (opcode)
    {
    case elfcpp::DW_LNS_copy:
      lsm->basic_block = false;
      *len = oplen;
      return true;

    case elfcpp::DW_LNS_advance_pc:
      {
        const uint64_t advance_address
            = read_unsigned_LEB_128(start, &templen);
        oplen += templen;
        lsm->address += header_.min_insn_length * advance_address;
      }
      break;

    case elfcpp::DW_LNS_advance_line:
      {
        const uint64_t advance_line = read_signed_LEB_128(start, &templen);
        oplen += templen;
        lsm->line_num += advance_line;
      }
      break;

    case elfcpp::DW_LNS_set_file:
      {
        const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
        oplen += templen;
        lsm->file_num = fileno;
      }
      break;

    case elfcpp::DW_LNS_set_column:
      {
        const uint64_t colno = read_unsigned_LEB_128(start, &templen);
        oplen += templen;
        lsm->column_num = colno;
      }
      break;

    case elfcpp::DW_LNS_negate_stmt:
      lsm->is_stmt = !lsm->is_stmt;
      break;

    case elfcpp::DW_LNS_set_basic_block:
      lsm->basic_block = true;
      break;

    case elfcpp::DW_LNS_fixed_advance_pc:
      {
        int advance_address;
        advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
        oplen += 2;
        lsm->address += advance_address;
      }
      break;

    case elfcpp::DW_LNS_const_add_pc:
      {
        const int advance_address = (header_.min_insn_length
                                     * ((255 - header_.opcode_base)
                                        / header_.line_range));
        lsm->address += advance_address;
      }
      break;

    case elfcpp::DW_LNS_extended_op:
      {
        const uint64_t extended_op_len
            = read_unsigned_LEB_128(start, &templen);
        start += templen;
        oplen += templen + extended_op_len;

        const unsigned char extended_op = *start;
        start++;

        switch (extended_op)
          {
          case elfcpp::DW_LNE_end_sequence:
            // This means that the current byte is the one immediately
            // after a set of instructions.  Record the current line
            // for up to one less than the current address.
            lsm->line_num = -1;
            lsm->end_sequence = true;
            *len = oplen;
            return true;

          case elfcpp::DW_LNE_set_address:
            {
              lsm->address =
		elfcpp::Swap_unaligned<size, big_endian>::readval(start);
              typename Reloc_map::const_iterator it
                  = this->reloc_map_.find(start - this->buffer_);
              if (it != reloc_map_.end())
                {
		  // If this is a SHT_RELA section, then ignore the
		  // section contents.  This assumes that this is a
		  // straight reloc which just uses the reloc addend.
		  // The reloc addend has already been included in the
		  // symbol value.
		  if (this->track_relocs_type_ == elfcpp::SHT_RELA)
		    lsm->address = 0;
		  // Add in the symbol value.
		  lsm->address += it->second.second;
                  lsm->shndx = it->second.first;
                }
              else
                {
                  // If we're a normal .o file, with relocs, every
                  // set_address should have an associated relocation.
		  if (this->input_is_relobj())
                    this->data_valid_ = false;
                }
              break;
            }
          case elfcpp::DW_LNE_define_file:
            {
              const char* filename  = reinterpret_cast<const char*>(start);
              templen = strlen(filename) + 1;
              start += templen;

              uint64_t dirindex = read_unsigned_LEB_128(start, &templen);

              if (dirindex >= this->directories_.back().size())
                dirindex = 0;
	      int dirindexi = static_cast<int>(dirindex);

              // This opcode takes two additional ULEB128 parameters
              // (mod_time and filelength), but we don't use those
              // values.  Because OPLEN already tells us how far to
              // skip to the next opcode, we don't need to read
              // them at all.

              this->files_.back().push_back(std::make_pair(dirindexi,
							   filename));
            }
            break;
          }
      }
      break;

    default:
      {
        // Ignore unknown opcode  silently
        for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
          {
            size_t templen;
            read_unsigned_LEB_128(start, &templen);
            start += templen;
            oplen += templen;
          }
      }
      break;
  }
  *len = oplen;
  return false;
}

// Read the debug information at LINEPTR and store it in the line
// number map.

template<int size, bool big_endian>
unsigned const char*
Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
                                                    unsigned int shndx)
{
  struct LineStateMachine lsm;

  // LENGTHSTART is the place the length field is based on.  It is the
  // point in the header after the initial length field.
  const unsigned char* lengthstart = buffer_;

  // In 64 bit dwarf, the initial length is 12 bytes, because of the
  // 0xffffffff at the start.
  if (header_.offset_size == 8)
    lengthstart += 12;
  else
    lengthstart += 4;

  while (lineptr < lengthstart + header_.total_length)
    {
      ResetLineStateMachine(&lsm, header_.default_is_stmt);
      while (!lsm.end_sequence)
        {
          size_t oplength;
          bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
          if (add_line
              && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
            {
              Offset_to_lineno_entry entry
                  = { static_cast<off_t>(lsm.address),
		      this->current_header_index_,
		      static_cast<unsigned int>(lsm.file_num),
		      true, lsm.line_num };
	      std::vector<Offset_to_lineno_entry>&
		map(this->line_number_map_[lsm.shndx]);
	      // If we see two consecutive entries with the same
	      // offset and a real line number, then mark the first
	      // one as non-canonical.
	      if (!map.empty()
		  && (map.back().offset == static_cast<off_t>(lsm.address))
		  && lsm.line_num != -1
		  && map.back().line_num != -1)
		map.back().last_line_for_offset = false;
	      map.push_back(entry);
            }
          lineptr += oplength;
        }
    }

  return lengthstart + header_.total_length;
}

// Read the relocations into a Reloc_map.

template<int size, bool big_endian>
void
Sized_dwarf_line_info<size, big_endian>::read_relocs()
{
  if (this->symtab_buffer_ == NULL)
    return;

  off_t value;
  off_t reloc_offset;
  while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
    {
      const unsigned int shndx =
          this->reloc_mapper_->get_reloc_target(reloc_offset, &value);

      // There is no reason to record non-ordinary section indexes, or
      // SHN_UNDEF, because they will never match the real section.
      if (shndx != 0)
	this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);

      this->reloc_mapper_->advance(reloc_offset + 1);
    }
}

// Read the line number info.

template<int size, bool big_endian>
void
Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
{
  gold_assert(this->data_valid_ == true);

  this->read_relocs();
  while (this->buffer_ < this->buffer_end_)
    {
      const unsigned char* lineptr = this->buffer_;
      lineptr = this->read_header_prolog(lineptr);
      lineptr = this->read_header_tables(lineptr);
      lineptr = this->read_lines(lineptr, shndx);
      this->buffer_ = lineptr;
    }

  // Sort the lines numbers, so addr2line can use binary search.
  for (typename Lineno_map::iterator it = line_number_map_.begin();
       it != line_number_map_.end();
       ++it)
    // Each vector needs to be sorted by offset.
    std::sort(it->second.begin(), it->second.end());
}

// Some processing depends on whether the input is a .o file or not.
// For instance, .o files have relocs, and have .debug_lines
// information on a per section basis.  .so files, on the other hand,
// lack relocs, and offsets are unique, so we can ignore the section
// information.

template<int size, bool big_endian>
bool
Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
{
  // Only .o files have relocs and the symtab buffer that goes with them.
  return this->symtab_buffer_ != NULL;
}

// Given an Offset_to_lineno_entry vector, and an offset, figure out
// if the offset points into a function according to the vector (see
// comments below for the algorithm).  If it does, return an iterator
// into the vector that points to the line-number that contains that
// offset.  If not, it returns vector::end().

static std::vector<Offset_to_lineno_entry>::const_iterator
offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
                   off_t offset)
{
  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };

  // lower_bound() returns the smallest offset which is >= lookup_key.
  // If no offset in offsets is >= lookup_key, returns end().
  std::vector<Offset_to_lineno_entry>::const_iterator it
      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);

  // This code is easiest to understand with a concrete example.
  // Here's a possible offsets array:
  // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16},  // 0
  //  {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20},  // 1
  //  {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22},  // 2
  //  {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25},  // 3
  //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1},  // 4
  //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65},  // 5
  //  {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66},  // 6
  //  {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1},  // 7
  //  {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48},  // 8
  //  {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47},  // 9
  //  {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49},  // 10
  //  {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50},  // 11
  //  {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51},  // 12
  //  {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1},  // 13
  //  {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19},  // 14
  //  {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20},  // 15
  //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67},  // 16
  //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1},  // 17
  //  {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66},  // 18
  //  {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68},  // 19
  //  {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1},  // 20
  // The entries with line_num == -1 mark the end of a function: the
  // associated offset is one past the last instruction in the
  // function.  This can correspond to the beginning of the next
  // function (as is true for offset 3232); alternately, there can be
  // a gap between the end of one function and the start of the next
  // (as is true for some others, most obviously from 3236->5764).
  //
  // Case 1: lookup_key has offset == 10.  lower_bound returns
  //         offsets[0].  Since it's not an exact match and we're
  //         at the beginning of offsets, we return end() (invalid).
  // Case 2: lookup_key has offset 10000.  lower_bound returns
  //         offset[21] (end()).  We return end() (invalid).
  // Case 3: lookup_key has offset == 3211.  lower_bound matches
  //         offsets[0] exactly, and that's the entry we return.
  // Case 4: lookup_key has offset == 3232.  lower_bound returns
  //         offsets[4].  That's an exact match, but indicates
  //         end-of-function.  We check if offsets[5] is also an
  //         exact match but not end-of-function.  It is, so we
  //         return offsets[5].
  // Case 5: lookup_key has offset == 3214.  lower_bound returns
  //         offsets[1].  Since it's not an exact match, we back
  //         up to the offset that's < lookup_key, offsets[0].
  //         We note offsets[0] is a valid entry (not end-of-function),
  //         so that's the entry we return.
  // Case 6: lookup_key has offset == 4000.  lower_bound returns
  //         offsets[8].  Since it's not an exact match, we back
  //         up to offsets[7].  Since offsets[7] indicates
  //         end-of-function, we know lookup_key is between
  //         functions, so we return end() (not a valid offset).
  // Case 7: lookup_key has offset == 5794.  lower_bound returns
  //         offsets[19].  Since it's not an exact match, we back
  //         up to offsets[16].  Note we back up to the *first*
  //         entry with offset 5793, not just offsets[19-1].
  //         We note offsets[16] is a valid entry, so we return it.
  //         If offsets[16] had had line_num == -1, we would have
  //         checked offsets[17].  The reason for this is that
  //         16 and 17 can be in an arbitrary order, since we sort
  //         only by offset and last_line_for_offset.  (Note it
  //         doesn't help to use line_number as a tertiary sort key,
  //         since sometimes we want the -1 to be first and sometimes
  //         we want it to be last.)

  // This deals with cases (1) and (2).
  if ((it == offsets->begin() && offset < it->offset)
      || it == offsets->end())
    return offsets->end();

  // This deals with cases (3) and (4).
  if (offset == it->offset)
    {
      while (it != offsets->end()
             && it->offset == offset
             && it->line_num == -1)
        ++it;
      if (it == offsets->end() || it->offset != offset)
        return offsets->end();
      else
        return it;
    }

  // This handles the first part of case (7) -- we back up to the
  // *first* entry that has the offset that's behind us.
  gold_assert(it != offsets->begin());
  std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
  --it;
  const off_t range_value = it->offset;
  while (it != offsets->begin() && (it-1)->offset == range_value)
    --it;

  // This handles cases (5), (6), and (7): if any entry in the
  // equal_range [it, range_end) has a line_num != -1, it's a valid
  // match.  If not, we're not in a function.  The line number we saw
  // last for an offset will be sorted first, so it'll get returned if
  // it's present.
  for (; it != range_end; ++it)
    if (it->line_num != -1)
      return it;
  return offsets->end();
}

// Returns the canonical filename:lineno for the address passed in.
// If other_lines is not NULL, appends the non-canonical lines
// assigned to the same address.

template<int size, bool big_endian>
std::string
Sized_dwarf_line_info<size, big_endian>::do_addr2line(
    unsigned int shndx,
    off_t offset,
    std::vector<std::string>* other_lines)
{
  if (this->data_valid_ == false)
    return "";

  const std::vector<Offset_to_lineno_entry>* offsets;
  // If we do not have reloc information, then our input is a .so or
  // some similar data structure where all the information is held in
  // the offset.  In that case, we ignore the input shndx.
  if (this->input_is_relobj())
    offsets = &this->line_number_map_[shndx];
  else
    offsets = &this->line_number_map_[-1U];
  if (offsets->empty())
    return "";

  typename std::vector<Offset_to_lineno_entry>::const_iterator it
      = offset_to_iterator(offsets, offset);
  if (it == offsets->end())
    return "";

  std::string result = this->format_file_lineno(*it);
  gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
	     result.c_str());
  if (other_lines != NULL)
    {
      unsigned int last_file_num = it->file_num;
      int last_line_num = it->line_num;
      // Return up to 4 more locations from the beginning of the function
      // for fuzzy matching.
      for (++it; it != offsets->end(); ++it)
	{
	  if (it->offset == offset && it->line_num == -1)
	    continue;  // The end of a previous function.
	  if (it->line_num == -1)
	    break;  // The end of the current function.
	  if (it->file_num != last_file_num || it->line_num != last_line_num)
	    {
	      other_lines->push_back(this->format_file_lineno(*it));
	      gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
			 other_lines->back().c_str());
	      last_file_num = it->file_num;
	      last_line_num = it->line_num;
	    }
	  if (it->offset > offset && other_lines->size() >= 4)
	    break;
	}
    }

  return result;
}

// Convert the file_num + line_num into a string.

template<int size, bool big_endian>
std::string
Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
    const Offset_to_lineno_entry& loc) const
{
  std::string ret;

  gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
  gold_assert(loc.file_num
	      < static_cast<unsigned int>(this->files_[loc.header_num].size()));
  const std::pair<int, std::string>& filename_pair
      = this->files_[loc.header_num][loc.file_num];
  const std::string& filename = filename_pair.second;

  gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
  gold_assert(filename_pair.first
              < static_cast<int>(this->directories_[loc.header_num].size()));
  const std::string& dirname
      = this->directories_[loc.header_num][filename_pair.first];

  if (!dirname.empty())
    {
      ret += dirname;
      ret += "/";
    }
  ret += filename;
  if (ret.empty())
    ret = "(unknown)";

  char buffer[64];   // enough to hold a line number
  snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
  ret += ":";
  ret += buffer;

  return ret;
}

// Dwarf_line_info routines.

static unsigned int next_generation_count = 0;

struct Addr2line_cache_entry
{
  Object* object;
  unsigned int shndx;
  Dwarf_line_info* dwarf_line_info;
  unsigned int generation_count;
  unsigned int access_count;

  Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
      : object(o), shndx(s), dwarf_line_info(d),
        generation_count(next_generation_count), access_count(0)
  {
    if (next_generation_count < (1U << 31))
      ++next_generation_count;
  }
};
// We expect this cache to be small, so don't bother with a hashtable
// or priority queue or anything: just use a simple vector.
static std::vector<Addr2line_cache_entry> addr2line_cache;

std::string
Dwarf_line_info::one_addr2line(Object* object,
                               unsigned int shndx, off_t offset,
                               size_t cache_size,
                               std::vector<std::string>* other_lines)
{
  Dwarf_line_info* lineinfo = NULL;
  std::vector<Addr2line_cache_entry>::iterator it;

  // First, check the cache.  If we hit, update the counts.
  for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
    {
      if (it->object == object && it->shndx == shndx)
        {
          lineinfo = it->dwarf_line_info;
          it->generation_count = next_generation_count;
          // We cap generation_count at 2^31 -1 to avoid overflow.
          if (next_generation_count < (1U << 31))
            ++next_generation_count;
          // We cap access_count at 31 so 2^access_count doesn't overflow
          if (it->access_count < 31)
            ++it->access_count;
          break;
        }
    }

  // If we don't hit the cache, create a new object and insert into the
  // cache.
  if (lineinfo == NULL)
  {
    switch (parameters->size_and_endianness())
      {
#ifdef HAVE_TARGET_32_LITTLE
        case Parameters::TARGET_32_LITTLE:
          lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_32_BIG
        case Parameters::TARGET_32_BIG:
          lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
        case Parameters::TARGET_64_LITTLE:
          lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
#endif
#ifdef HAVE_TARGET_64_BIG
        case Parameters::TARGET_64_BIG:
          lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
#endif
        default:
          gold_unreachable();
      }
    addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
  }

  // Now that we have our object, figure out the answer
  std::string retval = lineinfo->addr2line(shndx, offset, other_lines);

  // Finally, if our cache has grown too big, delete old objects.  We
  // assume the common (probably only) case is deleting only one object.
  // We use a pretty simple scheme to evict: function of LRU and MFU.
  while (addr2line_cache.size() > cache_size)
    {
      unsigned int lowest_score = ~0U;
      std::vector<Addr2line_cache_entry>::iterator lowest
          = addr2line_cache.end();
      for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
        {
          const unsigned int score = (it->generation_count
                                      + (1U << it->access_count));
          if (score < lowest_score)
            {
              lowest_score = score;
              lowest = it;
            }
        }
      if (lowest != addr2line_cache.end())
        {
          delete lowest->dwarf_line_info;
          addr2line_cache.erase(lowest);
        }
    }

  return retval;
}

void
Dwarf_line_info::clear_addr2line_cache()
{
  for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
       it != addr2line_cache.end();
       ++it)
    delete it->dwarf_line_info;
  addr2line_cache.clear();
}

#ifdef HAVE_TARGET_32_LITTLE
template
class Sized_dwarf_line_info<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Sized_dwarf_line_info<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Sized_dwarf_line_info<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Sized_dwarf_line_info<64, true>;
#endif

} // End namespace gold.